Xue M, Dervish S, Chan B, Jackson CJ. The endothelial protein C receptor is a potential stem cell marker for epidermal keratinocytes. Stem Cells. 2017;35(7):1786–98.
Article
Google Scholar
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol. 2015;16(5):299–309.
Article
Google Scholar
Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 2011;12(9):565–80.
Article
Google Scholar
Page ME, Lombard P, Ng F, Gottgens B, Jensen KB. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell. 2013;13(4):471–82.
Article
Google Scholar
Oinam L, Changarathil G, Ngo YX, Yanagisawa H, Sada A: Epidermal stem cell lineages. In: Epidermal Stem Cell Niche. 2019: 31–72.
Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol. 2018;28(9):709–22.
Article
Google Scholar
Jiang S, Zhao L, Purandare B, Hantash BM. Differential expression of stem cell markers in human follicular bulge and interfollicular epidermal compartments. Histochem Cell Biol. 2010;133(4):455–65.
Article
Google Scholar
Sada A, Jacob F, Leung E, Wang S, White BS, Shalloway D, Tumbar T. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat Cell Biol. 2016;18(6):619–31.
Article
Google Scholar
Gomez C, Chua W, Miremadi A, Quist S, Headon DJ, Watt FM. The interfollicular epidermis of adult mouse tail comprises two distinct cell lineages that are differentially regulated by Wnt, Edaradd, and Lrig1. Stem Cell Reports. 2013;1(1):19–27.
Article
Google Scholar
Lawlor KT, Kaur P. Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal. Int J Mol Sci. 2015;16(12):28098–107.
Article
Google Scholar
Angela Webb AL. Pritinder Kaur: Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation. 2004;72:387–95.
Article
Google Scholar
Yay A, Göktepe Ö, Bahadir A, Özdamar S, Öktem IS, Çoruh A, Baran M. Assessment of markers expressed in human hair follicles according to different skin regions. Adv Clin Exp Med. 2018;27:929–39.
Article
Google Scholar
Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40(11):1291–9.
Article
Google Scholar
Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development. 2014;141(13):2559–67.
Article
Google Scholar
Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, Scaglione D, Reichelt J, Klausegger A, Kneisz D, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551(7680):327–32.
Article
Google Scholar
Petersson M. CN: stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer. Current Med Chemistry. 2012;19(35):5984–92.
Article
Google Scholar
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat Cell Biol. 2017;19(6):603–13.
Article
Google Scholar
Di Gennaro P, Romoli MR, Gerlini G, D’Amico M, Brandani P, Pimpinelli N, Borgognoni L. IDO and CD83 expression in human epidermal Langerhans cells. J Dermatol Sci. 2014;73(2):172–4.
Article
Google Scholar
Yang R, Xu X. Isolation and culture of neural crest stem cells from human hair follicles. Methods Mol Biol. 2016;1453:49–55.
Article
Google Scholar
Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J. Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol. 2016;12(9):e1005112.
Article
Google Scholar
Acuff NV, Linden J. Using visualization of t-distributed stochastic neighbor embedding to identify immune cell subsets in mouse tumors. J Immunol. 2017;198(11):4539–46.
Article
Google Scholar
Qiu Peng SEF, Bendall Sean C, Gibbs Kenneth D, Bruggner Robert V, Linderman Michael D. Sachs Karen Nolan Garry P, Plevritis Sylvia K: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91.
Article
Google Scholar
Rangel-Huerta E, Maldonado E. Transit-amplifying cells in the fast lane from stem cells towards differentiation. Stem Cells Int. 2017;2017:7602951.
Article
Google Scholar
Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012;489(7415):257–62.
Article
Google Scholar
Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. Int J Dev Biol 2018. 62. 571–582.
RG Vasyliev AER, O.S. Gubar, A.V. Zlatska, I.M. Gordiienko,, S.N. Novikova DOZ: Large-scale expansion and characterization of human adult neural crest-derived multipotent stem cells from hair follicle for regenerative medicine applications. Experimental Oncol 2017, 39(3):171–180.
Moestrup KS, Andersen MS, Jensen KB. Isolation and in vitro characterization of epidermal stem cells. Methods Mol Biol. 2017;1553:67–83.
Article
Google Scholar
Metral E, Bechetoille N, Demarne F, Rachidi W, Damour O: alpha6 Integrin (alpha6(high))/Transferrin Receptor (CD71)(low) Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells. Int J Mol Sci 2017, 18(2).
Soosan Ghazizadeh LBT. Organization of stem cells and their progeny in human epidermis. J Investigative Dermatol. 2005;124(5):5.
Google Scholar
Shih I-m: THE role of CD146 (Mel-CAM) in biology and pathology journal of pathology 1999, 189:7.
Schon M, Kahne T, Gollnick H, Schon MP. Expression of gp130 in tumors and inflammatory disorders of the skin: formal proof of its identity as CD146 (MUC18, Mel-CAM). J Invest Dermatol. 2005;125(2):353–63.
Article
Google Scholar
Charruyer A, Ghadially R: Aging of Epidermal Stem Cells. 2017:191–204.
Bergoglio V, Larcher F, Chevallier-Lagente O, Bernheim A, Danos O, Sarasin A, Rio MD, Magnaldo T. Safe selection of genetically manipulated human primary keratinocytes with very high growth potential using CD24. Mol Ther. 2007;15(12):2186–93.
Article
Google Scholar
Thierry Magnaldo YB. CD24 (heat stable antigen, nectadrin), a novel keratinocyte differentiation marker, is preferentially expressed in areas of the hair follicle containing the colony-forming cells. J Cell Sci. 1996;109:3035–45.
Google Scholar
Poblet E, Jimenez F, Godinez JM, Pascual-Martin A, Izeta A. The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol. 2006;31(6):807–12.
Article
Google Scholar
Kira Rubtsova PM, Anatoly V. Rubtsov TLR7, IFNc, and T-bet: Their roles in the development of ABCs in female- biased autoimmunity. Cell Immunol. 2015;294:80–4.
Article
Google Scholar
Savarese E, Steinberg C, Pawar RD, Reindl W, Akira S, Anders HJ, Krug A. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 2008;58(4):1107–15.
Article
Google Scholar
Yin C, Zhang T, Qiao L, Du J, Li S, Zhao H, Wang F, Huang Q, Meng W, Zhu H, et al. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis. Sci Rep. 2014;4:5831.
Article
Google Scholar
Charruyer A, Barland CO, Yue L, Wessendorf HB, Lu Y, Lawrence HJ, Mancianti ML, Ghadially R. Transit-amplifying cell frequency and cell cycle kinetics are altered in aged epidermis. J Invest Dermatol. 2009;129(11):2574–83.
Article
Google Scholar
Vazquez J, Chavarria M, Li Y, Lopez GE, Stanic AK: Computational flow cytometry analysis reveals a unique immune signature of the human maternal-fetal interface. Am J Reprod Immunol 2018, 79(1).
E-aD A. Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–52.
Article
Google Scholar
Robertson K, Rees JL. Variation in epidermal morphology in human skin at different body sites as measured by reflectance confocal microscopy. Acta Derm Venereol. 2010;90(4):368–73.
Article
Google Scholar
Kaur AWALP: Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 2004, 72:387–395.
Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET. A beginner’s guide to analyzing and visualizing mass cytometry data. J Immunol. 2017;200(1):3–22.
Article
Google Scholar
Jamila Elhmouzi-Younes J-LP, Nicolas Tchitchek, Simon Delandre, Inana Namet, Caroline L. Bodinham, Kathleen Pizzoferro, David J.M. Lewis, Roger Le Grand, Antonio Cosma, Anne-Sophie Beignon: In Depth Comparative Phenotyping of Blood Innate Myeloid Leukocytes from Healthy Humans and Macaques Using Mass Cytometry. Cytometry A 2017, 91A:969–982.