Association BM, Smith T. The British Medical Association Complete Family Health Encyclopedia Complete Family Health Encyclopedia: Dorling Kindersley; 1990.
Groen PCD. History of the Endoscope Proceedings of the IEEE. 2017;105:1987–95.
Article
Google Scholar
Sabina B, Ana W, Krish R. The use of optical imaging techniques in the gastrointestinal tract. Frontline Gastroenterology. 2016;7:207–15.
Article
Google Scholar
Song LMWK, Adler DG, Conway JD, Diehl DL, Farraye FA, Kantsevoy SV, et al. Narrow band imaging and multiband imaging. Gastrointest Endosc. 2008;67:581–9.
Article
Google Scholar
Kuznetsov K, Lambert R, Rey JF. Narrow-band imaging: potential and limitations. Endoscopy. 2006;38:76–81.
Article
Google Scholar
Sun X, Bi Y, Dong T, Min M, Shen W, Xu Y, et al. Linked colour imaging benefits the endoscopic diagnosis of distal gastric diseases. Sci Rep. 2017;7:5638.
Article
Google Scholar
Fukuda H, Miura Y, Hayashi Y, Takezawa T, Ino Y, Okada M, et al. Linked color imaging technology facilitates early detection of flat gastric cancers. Clin J Gastroenterol. 2015;8:385–9.
Article
Google Scholar
Kanzaki H, Takenaka R, Kawahara Y, Kawai D, Obayashi Y, Baba Y, et al. Linked color imaging (LCI), a novel image-enhanced endoscopy technology, emphasizes the color of early gastric cancer. Endosc Int Open. 2017;05:E1005–13.
Article
Google Scholar
Kodashima S, Fujishiro M. Novel image-enhanced endoscopy with i-scan technology. World J Gastroenterol. 2010;16:1043–9.
Article
Google Scholar
Sung Noh H, Won Hyeok C, Jung Hyun L, So-I K, Jeong Hwan K, Tae Yoon L, et al. Prospective, randomized, back-to-back trial evaluating the usefulness of i-SCAN in screening colonoscopy. Gastrointest Endosc. 2012;75(1011–1021):e1012.
Google Scholar
Neumann H, Fujishiro M, Wilcox CM, Mönkemüller K. Present and future perspectives of virtual chromoendoscopy with i-scan and optical enhancement technology. Dig Endosc. 2014;26:43–51.
Article
Google Scholar
Manfredi MA, Dayyeh BKA, Bhat YM, Chauhan SS, Gottlieb KT, Hwang JH, et al. Electronic chromoendoscopy. Gastrointest Endosc. 2015;81:249.
Article
Google Scholar
Kiesslich R, Goetz M, Hoffman A, Galle PR. New imaging techniques and opportunities in endoscopy. Nat Rev Gastroenterol Hepatol. 2011;8:547–53.
Article
Google Scholar
Kwon RS, Song LMWK, Adler DG, Conway JD, Diehl DL, Farraye FA, et al. Endocytoscopy. Gastrointest Endosc. 2009;70:610–3.
Article
Google Scholar
Kiesslich R, Goetz M, Vieth M, Galle PR, Neurath MF. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;2012:715.
Google Scholar
Goetz M, Malek NP, Kiesslich R. Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy. Nat Rev Gastroenterol Hepatol. 2014;11:11.
Article
Google Scholar
Mountney P, Giannarou S, Elson D, Yang G-Z. Optical biopsy mapping for minimally invasive cancer screening. In: International Conference on Medical Image Computing and Computer-Assisted Intervention: 2009. Springer: 483–490.
Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Optics. 2014;19:010901.
Article
Google Scholar
Gebhart SC, Lin WC, Mahadevanjansen A. Characterization of a spectral imaging system. Proc SPIE. 2003;4959:34–45.
Article
Google Scholar
Martin ME, Wabuyele MB, Chen K, Kasili P, Panjehpour M, Phan M, et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann Biomed Eng. 2006;34:1061–8.
Article
Google Scholar
Vo-Dinh T, Stokes DL, Wabuyele MB, Martin ME, Song JM, Jagannathan R, et al. A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest. Eng Med Biol Mag IEEE. 2004;23:40–9.
Article
Google Scholar
Akbari H, Halig L, Schuster DM, Fei B, Osunkoya A, Master V, et al. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J Biomed Optics. 2012;17:076005.
Article
Google Scholar
Joshi BP, Miller SJ, Lee CM, Seibel EJ, Wang TD. Multispectral endoscopic imaging of colorectal dysplasia in vivo. Gastroenterology. 2012;143:1435–7.
Article
Google Scholar
Ortega S, Fabelo H, Iakovidis DK, Koulaouzidis A, Callico GM. Use of hyperspectral/multispectral imaging in gastroenterology. Shedding some–different–light into the dark. J Clin Med. 2019;8:36.
Article
Google Scholar
Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37.
Article
Google Scholar
Ortega S, Fabelo H, Iakovidis D, Koulaouzidis A, Callico G. Use of hyperspectral/multispectral imaging in gastroenterology. Shedding some–different–light into the dark. Journal of clinical medicine. 2019;8:36.
Siddiqi AM, Li H, Faruque F, Williams W, Lai K, Hughson M, et al. Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells. Cancer Cytopathol. 2010;114:13–21.
Article
Google Scholar
Arnold T, De Biasio M, Leitner R. High-sensitivity hyper-spectral video endoscopy system for intra-surgical tissue classification. In: SENSORS: 2010. IEEE: 2612–2615.
Gerstner AO, Laffers W, Bootz F, Farkas DL, Martin R, Bendix J, et al. Hyperspectral imaging of mucosal surfaces in patients. J Biophotonics. 2012;5:255–62.
Article
Google Scholar
Gu X, Han Z, Yao L, Zhong Y, Shi Q, Fu Y, et al. Image enhancement based on in vivo hyperspectral gastroscopic images: a case study. J Biomed Optics. 2016;21:101412.
Article
Google Scholar
Duann JR, Jan CI, Ou-Yang M, Lin CY, Mo JF, Lin YJ, et al. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections. Journal of Biomedical Optics. 2013;18:126005.
Article
Google Scholar
Lakowicz JR. Principles of fluorescence spectroscopy: Springer Science & Business Media; 2013.
Jo JA, Applegate BE, Park J, Shrestha S, Pande P, Gimenez-Conti IB, et al. In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer. IEEE Trans Biomed Eng. 2010;57:2596–9.
Article
Google Scholar
R Cubeddu D, Valentini G. Time-resolved fluorescence imaging in biology and medicine. Journal of Physics D Applied Physics. 2002;35:R61.
Lakowicz JR. Principles of fluorescence spectroscopy, third edition. Die Naturwissenschaften. 1991;78:456.
Kennedy GT, Manning HB, Elson DS, Neil MAA, Stamp GW, Viellerobe B, et al. A fluorescence lifetime imaging scanning confocal endomicroscope. J Biophotonics. 2010;3:103–7.
Article
Google Scholar
O'Connor D. Time-correlated single photon counting: Academic Press; 2012.
Fruhwirth GO, Ameer-Beg S, Cook R, Watson T, Ng T, Festy F. Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells. Opt Express. 2010;18:11148–58.
Article
Google Scholar
Requejo-Isidro J, Mcginty J, Munro I, Elson DS, Galletly NP, Lever MJ, et al. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt Lett. 2004;29:2249–51.
Article
Google Scholar
Elson D, Requejoisidro J, Munro I, Reavell F, Siegel J, Suhling K, et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci. 2004;3:795–801.
Article
Google Scholar
Liu Lixin Qu, Junle LZ, Chen Danni Hu, Tao GB, et al. A High repetition rate picosecond streak camera for two-photon excited fluorescence lifetime microscopic imaging. Acta Optica Sinica. 2006;26:373–8.
Google Scholar
James DR, Siemiarczuk A, Ware WR. Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev Sci Instrum. 1992;63:1710–6.
Article
Google Scholar
Berberan-Santos M, Valeure B. Molecular fluorescence: principles and applications. In.: Wiley-VCH, Weinheim; 2013.
Google Scholar
Munro I, McGinty J, Galletly N, Requejo-Isidro J, Lanigan PMP, Elson DS, et al. Toward the clinical application of time-domain fluorescence lifetime imaging. J Biomed Optics. 2005;10:051403.
Article
Google Scholar
Mizeret JRM, Stepinac T, Hansroul M, Studzinski A, van den Bergh H, Wagnieres G. Instrumentation for real-time fluorescence lifetime imaging in endoscopy. Rev Sci Instrum. 1999;70:4689.
Article
Google Scholar
Glanzmann T, Ballini J-P, van den Bergh H, Wagnie?res G. Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Review of Scientific Instruments. 1999;70:4067–4077.
McGinty J, Galletly NP, Dunsby C, Munro I, Elson DS, Requejo-Isidro J, et al. Wide-field fluorescence lifetime imaging of cancer. Biomed Optics Express. 2010;1:627–40.
Article
Google Scholar
Sun Y, Phipps JE, Meier J, Hatami N, Poirier B, Elson DS, et al. Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc Microanal. 2013;19:791–8.
Article
Google Scholar
Ning Y, Cheng S, Wang J-X, Liu Y-W, Feng W, Li F, et al. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe. Chemical science. 2019;10:4227–35.
Article
Google Scholar
Anderson MA, Carpenter S, Thompson NW, Nostrant TT, Elta GH, Scheiman JM. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol. 2000;95:2271–7.
Article
Google Scholar
Hocke M, Schulze E, Theodor P, et al. Contrast-enhanced endoscopic ultrasound in discrimination between focal pancreatitis and pancreatic cancer. World J Gastroenterol. 2006;12:246–50.
Article
Google Scholar
Kelly S, Harris K, Berry E, Hutton J, Roderick P, Cullingworth J, et al. A systematic review of the staging performance of endoscopic ultrasound in gastro-oesophageal carcinoma. Gut. 2001;49:534–9.
Article
Google Scholar
Changhui L, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol. 2009;54:R59.
Article
Google Scholar
Viator JA, Au G, Paltauf G, Jacques SL, Prahl SA, Ren H, et al. Clinical testing of a photoacoustic probe for port wine stain depth determination. Lasers Surg Med. 2002;30:141–8.
Article
Google Scholar
Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics. 2015;9:219–27.
Article
Google Scholar
Bézière N, Ntziachristos V. Optoacoustic imaging: an emerging modality for the gastrointestinal tract. Gastroenterology. 2011;141:1979–85.
Article
Google Scholar
Yoon TJ, Cho YS. Recent advances in photoacoustic endoscopy. World J Gastrointest Endosc. 2013;5:534–9.
Article
Google Scholar
Zhang JG, Liu HF. Functional imaging and endoscopy. World J Gastroenterol. 2011;17:4277.
Article
Google Scholar
Yang J-M, Maslov K, Yang H-C, Zhou Q, Shung KK, Wang LV. Photoacoustic endoscopy. Opt Lett. 2009;34:1591–3.
Article
Google Scholar
Wang LV, Song H. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62.
Article
Google Scholar
Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B, et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. Journal of Biomedical Optics. 2012;17:056016.
Article
Google Scholar
Lim L, Streutker CJ, Marcon N, Cirocco M, Lakovlev VV, DaCosta R, et al. Clinical study of ex vivo photoacoustic imaging in endoscopic mucosal resection tissues. In: Photons Plus Ultrasound: Imaging and Sensing 2015: 2015. International Society for Optics and Photonics: 932307.
Yang J-M, Li C, Chen R, Zhou Q, Shung KK, Wang LV. Catheter-based photoacoustic endoscope for use in the instrument channel of a clinical video endoscope. In: Photons Plus Ultrasound: Imaging and Sensing 2015: 2015. International Society for Optics and Photonics: 93230Y.
Yang J-M, Chen R, Favazza C, Yao J, Li C, Hu Z, et al. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt Express. 2012;20:23944–53.
Article
Google Scholar
Yang JM, Li C, Chen R, Zhou Q, Shung KK, Wang LV. Catheter-based photoacoustic endoscope. J Biomedical Optics. 2014;19:066001.
Article
Google Scholar
Yang JM, Favazza C, Chen R, Yao J, Cai X, Maslov K, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18:1297–302.
Article
Google Scholar
Yang JM, Li C, Chen R, Rao B, Yao J, Yeh CH, et al. Optical-resolution photoacoustic endomicroscopy in vivo. Biomedical Optics Express. 2015;9323:918–32.
Article
Google Scholar
He H, Wissmeyer G, Ovsepian SV, Buehler A, Ntziachristos V. Hybrid optical and acoustic resolution optoacoustic endoscopy. Opt Lett. 2016;41:2708–10.
Article
Google Scholar
Bai X, Gong X, Hau W, Lin R, Zheng J, Liu C, et al. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. Sci Found China. 2015;9:e92463.
Google Scholar
Lin R, Li Y, Chen J, Song L. Full field-of-view photoacoustic endoscopy in vivo. In: Photons Plus Ultrasound: Imaging and Sensing 2017: 2017. International Society for Optics and Photonics: 100643Y.
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.
Article
Google Scholar
Tsai TH, Fujimoto JG, Mashimo H. Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics. 2014;4:57–93.
Article
Google Scholar
Testoni PA. Optical coherence tomography. Sci World J. 2007;7:87–108.
Article
Google Scholar
Ozaki N, Childs DT, Sarma J, Roberts TS, Yasuda T, Shibata H, et al. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source. J Appl Phys. 2016;119:083107.
Article
Google Scholar
Zhao H, Gao F, Tanikawa Y, Homma K, Yamada Y. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue. Appl Opt. 2005;44:1905–16.
Article
Google Scholar
Lindmark G, Bo AN. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J Biomed Optics. 2012;17:070501.
Google Scholar
Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett. 1996;21:543–5.
Article
Google Scholar
Donglin W, Linlai F, Xin W, Zhongjian G, Sean S, Can D, et al. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror. J Biomed Optics. 2013;18:86005.
Article
Google Scholar
Lee J, Chae Y, Ahn Y-C, Moon S. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber. Biomed Optics Express. 2015;6:1782–96.
Article
Google Scholar
Jingyu L, Chunyu Z, Xiaoying T, Tianxin G. Research Status and Prospect of Endoscopic OCT. Laser & Optoelectronics Progress. 2015:6.
Pahlevaninezhad H, Khorasaninejad M, Huang Y-W, Shi Z, Hariri LP, Adams DC, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat Photonics. 2018;12:540.
Article
Google Scholar
Yun S, Tearney G, Boer J, De BB. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt Express. 2004;12:4822–8.
Article
Google Scholar
Herz PR, Chen Y, Aguirre AD, Schneider K, Hsiung P, Fujimoto JG, et al. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt Lett. 2004;29:2261–3.
Article
Google Scholar
Jiefeng X, Li H, Yicong W, Cobb MJ, Joo Ha H, Xingde L. High-resolution OCT balloon imaging catheter with astigmatism correction. Opt Lett. 2009;34:1943–5.
Article
Google Scholar
Yuan W, Brown R, Mitzner W, Yarmus L, Li X. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat Commun. 2017;8:1531.
Article
Google Scholar
Mavadiashukla J, Fathi P, Liang W, Wu S, Sears C, Li X. High-speed, ultrahigh-resolution distal scanning OCT endoscopy at 800 nm for in vivo imaging of colon tumorigenesis on murine models. Biomed Optics Express. 2018;9:3731.
Article
Google Scholar
Ding Z, Qiu J, Shen Y, Chen Z, Bao W. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography. Opt Lett. 2017;42:2814–7.
Article
Google Scholar
Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K, Chen Z, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41:353–7.
Article
Google Scholar
Hamdoon Z, Jerjes W, Upile T, McKenzie G, Jay A, Hopper C. Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagn Photodyn Ther. 2013;10:17–27.
Article
Google Scholar
Davies K, Connolly J, Dockery P, Wheatley A, Olivo M, Keogh I. Point of care optical diagnostic technologies for the detection of oral and oropharyngeal squamous cell carcinoma. The surgeon. 2015;13:321–9.
Article
Google Scholar
Sivak MV Jr, Kobayashi K, Izatt JA, Rollins AM, Ung-Runya R. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest Endosc. 2000;51:474–9.
Article
Google Scholar
Cobb MJ, Hwang JH, Upton MP, Chen Y, Oelschlager BK, Wood DE, et al. Imaging of subsquamous Barrett’s epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study. Gastrointest Endosc. 2010;71:223–30.
Article
Google Scholar
Zhou C, Kirtane T, Tsai TH, Lee HC, Adler DC, Schmitt J, et al. Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch. Gastrointest Endosc. 2012;75:675–7.
Article
Google Scholar
Suter MJ, Jillella PA, Vakoc BJ, Halpern EF, Minokenudson M, Lauwers GY, et al. Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine. Gastrointest Endosc. 2010;71:346–53.
Article
Google Scholar
Kiseleva E, Kirillin M, Feldchtein F, Vitkin A, Sergeeva E, Zagaynova E, et al. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomedical Optics Express. 2015;6:1464–76.
Article
Google Scholar
Isenberg G Jr, SM, Chak A, Wong RC, Willis JE, Wolf B, , et al. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Digest World Core Med J. 2006;62:825–31.
Google Scholar
Evans CL, Xie XS. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem. 2008;1:883–909.
Article
Google Scholar
Li F, Palapattu GS, Zhou H, Wong KK, Gao L, Thrall MJ, et al. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed Optics Express. 2011;2:915–26.
Article
Google Scholar
Cheng J-X. Coherent anti-Stokes Raman scattering microscopy. Appl Spectrosc. 2007;61:197A-208A.
Article
Google Scholar
Marrocco M. Coherent anti-Stokes Raman scattering microscopy in a microcavity. In: APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts: 2007.
Hirose K, Fukushima S, Furukawa T, Hashimoto M. Coherent anti-Stokes Raman scattering imaging of nerves under rigid endoscopy. In: JSAP-OSA Joint Symposia: 2017. Optical Society of America: 5p_A409_408.
Ji XC, Xie XS. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications. Jphyschemb. 2004;108:827–40.
Google Scholar
Liu Z, Wang Z, Satira ZA, Xu C, Chen S, Xin J, et al. Development of fibre bundle probe for coherent anti-Stokes Raman scattering microendoscopy. Electron Lett. 2013;49:522–4.
Article
Google Scholar
Aviles-Espinosa RA, Santos SICO, Brodschelm A, Kaenders WG, Alonso-Ortega C, Artigas-García D, et al. Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis. J Biomed Optics. 2010;15:046020–7.
Article
Google Scholar
Wang BG, König K, Halbhuber KJ. Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc. 2010;238:1–20.
Article
MathSciNet
Google Scholar
Harpel K, Baker RD, Amirsolaimani B, Mehravar S, Vagner J, Matsunaga TO, et al. Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy. Biomed Optics Express. 2016;7:2849–60.
Article
Google Scholar
Carriles R, Schafer DN, Sheetz KE, Field JJ, Cisek R, Barzda V, et al. Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum. 2009;80:2834–69.
Article
Google Scholar
Perry SW, Burke RM, Brown EB. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng. 2012;40:277–91.
Article
Google Scholar
Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung ELM, Schnitzer MJ. Fiber-optic fluorescence imaging. Nat Methods. 2005;2:941–50.
Article
Google Scholar
Mehravar S, Banerjee B, Chatrath H, Amirsolaimani B, Patel K, Patel C, et al. Label-free multi-photon imaging of dysplasia in Barrett’s esophagus. Biomedical optics express. 2016;7:148–57.
Article
Google Scholar
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–6.
Article
Google Scholar
Huland DM, Brown CM, Howard SS, Ouzounov DG, Ina P, Ke W, et al. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. Biomed Optics Express. 2012;3:1077–85.
Article
Google Scholar
Brown CM, Rivera DR, Pavlova I, Ouzounov DG, Williams WO, Mohanan S, et al. In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope. J Biomed Optics. 2012;17:040505.
Article
Google Scholar
Ducourthial G, Leclerc P, Mansuryan T, Fabert M, Brevier J, Habert R, et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci Rep. 2015;5:18303.
Article
Google Scholar
Liang W, Hall G, Messerschmidt B, Li M-J, Li X. Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light Sci Appl. 2017;6:e17082.
Article
Google Scholar
Kim DY, Hwang K, Ahn J, Seo Y-H, Kim J-B, Lee S, et al. Lissajous scanning two-photon endomicroscope for in vivo tissue imaging. Sci Rep. 2019;9:3560.
Article
Google Scholar
Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express. 2009;17:13354–64.
Article
Google Scholar
Huland DM, Kriti C, Ouzounov DG, Jones JS, Nozomi N, Chris X. Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope. Biomed Optics Express. 2013;4:652–8.
Article
Google Scholar
Akhoundi F, Qin Y, Peyghambarian N, Barton JK, Kieu K. Compact fiber-based multi-photon endoscope working at 1700 nm. Biomedical optics express. 2018;9:2326–35.
Article
Google Scholar
Zhuo S, Yan J, Chen G, Shi H, Zhu X, Lu J, et al. Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy. PLoS ONE. 2012;7:e38655.
Article
Google Scholar
Zhang Y, Akins ML, Murari K, Xi J, Li M-J, Luby-Phelps K, et al. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc Natl Acad Sci U S A. 2012;109:12878–83.
Article
Google Scholar
Barad Y, Eisenberg H, Horowitz M, Silberberg Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett. 1997;70:922–4.
Article
Google Scholar
Yelin D, Silberberg Y. Laser scanning third-harmonic-generation microscopy in biology. Opt Express. 1999;5:169–75.
Article
Google Scholar
Zonios G, Perelman LT, Backman V, Manoharan R, Fitzmaurice M, Van DJ, et al. Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl Opt. 1999;38:6628–37.
Article
Google Scholar
Yodh A, Chance B. Spectroscopy and imaging with diffusing Light. Phys Today. 1995;48:34–40.
Article
Google Scholar
Le Q, Chuttani R, Pleskow DK, Turzhitsky V, Khan U, Zakharov YN, et al. Multispectral light scattering endoscopic imaging of esophageal precancer. Light Sci Appl. 2018;7:17174.
Google Scholar
Lovat L, Bown S. Elastic scattering spectroscopy for detection of dysplasia in Barrett’s esophagus. Gastrointest Endosc Clin N Am. 2004;14:507–17.
Article
Google Scholar
Mourant JR, Canpolat M, Brocker C, Espondo-Ramos O, Johnson TM, Matanock A, et al. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. In: Optical Biopsy III: 2000. International Society for Optics and Photonics: 33–42.
Coda S, Siersema PD, Stamp GW, Thillainayagam AV. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endosc Int Open. 2015;3:E380-392.
Article
Google Scholar
Lovat LB, Johnson K, Mackenzie GD, Clark BR, Novelli MR, Davies S, et al. Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus. Gut. 2006;55:1078–83.
Article
Google Scholar
Johansson A, Kromer K, Sroka R, Stepp H. Clinical optical diagnostics–status and perspectives. Med Laser Appl. 2008;23:155–74.
Article
Google Scholar
Riddell RH, Goldman H, Ransohoff DF, Appelman HD, Fenoglio CM, Haggitt RC, et al. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol. 1983;14:931–68.
Article
Google Scholar
Mourant JR, Bigio IJ, Boyer JD, Johnson TM, Lacey J, Bohorfoush AG, et al. Elastic scattering spectroscopy as a diagnostic tool for differentiating pathologies in the gastrointestinal tract: preliminary testing. J Biomed Optics. 1996;1:192–9.
Article
Google Scholar
Ge Z, Schomacker KT, Nishioka NS. Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques. Appl Spectrosc. 1998;52:833–9.
Article
Google Scholar
Roy HK, Gomes A, Turzhitsky V, Goldberg MJ, Rogers J, Ruderman S, et al. Spectroscopic Microvascular Blood Detection From the Endoscopically Normal Colonic Mucosa: Biomarker for Neoplasia Risk. Gastroenterology. 2008;135:1069–78.
Article
Google Scholar
Canpolat M, Denkceken T, Karaveli S, Pestereli E, Erdoğan G, Özel D, et al. Detection of precancerous cervical conditions using elastic light single-scattering spectroscopy. In: Biomedical Applications of Light Scattering IV: 2010. International Society for Optics and Photonics: 75730V.
Hui F, Ollero M, Vitkin E, Kimerer LM, Cipolloni PB, Zaman MM, et al. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. Select Topics in Quantum Electr IEEE J. 2003;9:267–76.
Article
Google Scholar
Perelman LT, Backman V, Wallace M, Zonios G, Manoharan R, Nusrat A, et al. Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys Rev Lett. 1998;80:627–30.
Article
Google Scholar
Chung-Chieh Y, Condon L, Tunnell JW, Martin H, Maxim K, Christopher FY, et al. Assessing epithelial cell nuclear morphology by using azimuthal light scattering spectroscopy. Opt Lett. 2006;31:3119–21.
Article
Google Scholar
Qiu L, Pleskow DR, Vitkin E, Leyden J, Ozden N, Itani S, et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat Med. 2010;16:603.
Article
Google Scholar
Alexey M, Linda N, Lorenz W, Urs U, Rebecca RK, Konstantin S. Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance. J Biomed Optics. 2002;7:388.
Article
Google Scholar
Zhang L, Pleskow DK, Turzhitsky V, Yee EU, Berzin TM, Sawhney M, et al. Light scattering spectroscopy identifies the malignant potential of pancreatic cysts during endoscopy. Nat Biomed Eng. 2017;1:0040.
Article
Google Scholar
Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med. 2001;7:1245–8.
Article
Google Scholar
Thosani N, Dayyeh BKA, Sharma P, Aslanian HR, Enestvedt BK, Komanduri S, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE preservation and incorporation of valuable endoscopic innovations thresholds for adopting real-time imaging–assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest Endosc. 2016;83(684–698):e687.
Google Scholar
Pyhtila JW, Graf RN, Wax A. Determining nuclear morphology using an improved angle-resolved low coherence interferometry system. Opt Express. 2003;11:3473–84.
Article
Google Scholar
Wax A, Yang C, Backman V, Badizadegan K, Boone CW, Dasari RR, et al. Cellular organization and substructure measured using angle-resolved low-coherence interferometry. Biophys J . 2002;82:2256–64.
Article
Google Scholar
Adam W, Changhuei Y, Vadim B, Maxim K, Dasari RR, Feld MS. Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry. J Opt Soc Am A: 2002;19:737.
Article
Google Scholar
Zhu Y, Terry NG, Woosley JT, Shaheen NJ, Wax A. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology. J Biomed Optics. 2011;16:011003.
Article
Google Scholar
Terry NG, Zhu Y, Rinehart MT, Brown WJ, Gebhart SC, Bright S, et al. Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements. Gastroenterology. 2011;140:42–50.
Article
Google Scholar
Ho D, Drake TK, Smith-McCune KK, Darragh TM, Hwang LY, Wax A. Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology. Int J Cancer. 2017;140:1447–56.
Article
Google Scholar
Brown WJ, Pyhtila JW, Terry NG, Chalut KJ, D’Amico TA, Sporn TA, et al. Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium. IEEE J Select Top Quantum Electr. 2008;14:88–97.
Article
Google Scholar
Stallmach A, Schmidt C, Watson A, Kiesslich R. An unmet medical need: advances in endoscopic imaging of colorectal neoplasia. J Biophotonics. 2011;4:482–9.
Article
Google Scholar
Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagn Photodyn Ther. 2013;10:207–19.
Article
Google Scholar
Shim MG, Song LM, Marcon NE, Wilson BC. In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol. 2010;72:146–50.
Google Scholar
Andrea M, Song LMWK, Shim MG, Marcon NE, Wilson BC. Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest Endosc. 2003;57:396–402.
Article
Google Scholar
Huang Z, Teh SK, Zheng W, Lin K, Ho KY, Teh M, et al. In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens Bioelectron. 2011;26:383–9.
Article
Google Scholar
Wang J, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy. Sci Rep. 2015;5:12957.
Article
Google Scholar
Wang J, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, et al. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia. Faraday Discuss. 2016;187:377–92.
Article
Google Scholar
Haka AS, Volynskaya ZI, Gardecki JA, Nazemi J, Shenk R, Wang N, et al. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Optics. 2009;14:054023.
Article
Google Scholar
Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer. 2003;41:S50–S50.
Google Scholar
Wang J, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, et al. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy. Anal Bioanal Chem. 2015;407:8303–10.
Article
Google Scholar
Mads Sylvest B, Wei Z, Khek YuH, Ming T, Khay Guan Y, Jimmy Bok YS, et al. Fiberoptic confocal raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology. 2014;146:27–32.
Article
Google Scholar
Bergholt MS, Lin K, Wang J, Zheng W, Xu H, Huang Q, et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J Biophotonics. 2016;9:333–42.
Article
Google Scholar
Almond LM, Hutchings J, Lloyd G, Barr H, Shepherd N, Day J, et al. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2014;79:37–45.
Article
Google Scholar
Han Z, Zhang A, Wang X, Sun Z, Wang MD, Xie T. In vivo use of hyperspectral imaging to develop a noncontact endoscopic diagnosis support system for malignant colorectal tumors. J Biomed Optics. 2016;21:16001.
Article
Google Scholar
Hohmann M, Kanawade R, Klämpfl F, Douplik A, Mudter J, Neurath MF, et al. In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy. J Biophotonics. 2016;10:553–64.
Article
Google Scholar
Ferris DG, Lawhead RA, Dickman ED, Holtzapple N, Miller JA, Grogan S, et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Lower Genital Tract Dis. 2010;5:65–72.
Google Scholar
Regeling B, Thies B, Gerstner AOH, Westermann S, Müller NA, Bendix J, et al. Hyperspectral imaging using flexible endoscopy for laryngeal cancer detection. Sensors. 2016;16:1288.
Article
Google Scholar
Mycek M, Schomacker K, Nishioka N. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest Endosc. 1998;48:390–4.
Article
Google Scholar
Glanzmann T, Ballini JP, Bergh HVD, Wagnières G. Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Rev Sci Instrum. 1999;70:4067–77.
Article
Google Scholar
Testoni PA, Mariani A, Mangiavillano B, Arcidiacono PG, Di PS, Masci E. Intraductal optical coherence tomography for investigating main pancreatic duct strictures. Gastrointestinal Endoscopy. 2006;63:AB89-AB89.
Seitz U, Freund J, Jaeckle S, Feldchtein F, Bohnacker S, Thonke F, et al. First in vivo optical coherence tomography in the human bile duct. Endoscopy. 2001;33:1018–21.
Article
Google Scholar
Poneros JM, Tearney GJ, Shiskov M, Kelsey PB, Lauwers GY, Nishioka NS, et al. Optical coherence tomography of the biliary tree during ERCP. Gastrointest Endosc. 2002;55:84–8.
Article
Google Scholar
Sergeev A, Gelikonov V. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express. 1997;1:432–40.
Article
Google Scholar
Zuccaro G, Gladkova N, Vargo J, Feldchtein F, Zagaynova E, Conwell D, et al. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am J Gastroenterol. 2001;96:2633–9.
Article
Google Scholar
Jäckle S, Gladkova N, Feldchtein F, Terentieva A, Brand B, Gelikonov G, et al. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract–toward optical biopsy. Endoscopy. 2000;32:743–9.
Article
Google Scholar
Sivak MV, Kobayashi K, Izatt JA, Rollins AM, Ung-Runyawee R, Chak A, et al. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest Endosc. 2000;51:474–9.
Article
Google Scholar
Zagaynova EV, Streltsova OS, Gladkova ND, Snopova LB, Gelikonov GV, Feldchtein FI, et al. In vivo optical coherence tomography feasibility for bladder disease. J Urol. 2002;167:1492–6.
Article
Google Scholar
Lerner SP, Goh AC, Tresser NJ, Shen SS. Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology. 2008;72:133–7.
Article
Google Scholar
Escobar PF, Belinson JL, White A, Shakhova NM, Feldchtein FI, Kareta MV, et al. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. Int J Gynecol Cancer. 2010;14:470–4.
Article
Google Scholar
Gallwas JK, Turk L, Stepp H, Mueller S, Ochsenkuehn R, Friese K, et al. Optical coherence tomography for the diagnosis of cervical intraepithelial neoplasia. Lasers Surg Med. 2011;43:206–12.
Article
Google Scholar
Julian A, Matthew L, Ian W, Andrei Z, Sergey A, Stefan S, et al. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography. Opt Express. 2003;11:1817–26.
Article
Google Scholar
Lam S, Standish B, Baldwin C, Mcwilliams A, Leriche J, Gazdar A, et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res. 2008;14:2006.
Article
Google Scholar
Wong BJF, Ms RPJ, Guo S, Ridgway JM, Mahmood U, Su J, et al. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope. 2010;115:1904–11.
Article
Google Scholar
Burns JA. Optical coherence tomography: imaging the larynx. Curr Opin Otolaryngol Head Neck Surg. 2012;20:477–81.
Article
Google Scholar
Harm LP, Bonnema GT, Kathy S, Kenneth H, Molly B, Banon JK. Laparoscopic optical coherence tomographic imaging of human ovarian cancer. Gynecol Oncol. 2009;114:188–94.
Article
Google Scholar
Lovat LB, Johnson K, Mackenzie GD, Clark BR, Novelli MR, Davies S, et al. Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus. Gut. 2006;55:1078.
Article
Google Scholar
Dhar A, Johnson KS, Novelli MR, Bown SG, Bigio IJ, Lovat LB, et al. Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique. Gastrointest Endosc. 2006;63:257–61.
Article
Google Scholar
Mourant JR, Bigio IJ, Boyer J, Conn RL, Johnson T, Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg Med. 2010;17:350–7.
Article
Google Scholar
Georgakoudi I, Sheets EE, Müller MG, Backman V, Crum CP, Badizadegan K, et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol. 2002;186:374–82.
Article
Google Scholar
Chang VT, Cartwright PS, Bean SM, Palmer GM, Bentley RC, Ramanujam N. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia. 2009;11:325–32.
Article
Google Scholar
Chang TCB, S. M, Cartwright PS, Ramanujam N. Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix. Journal of Biomedical Optics. 2010;15:057006.
Wallace MB, Perelman LT, Backman V, Crawford JM, Fitzmaurice M, Seiler M, et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology. 2000;119:677–82.
Article
Google Scholar
Lau C, Šćepanović O, Mirkovic J, Mcgee S, Yu CC, Stephen Fulghum J, et al. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J Biomed Optics. 2009;14:024031.
Article
Google Scholar
Backman V, Wallace MB, Perelman LT, Arendt JT, Gurjar R, Müller MG, et al. Detection of preinvasive cancer cells. Nature. 2000;406:35–6.
Article
Google Scholar
Bergholt MS, Zheng W, Ho KY, Teh M, Yeoh KG, So JB, et al. Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J Biophotonics. 2013;6:49–59.
Article
Google Scholar
Bergholt MS, Zheng W, Lin K, Wang J, Xu H, Ren JL, et al. Characterizing variability of in vivo Raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal Chem. 2015;87:960–6.
Article
Google Scholar
Draga RO, Grimbergen MC, Vijverberg PL, van Swol CF, Jonges TG, Kummer JA, et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem. 2010;82:5993–9.
Article
Google Scholar
Rashid N, Nawaz H, Poon KW, Bonnier F, Bakhiet S, Martin C, et al. Raman microspectroscopy for the early detection of pre-malignant changes in cervical tissue. Exp Mol Pathol. 2014;97:554–64.
Article
Google Scholar
Lyng FM, Traynor D, Ramos IR, Bonnier F, Byrne HJ. Raman spectroscopy for screening and diagnosis of cervical cancer. Anal Bioanal Chem. 2015;407:8279–89.
Article
Google Scholar
O’Brien CM, Vargis E, Rudin A, Slaughter JC, Thomas G, Newton JM, et al. In vivo Raman spectroscopy for biochemical monitoring of the cervix throughout pregnancy. Am J Obstet Gynecol. 2018;218:S0002937818300796.
Google Scholar
Bergholt MS, Lin K, Zheng W, Lau DP, Huang Z. In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. J Biomed Optics. 2012;17:077002.
Google Scholar
Kan L, Wei Z, Wang J, Lim CM, Huang Z. Simultaneous fingerprint and high-wavenumber fiber-optic Raman endoscopy for in vivo diagnosis of laryngeal cancer. In: Photonic Therapeutics & Diagnostics XII: 2016.
Lim CM, Lin K, Zheng W, Huang Z. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy. Biomed Optics Express. 2016;7:3705.
Article
Google Scholar
Lombardini A, Mytskaniuk V, Sivankutty S, Andresen ER, Chen X, Wenger J, et al. High-resolution multimodal flexible coherent Raman endoscope. Light: Science & Applications. 2018;7:10.
Yang Z, Albrow-Owen T, Cui H, Alexander-Webber J, Gu F, Wang X, et al. Single-nanowire spectrometers. Science. 2019;365:1017–20.
Article
Google Scholar
Shroff H, Galbraith CG, Galbraith JA, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods. 2008;5:417–23.
Article
Google Scholar
Patterson GH, Lippincottschwartz J. A Photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297:1873–7.
Article
Google Scholar
Ba TQ, Lenne PF. Superresolution measurements in vivo: imaging Drosophila embryo by photoactivated localization microscopy. Methods Cell Biol. 2015;125:119.
Article
Google Scholar
Bates M, Huang B, Dempsey GT, Zhuang X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science. 2007;317:1749–53.
Article
Google Scholar
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793.
Article
Google Scholar
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–3.
Article
Google Scholar
Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, et al. Dual-Color STED microscopy at 30-nm focal-plane resolution. Small. 2010;4:1095–100.
Article
Google Scholar
Klar T, Jakobs S, Dyba M, Egner A, Hell S. Fluorescence microscopy with di raction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA. 2000;97:8206–10.
Article
Google Scholar
Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440:935.
Article
Google Scholar
Dyba M, Jakobs S, Hell SW. Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol. 2003;21:1303–4.
Article
Google Scholar
Cogswell CJ. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc SPIE. 2000;3919:141–50.
Article
Google Scholar
Huang X, Fan J, Li L, Liu H, Chen L. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol. 2018;36:451.
Article
Google Scholar
Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016;354:3928.
Article
Google Scholar
York AG, Chandris P, Nogare DD, Head J, Wawrzusin P, Fischer RS, et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat Methods. 2013;10:1122–6.
Article
Google Scholar
Guo M, Chandris P, Giannini JP, Trexler AJ, Fischer R, Chen J, et al. Single-shot super-resolution total internal reflection fluorescence microscopy. Nat Methods. 2018;15:425.
Article
Google Scholar
Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 2008;320:1332–6.
Article
Google Scholar
Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short communication. J Microsc. 2010;198:82–7.
Article
Google Scholar
Li D, Shao L, Chen B-C, Zhang X, Zhang M, Moses B, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349:aab3500.
Chen TA, Chen LC, Hui LI, Jia YU, Gao YF, Zheng W. Structured illumination super-resolution microscopy technology:review and prospect. Chinese Optics. 2018;11:307–28.
Article
Google Scholar
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Aerts HJWL. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2007;43:441–6.
Google Scholar
Hsu W, Markey MK, Wang MD. Biomedical imaging informatics in the era of precision medicine: progress, challenges, and opportunities. J Am Med Inf Assoc Jamia. 2013;20:1010–3.
Article
Google Scholar
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging. 2018;5:010901.
Article
Google Scholar