Drossman DA, Li Z, Andruzzi E, Temple RD, Talley NJ, Grant Thompson W, et al. U. S. Householder survey of functional gastrointestinal disorders. Dig Dis Sci. 1993;38(9):1569–80.
Article
Google Scholar
Long Y, Huang Z, Deng Y, Chu H, Zheng X, Yang J, et al. Prevalence and risk factors for functional bowel disorders in South China: a population based study using the Rome III criteria. Neurogastroenterol Motil. 2017. https://doi.org/10.1111/nmo.12897.
Article
Google Scholar
Boronat AC, Ferreira-Maia AP, Matijasevich A, Wang Y-P. Epidemiology of functional gastrointestinal disorders in children and adolescents: a systematic review. World J Gastroenterol. 2017. https://doi.org/10.3748/wjg.v23.i21.3915.
Article
Google Scholar
Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am J Gastroenterol. 2011. https://doi.org/10.1038/ajg.2011.164.
Article
Google Scholar
Sharma A, Yuan L, Marshall RJ, Merrie AEH, Bissett IP. Systematic review of the prevalence of faecal incontinence. Br J Surg. 2016;103(12):1589–97.
Article
Google Scholar
Lacy BE, Mearin F, Chang L, Chey WD, Lembo AJ, Simren M, et al. Bowel disorders. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.031.
Article
Google Scholar
Dinning PG, Wiklendt L, Maslen L, Gibbins I, Patton V, Arkwright JW, et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol Motil. 2014. https://doi.org/10.1111/nmo.12408.
Article
Google Scholar
Chen J-H, Nirmalathasan S, Pervez M, Milkova N, Huizinga JD. The sphincter of O’Beirne—part 1: study of 18 normal subjects. Dig Dis Sci. 2021. https://doi.org/10.1007/s10620-020-06657-w.
Article
Google Scholar
Lin AY, Dinning PG, Milne T, Bissett IP, O’Grady G. The, “rectosigmoid brake”: review of an emerging neuromodulation target for colorectal functional disorders. Clin Exp Pharmacol Physiol. 2017;44(7):719–28.
Article
Google Scholar
Lin AY, Du P, Dinning PG, Arkwright JW, Kamp JP, Cheng LK, et al. High-resolution anatomic correlation of cyclic motor patterns in the human colon: evidence of a rectosigmoid brake. Am J Physiol. 2017;312(5):G508–15.
Google Scholar
Dinning PG, Wiklendt L, Maslen L, Patton V, Lewis H, Arkwright JW, et al. Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry. Neurogastroenterol Motil. 2015;27(3):379–88.
Article
Google Scholar
Chen J-H, Collins SM, Milkova N, Pervez M, Nirmalathasan S, Tan W, et al. The sphincter of O’Beirne—part 2: report of a case of chronic constipation with autonomous dyssynergia. Dig Dis Sci. 2021. https://doi.org/10.1007/s10620-020-06723-3.
Article
Google Scholar
Keane C, Paskaranandavadivel N, Vather R, Rowbotham D, Arkwright J, Dinning P, et al. Altered colonic motility is associated with low anterior resection syndrome. Colorectal Dis. 2020. https://doi.org/10.1111/codi.15465.
Article
Google Scholar
Vather R, O’Grady G, Lin AY, Du P, Wells CI, Rowbotham D, et al. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg. 2018;105(7):907–17.
Article
Google Scholar
Seo SHB, Bissett I, O’Grady G. Variable gut function recovery after right vs left colectomy may be due to rectosigmoid hyperactivity. Front Physiol. 2021;12:91.
Article
Google Scholar
Erickson JC, Bruce LE, Taylor A, Richman J, Higgins C, Wells CI, et al. Electrocolonography: non-invasive detection of colonic cyclic motor activity from multielectrode body surface recordings. IEEE Trans Biomed Eng. 2019. https://doi.org/10.1109/TBME.2019.2941851.
Article
Google Scholar
Carson DA, O’Grady G, Du P, Gharibans AA, Andrews CN. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil. 2020;4(150):1380–92.
Google Scholar
Patton V, Wiklendt L, Arkwright JW, Lubowski DZ, Dinning PG. The effect of sacral nerve stimulation on distal colonic motility in patients with faecal incontinence. Br J Surg. 2013;100(7):959–68.
Article
Google Scholar
Huizinga JD, Wim JE. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009. https://doi.org/10.1152/ajpgi.90380.2008.
Article
Google Scholar
Angeli TR, O’Grady G, Paskaranandavadivel N, Erickson JC, Du P, Pullan AJ, et al. Experimental and automated analysis techniques for high-resolution electrical mapping of small intestine slow wave activity. J Neurogastroenterol Motil. 2013;19(2):179–91.
Article
Google Scholar
Wells CI, O’Grady G. Interstitial cells of cajal. In: Kuipers EJ, editor. Encyclopedia of gastroenterology. 2nd ed. Academic Press; 2020. pp. 267–274
Chapter
Google Scholar
Pervez M, Ratcliffe E, Parsons SP, Chen J-H, Huizinga JD. The cyclic motor patterns in the human colon. Neurogastroenterol Motil. 2020;32(5):e13807.
Article
Google Scholar
Bueno L, Fioramonti J, Ruckebusch Y, Frexinos J, Coulom P. Evaluation of colonic myoelectrical activity in health and functional disorders. Gut. 1980;21(6):480–5.
Article
Google Scholar
Lammers WJ, Slack JR. Of slow waves and spike patches. News Physiol Sci. 2001;16:138–44.
Google Scholar
Lammers WJ, Abazer FA, Ver Donck L, Smets D, Schuurkes JA. Electrical activity in the rectum of anaesthetized dogs. Neurogastroenterol Motil. 2006. https://doi.org/10.1111/j.1365-2982.2006.00791.x.
Article
Google Scholar
Erickson JC, Velasco-Castedo R, Obioha C, Cheng LK, Angeli TR, O’Grady G. Automated algorithm for GI spike burst detection and demonstration of efficacy in ischemic small intestine. Ann Biomed Eng. 2013;41(10):2215–28.
Article
Google Scholar
Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998;510(Pt 1):309–20.
Article
Google Scholar
Taylor I, Duthie HL, Smallwood R, Linkens D. Large bowel myoelectrical activity in man. Gut. 1975;16(10):808–14.
Article
Google Scholar
Angeli TR, Du P, Paskaranandavadivel N, Janssen PWM, Beyder A, Lentle RG, et al. The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J Physiol. 2013;591(18):4567–79.
Article
Google Scholar
Paskaranandavadivel N, Cheng LK, Du P, Rogers JM, O’Grady G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol. 2017;313(3):G265–76.
Article
Google Scholar
Paskaranandavadivel N, O’Grady G, Du P, Cheng LK. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol Motil. 2013. https://doi.org/10.1111/nmo.12012.
Article
Google Scholar
Paskaranandavadivel N, Alighaleh S, Du P, O’Grady G, Cheng LK. Suppression of ventilation artifacts for gastrointestinal slow wave recordings. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017. https://doi.org/10.1109/embc.2017.8037431
Kuizenga MH, Sia TC, Dodds KN, Wiklendt L, Arkwright JW, Thomas A, et al. Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum. Am J Physiol Gastrointest Liver Physiol. 2015;308(1):G1-11.
Article
Google Scholar
Lee H-T, Hennig GW, Park KJ, Bayguinov PO, Ward SM, Sanders KM, et al. Heterogeneities in ICC Ca2+ activity within canine large intestine. Gastroenterology. 2009;136(7):2226–36.
Article
Google Scholar
Prins NH, Akkermans LM, Lefebvre RA, Schuurkes JA. 5-HT(4) receptors on cholinergic nerves involved in contractility of canine and human large intestine longitudinal muscle. Br J Pharmacol. 2000;131(5):927–32.
Article
Google Scholar
Prins NH, Van Haselen JFWR, Lefebvre RA, Briejer MR, Akkermans LMA, Schuurkes JAJ. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol. 1999. https://doi.org/10.1038/sj.bjp.0702665.
Article
Google Scholar
Sanders KM, Stevens R, Burke E, Ward SW. Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol. 1990;259(2 Pt 1):G258–63.
Google Scholar
Paskaranandavadivel N, Varghese C, Lara J, Ramachandran S, Cheng L, Holobar A, et al. A novel high-density electromyography probe for evaluating anorectal neurophysiology: design, human feasibility study, and validation with trans-sacral magnetic stimulation. Ann Biomed Eng. 2020. https://doi.org/10.1007/s10439-020-02581-2.
Article
Google Scholar
Black BJ, Kanneganti A, Joshi-Imre A, Rihani R, Chakraborty B, Abbott J, et al. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex. J Neurophysiol. 2018;120(4):2083–90.
Article
Google Scholar
Eftaiha SM, Balachandran B, Marecik SJ, Mellgren A, Nordenstam J, Melich G, et al. Sacral nerve stimulation can be an effective treatment for low anterior resection syndrome. Colorectal Dis. 2017;19(10):927–33.
Article
Google Scholar
Huang Y, Koh CE. Sacral nerve stimulation for bowel dysfunction following low anterior resection: a systematic review and meta-analysis. Colorectal Dis. 2019;21(11):1240–8.
Article
Google Scholar
Varma JS. Autonomic influences on colorectal motility and pelvic surgery. World J Surg. 1992;16(5):811–9.
Article
Google Scholar
Sarna SK, Waterfall WE, Bardakjian BL, Lind JF. Types of human colonic electrical activities recorded postoperatively. Gastroenterology. 1981;81(1):61–70.
Article
Google Scholar
Sarna S, Latimer P, Campbell D, Waterfall WE. Electrical and contractile activities of the human rectosigmoid. Gut. 1982;23(8):698–705.
Article
Google Scholar
Sarna SK, Bardakjian BL, Waterfall WE, Lind JF. Human colonic electrical control activity (EGA). Gastroenterology. 1980;78(6):1526–36.
Article
Google Scholar
Shafik A, Shafik AA, El-Sibai O, Mostafa RM. Electric activity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study. Arch Surg. 2003;138(9):1007–11.
Article
Google Scholar
Kimber S, Downar E, Masse S, Sevaptsidis E, Chen T, Mickleborough L, et al. A comparison of unipolar and bipolar electrodes during cardiac mapping studies. Pacing Clin Electrophysiol. 1996;19(8):1196–204.
Article
Google Scholar
O’Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, et al. Methods for high-resolution electrical mapping in the gastrointestinal tract. IEEE Rev Biomed Eng. 2019;12:287–302.
Article
Google Scholar
Du P, O’Grady G, Egbuji JU, Lammers WJ, Budgett D, Nielsen P, et al. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng. 2009;37(4):839–46.
Article
Google Scholar
O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, et al. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G585–92.
Article
Google Scholar
Angeli TR, O’Grady G, Vather R, Bissett IP, Cheng LK. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: feasibility and initial results. Neurogastroenterol Motil. 2018;30(7):e13310.
Article
Google Scholar
O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology. 2012;143(3):589-598.e3.
Article
Google Scholar
O’Grady G, Angeli TR, Lammers WJEP. The principles and practice of gastrointestinal high-resolution electrical mapping. In: Cheng LK, Pullan AJ, Farrugia G, editors. New advances in gastrointestinal motility research. Dordrecht: Springer, Netherlands; 2013. p. 51–69.
Chapter
Google Scholar
Berry R, Cheng LK, Du P, Paskaranandavadivel N, Angeli TR, Mayne T, et al. Patterns of abnormal gastric pacemaking after sleeve gastrectomy defined by laparoscopic high-resolution electrical mapping. Obes Surg. 2017. https://doi.org/10.1007/s11695-017-2597-6.
Article
Google Scholar
Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli TR, Pullan AJ, et al. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 2012. https://doi.org/10.1186/1471-230x-12-60.
Article
Google Scholar
Yassi R, O’Grady G, Paskaranandavadivel N, Du P, Angeli TR, Pullan AJ, et al. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 2012;6(12):60.
Article
Google Scholar