Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73. https://doi.org/10.1038/nature05058.
Article
Google Scholar
Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77:977–1026. https://doi.org/10.1103/RevModPhys.77.977.
Article
Google Scholar
Daw R, Finkelstein J. Lab on a chip. Nature. 2006;442:367.
Article
Google Scholar
Mitchell P. Microfluidics–downsizing large-scale biology. Nat Biotechnol. 2001;19:717–21.
Article
Google Scholar
Figeys D, Pinto D. Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem. 2000;72:330A.
Article
Google Scholar
Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip. 2007;7:1094–110.
Article
Google Scholar
Kwon J-S, Oh J. Microfluidic technology for cell manipulation. Appl Sci. 2018;8:992. https://doi.org/10.3390/app8060992.
Article
Google Scholar
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R, Iqbal HMN. Organs-on-a-chip module: a review from the development and applications perspective. Micromachines (Basel). 2018. https://doi.org/10.3390/mi9100536.
Article
Google Scholar
Ahmed I, Akram Z, Bule M, Iqbal H. Advancements and potential applications of microfluidic approaches—a review. Chemosensors. 2018;6:46. https://doi.org/10.3390/chemosensors6040046.
Article
Google Scholar
Top Ten Emerging Technologies. 2016. https://www.weforum.org/agenda/2016/06/top-10-emerging-technologies-2016/.
Wang L, Liu W, Wang Y, Wang JC, Tu Q, Liu R, Wang J. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment. Lab Chip. 2013;13:695–705.
Article
Google Scholar
Galie PA, Nguyen DHT, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA. 2014;111:7968–73.
Article
Google Scholar
Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, Peng HL, Hsu L, Yew TR, Chang SF. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip. 2013;13:3578–87.
Article
Google Scholar
Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip. 2012;12:1784–92. https://doi.org/10.1039/c2lc40094d.
Article
Google Scholar
Sung JH, Shuler ML. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip. 2009;9:1385–94. https://doi.org/10.1039/b901377f.
Article
Google Scholar
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72.
Article
Google Scholar
Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp Biol Med (Maywood). 2014;239:1240–54. https://doi.org/10.1177/1535370214525295.
Article
Google Scholar
Kieninger J, Weltin A, Flamm H, Urban GA. Microsensor systems for cell metabolism—from 2D culture to organ-on-chip. Lab Chip. 2018;18:1274–91. https://doi.org/10.1039/c7lc00942a.
Article
Google Scholar
Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218–31. https://doi.org/10.1016/j.bios.2014.07.029.
Article
Google Scholar
Paguirigan AL, Beebe DJ. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays. 2008;30:811–21.
Article
Google Scholar
Sung JH, Esch MB, Prot J-M, Long CJ, Smith A, Hickman JJ, Shuler ML. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip. 2013;13:1201–12. https://doi.org/10.1039/c3lc41017j.
Article
Google Scholar
Jiang K, Dong C, Xu Y, Wang L. Microfluidic-based biomimetic models for life science research. RSC Adv. 2016;6:26863–73. https://doi.org/10.1039/C6RA05691A.
Article
Google Scholar
van der Meer AD, van den Berg A. Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb). 2012;4:461–70. https://doi.org/10.1039/c2ib00176d.
Article
Google Scholar
Al-Lamki RS, Bradley JR, Pober JS. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front. Med. (Lausanne). 2017;4:148. https://doi.org/10.3389/fmed.2017.00148.
Article
Google Scholar
Alépée N. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. Altex. 2014. https://doi.org/10.14573/altex1406111.
Article
Google Scholar
Lee SH, Jun B-H. Advances in dynamic microphysiological organ-on-a-chip: design principle and its biomedical application. J Ind Eng Chem. 2019;71:65–77. https://doi.org/10.1016/j.jiec.2018.11.041.
Article
Google Scholar
Reardon S. ‘Organs-on-chips’ go mainstream. Nature. 2015;523:266. https://doi.org/10.1038/523266a.
Article
Google Scholar
Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010;39:1036–48.
Article
Google Scholar
Theobald J, Ghanem A, Wallisch P, Banaeiyan AA, Andradenavarro MA, Taskova K, Haltmeier M, Kurtz A, Becker H, Reuter S. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng. 2018;4(1):78–89.
Article
Google Scholar
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519–60.
Article
Google Scholar
Haddrick M, Simpson PB. Organ-on-a-chip technology: turning its potential for clinical benefit into reality. Drug Discov Today. 2019;24:1217–23. https://doi.org/10.1016/j.drudis.2019.03.011.
Article
Google Scholar
Ronaldsonbouchard K, Vunjaknovakovic G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell. 2018;22:310–24.
Article
Google Scholar
Yang KS, Cheng YC, Jeng MS, Chien KH, Shyu JC. An experimental investigation of micro pulsating heat pipes. Micromachines (Basel). 2014;5:869–72.
Google Scholar
Nguyen DHT, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci USA. 2013;110:6712–7.
Article
Google Scholar
Song JW, Daubriac J, Tse JM, Bazou D, Munn LL. RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab Chip. 2012;12:5000–6.
Article
Google Scholar
Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–4.
Article
Google Scholar
Sellgren KL, Hawkins BT, Grego S. An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics. 2015;9:687.
Article
Google Scholar
Yang SH, Jin WC, Huh D, Jo HA, Kim S, Lim CS, Lee JC, Kim HC, Kwon HM, Chang WJ. Roles of fluid shear stress and retinoic acid in the differentiation of primary cultured human podocytes. Exp Cell Res. 2017;354:48–56.
Article
Google Scholar
Kshitiz, Park J, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol. 2012;4:1008.
Article
Google Scholar
Jang KJ, Cho HS, Kang DH, Bae WG, Kwon TH, Suh KY. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol. 2010;3:134–41.
Article
Google Scholar
Zhou J, Khodakov DA, Ellis AV, Voelcker NH. Surface modification for PDMS-based microfluidic devices. Electrophoresis. 2012;33:89–104.
Article
Google Scholar
Tibbe MP, Leferink AM, van den Berg A, Eijkel JCT, Segerink LI. Microfluidic gel patterning method by use of a temporary membrane for organ-on-chip applications. Adv Mater Technol. 2018;3:1700200. https://doi.org/10.1002/admt.201700200.
Article
Google Scholar
Xue D, Wang Y, Zhang J, Mei D, Wang Y, Chen S. Projection-based 3D printing of cell patterning Scaffolds with multiscale channels. ACS Appl Mater Interfaces. 2018;10:19428–35. https://doi.org/10.1021/acsami.8b03867.
Article
Google Scholar
Li Y-C, Lin M-W, Yen M-H, Fan SM-Y, Wu J-T, Young T-H, Cheng J-Y, Lin S-J. Programmable laser-assisted surface microfabrication on a poly(vinyl alcohol)-coated glass chip with self-changing cell adhesivity for heterotypic cell patterning. ACS Appl Mater Interfaces. 2015;7:22322–32. https://doi.org/10.1021/acsami.5b05978.
Article
Google Scholar
Mandenius C-F. Conceptual design of micro-bioreactors and organ-on-chips for studies of cell cultures. Bioengineering (Basel). 2018. https://doi.org/10.3390/bioengineering5030056.
Article
Google Scholar
Sun X, Nunes SS. Maturation of human stem cell-derived cardiomyocytes in biowires using electrical stimulation. J Vis Exp Jove. 2017;2017(123). https://doi.org/10.3791/55373.
Yang PC, Qi Y, Zhang DH. Studies, bottlenecks and challenges of microarray of micro organs. Chin J Tissue Eng Res. 2018;22:5234–40. https://doi.org/10.3969/j.issn.2095-4344.0558.
Article
Google Scholar
Peel S, Corrigan AM, Ehrhardt B, Jang K-J, Caetano-Pinto P, Boeckeler M, Rubins JE, Kodella K, Petropolis DB, Ronxhi J, et al. Introducing an automated high content confocal imaging approach for organs-on-chips. Lab Chip. 2019;19:410–21. https://doi.org/10.1039/c8lc00829a.
Article
Google Scholar
Kane KIW, Moreno EL, Hachi S, Walter M, Jarazo J, Oliveira MAP, Hankemeier T, Vulto P, Schwamborn JC, Thoma M, et al. Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci Rep. 2019;9:1796. https://doi.org/10.1038/s41598-018-34828-3.
Article
Google Scholar
Mccuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec. 2010;291:661–71.
Article
Google Scholar
Cho CH, Park J, Tilles AW, Berthiaume F, Toner M, Yarmush ML. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques. 2018;48:47–52.
Article
Google Scholar
Kane BJ, Zinner MJ, Yarmush ML, Toner M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem. 2006;78:4291–8. https://doi.org/10.1021/ac051856v.
Article
Google Scholar
Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97:1340–6. https://doi.org/10.1002/bit.21360.
Article
Google Scholar
Hegde M, Jindal R, Bhushan A, Bale SS, Mccarty WJ, Golberg I, Usta OB, Yarmush ML. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip. 2014;14:2033–9.
Article
Google Scholar
Fan A, Qu Y, Liu X, Zhong R, Yong L. Organ-on-a-chip: new platform for biological analysis. Anal Chem Insights. 2015;10:39–45.
Google Scholar
Ma L-D, Wang Y-T, Wang J-R, Wu J-L, Meng X-S, Hu P, Mu X, Liang Q-L, Luo G-A. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. https://doi.org/10.1039/c8lc00333e.
Article
Google Scholar
Yum K, Hong SG, Healy KE, Lee LP. Physiologically relevant organs on chips (pages 16–27). Biotechnol J. 2014;9:16–27.
Article
Google Scholar
Riahi R, Shaegh SAM, Ghaderi M, Zhang YS, Su RS, Aleman J, Massa S, Kim D, Dokmeci MR, Khademhosseini A. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep. 2016;6:24598.
Article
Google Scholar
Chong LH, Li H, Wetzel I, Cho H, Toh Y-C. A liver-immune coculture array for predicting systemic drug-induced skin sensitization. Lab Chip. 2018;18:3239–50. https://doi.org/10.1039/c8lc00790j.
Article
Google Scholar
Lu S, Cuzzucoli F, Jiang J, Liang L-G, Wang Y, Kong M, Zhao X, Cui W, Li J, Wang S. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip. 2018;18:3379–92. https://doi.org/10.1039/c8lc00852c.
Article
Google Scholar
Kang YBA, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C, Bouchard MJ, Noh M. Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng. 2015;112:2571–82.
Article
Google Scholar
Zhou Q, Patel D, Kwa T, Haque A, Matharu Z, Stybayeva G, Gao Y, Diehl AM, Revzin A. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Lab Chip. 2015;15:4467–78. https://doi.org/10.1039/C5LC00874C.
Article
Google Scholar
Guenat OT, Berthiaume F. Incorporating mechanical strain in organs-on-a-chip: lung and skin. Biomicrofluidics. 2018;12:42207. https://doi.org/10.1063/1.5024895.
Article
Google Scholar
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8. https://doi.org/10.1126/science.1188302.
Article
Google Scholar
Dongeun H, Leslie DC, Matthews BD, Fraser JP, Samuel J, Hamilton GA, Thorneloe KS, Michael Allen M, Ingber DE. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4:159ra147.
Article
Google Scholar
Stucki AO, Stucki JD, Hall SRR, Felder M, Mermoud Y, Schmid RA, Geiser T, Guenat OT. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip. 2015;15:1302–10. https://doi.org/10.1039/c4lc01252f.
Article
Google Scholar
Blume C, Reale R, Held M, Millar TM, Collins JE, Davies DE, Morgan H, Swindle EJ. Temporal monitoring of differentiated human airway epithelial cells using microfluidics. PLoS ONE. 2015;10:e0139872. https://doi.org/10.1371/journal.pone.0139872.
Article
Google Scholar
Humayun M, Chow C-W, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip. 2018;18:1298–309. https://doi.org/10.1039/c7lc01357d.
Article
Google Scholar
Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, Gao X. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip. 2018;18:486–95. https://doi.org/10.1039/c7lc01224a.
Article
Google Scholar
Peng J, Rochow N, Dabaghi M, Bozanovic R, Jansen J, Predescu D, DeFrance B, Lee SY, Fusch G, Ravi Selvaganapathy P, et al. Postnatal dilatation of umbilical cord vessels and its impact on wall integrity: prerequisite for the artificial placenta. Int J Artif Organs. 2018;41:393–9.
Article
Google Scholar
Dabaghi M, Fusch G, Saraei N, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P. An artificial placenta type microfluidic blood oxygenator with double-sided gas transfer microchannels and its integration as a neonatal lung assist device. Biomicrofluidics. 2018;12:44101. https://doi.org/10.1063/1.5034791.
Article
Google Scholar
Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials. 2013;34:4109–17.
Article
Google Scholar
Benam KH, Villenave R, Lucchesi C, Varone A, Ingber DE. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2015;13:151.
Article
Google Scholar
Jang K-J, Suh K-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10:36–42. https://doi.org/10.1039/b907515a.
Article
Google Scholar
Jang K-J, Mehr AP, Hamilton GA, Mcpartlin LA, Chung S, Suh K-Y, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5:1119–29. https://doi.org/10.1039/c3ib40049b.
Article
Google Scholar
Musah S, Dimitrakakis N, Camacho DM, Church GM, Ingber DE. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat Protoc. 2018;13:1662–85. https://doi.org/10.1038/s41596-018-0007-8.
Article
Google Scholar
Sakolish CM, Philip B, Mahler GJ. A human proximal tubule-on-a-chip to study renal disease and toxicity. Biomicrofluidics. 2019;13:14107. https://doi.org/10.1063/1.5083138.
Article
Google Scholar
Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, Gijzen L, Vormann M, Vonk A, Viveen M, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol. 2019;37:303–13. https://doi.org/10.1038/s41587-019-0048-8.
Article
Google Scholar
Nieskens TTG, Sjögren A-K. Emerging in vitro systems to screen and predict drug-induced kidney toxicity. Semin Nephrol. 2019;39:215–26. https://doi.org/10.1016/j.semnephrol.2018.12.009.
Article
Google Scholar
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac meets skeletal: what’s new in microfluidic models for muscle tissue engineering. Molecules. 2016. https://doi.org/10.3390/molecules21091128.
Article
Google Scholar
Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods. 2012;65:126–35. https://doi.org/10.1016/j.vascn.2012.04.001.
Article
Google Scholar
Zhang D, Shadrin I, Lam J, Xian HQ, Snodgrass R, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813–20.
Article
Google Scholar
Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003.
Article
Google Scholar
Zhang X, Wang T, Wang P, Hu N. High-throughput assessment of drug cardiac safety using a high-speed impedance detection technology-based heart-on-a-chip. Micromachines (Basel). 2016. https://doi.org/10.3390/mi7070122.
Article
Google Scholar
Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16:599–610. https://doi.org/10.1039/c5lc01356a.
Article
Google Scholar
Schneider O, Zeifang L, Fuchs S, Sailer C, Loskill P. User-friendly and parallelized generation of human induced pluripotent stem cell-derived microtissues in a centrifugal heart-on-a-chip. Tissue Eng Part A. 2019;25:786–98. https://doi.org/10.1089/ten.TEA.2019.0002.
Article
Google Scholar
Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev. 2016;96:234–44.
Article
Google Scholar
Kang TH, Kim HJ. Farewell to animal testing: innovations on human intestinal microphysiological systems. Micromachines (Basel). 2016. https://doi.org/10.3390/mi7070107.
Article
Google Scholar
Imura Y, Asano Y, Sato K, Yoshimura E. A microfluidic system to evaluate intestinal absorption. Anal Sci. 2009;2009(25):1403–7.
Article
Google Scholar
Sung JH, Yu J, Luo D, Shuler ML, March JC. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 2011;11:389–92. https://doi.org/10.1039/c0lc00273a.
Article
Google Scholar
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–74. https://doi.org/10.1039/c2lc40074j.
Article
Google Scholar
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA. 2016;113:E7–15. https://doi.org/10.1073/pnas.1522193112.
Article
Google Scholar
Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep. 2018;8:2871. https://doi.org/10.1038/s41598-018-21201-7.
Article
Google Scholar
Vandussen KL, Marinshaw JM, Nurmohammad S, Hiroyuki M, Clara M, Tarr PI, Ciorba MA, Stappenbeck TS. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut. 2014;64:911.
Article
Google Scholar
Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019. https://doi.org/10.1038/s41551-019-0397-0.
Article
Google Scholar
Shin W, Hinojosa CD, Ingber DE, Kim HJ. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience. 2019;15:391–406.
Article
Google Scholar
Lee SH, Sung JH. Microtechnology-based multi-organ models. Bioengineering (Basel). 2017. https://doi.org/10.3390/bioengineering4020046.
Article
Google Scholar
Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R. ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim. 2012;40:235–57. https://doi.org/10.1177/026119291204000504.
Article
Google Scholar
Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Massé S, Kim J, Reis L, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater. 2016;15:669–78. https://doi.org/10.1038/nmat4570.
Article
Google Scholar
Palaninathan V, Kumar V, Maekawa T, Liepmann D, Paulmurugan R, Eswara JR, Ajayan PM, Augustine S, Malhotra BD, Viswanathan S, et al. Multi-organ on a chip for personalized precision medicine. MRC. 2018;8:652–67. https://doi.org/10.1557/mrc.2018.148.
Article
Google Scholar
Zhao Y, Kankala RK, Wang S-B, Chen A-Z. Multi-organs-on-chips: towards long-term biomedical investigations. Molecules. 2019. https://doi.org/10.3390/molecules24040675.
Article
Google Scholar
Rogal J, Probst C, Loskill P. Integration concepts for multi-organ chips: how to maintain flexibility?! Future Sci OA. 2017;3:FSO180. https://doi.org/10.4155/fsoa-2016-0092.
Article
Google Scholar
Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip. 2013;13:3538–47. https://doi.org/10.1039/c3lc50234a.
Article
Google Scholar
van Midwoud PM, Merema MT, Verpoorte E, Groothuis GMM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10:2778–86. https://doi.org/10.1039/c0lc00043d.
Article
Google Scholar
Tsamandouras N, Wen LKC, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. Aaps J. 2017;19:1–14.
Article
Google Scholar
Skardal A, Murphy SV, Devarasetty M, Mead I, Kang H-W, Seol Y-J, Shrike Zhang Y, Shin S-R, Zhao L, Aleman J, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7:8837. https://doi.org/10.1038/s41598-017-08879-x.
Article
Google Scholar
Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, Zech J, Garbe L-A, Sonntag F, Hayden P, Ayehunie S, et al. Chip-based human liver-intestine and liver-skin co-cultures–A first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm. 2015;95:77–87. https://doi.org/10.1016/j.ejpb.2015.03.002.
Article
Google Scholar
Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15:2688–99. https://doi.org/10.1039/c5lc00392j.
Article
Google Scholar
Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, McLamb W, Platt V, Bridges R, Cai Y, Santhanam N, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6:20030. https://doi.org/10.1038/srep20030.
Article
Google Scholar
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep. 2018;8:4530. https://doi.org/10.1038/s41598-018-22749-0.
Article
Google Scholar
Lee H, Kim DS, Ha SK, Choi I, Lee JM, Sung JH. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol Bioeng. 2017;114:432–43. https://doi.org/10.1002/bit.26087.
Article
Google Scholar
Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Ishida S, Kikuchi K, Kakiki M, Kanamori T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip. 2017;18:115–25. https://doi.org/10.1039/c7lc00952f.
Article
Google Scholar
Díaz Lantada A, Pfleging W, Besser H, Guttmann M, Wissmann M, Plewa K, Smyrek P, Piotter V, García-Ruíz JP. Research on the methods for the mass production of multi-scale organs-on-chips. Polymers (Basel). 2018. https://doi.org/10.3390/polym10111238.
Article
Google Scholar
Wang Y, Huang X, Shen Y, Hang R, Zhang X, Wang Y, Yao X, Tang B. Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. J Mater Sci. 2019;54:7883–92. https://doi.org/10.1007/s10853-019-03447-2.
Article
Google Scholar
Hong S, Kang EY, Byeon J, Jung S-H, Hwang C. Embossed membranes with vascular patterns guide vascularization in a 3D tissue model. Polymers (Basel). 2019. https://doi.org/10.3390/polym11050792.
Article
Google Scholar
Torras N, García-Díaz M, Fernández-Majada V, Martínez E. Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol. 2018;6:197. https://doi.org/10.3389/fbioe.2018.00197.
Article
Google Scholar
Alexander FA, Eggert S, Wiest J. Skin-on-a-chip: transepithelial electrical resistance and extracellular acidification measurements through an automated air-liquid interface. Genes (Basel). 2018. https://doi.org/10.3390/genes9020114.
Article
Google Scholar
Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114:184–94. https://doi.org/10.1002/bit.26045.
Article
Google Scholar
Wevers NR, Kasi DG, Gray T, Wilschut KJ, Smith B, van Vught R, Shimizu F, Sano Y, Kanda T, Marsh G, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15:23. https://doi.org/10.1186/s12987-018-0108-3.
Article
Google Scholar
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 2019;198:259–69. https://doi.org/10.1016/j.biomaterials.2018.08.058.
Article
Google Scholar
Kim W, Kim J, Park H-S, Jeon JS. Development of microfluidic stretch system for studying recovery of damaged skeletal muscle cells. Micromachines (Basel). 2018. https://doi.org/10.3390/mi9120671.
Article
Google Scholar
Yildirimer L, Zhang Q, Kuang S, Cheung C-WJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards in vitro disease models of the central nervous system. Biofabrication. 2019. https://doi.org/10.1088/1758-5090/ab17aa.
Article
Google Scholar
Choi J-H, Cho H-Y, Choi J-W. Microdevice platform for in vitro nervous system and its disease model. Bioengineering (Basel). 2017. https://doi.org/10.3390/bioengineering4030077.
Article
Google Scholar
Zhang J, Wei X, Zeng R, Xu F, Li X. Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA. 2017;3:FSO187. https://doi.org/10.4155/fsoa-2016-0091.
Article
Google Scholar
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev. 2019;140:3–11. https://doi.org/10.1016/j.addr.2018.06.001.
Article
Google Scholar
Pittenger MF. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.
Article
Google Scholar
Wagner W, Ho AD. Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Reviews. 2007;3:239–48. https://doi.org/10.1007/s12015-007-9001-1.
Article
Google Scholar
Thomson JA, Itskovitzeldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145.
Article
Google Scholar
Becker H, Hansen-Hagge T, Kurtz A, Mrowka R, Wölfl S, Gärtner C. Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing. In: Gray BL, Becker H, editors. Microfluidics, BioMEMS, and medical microsystems XV. San Francisco: SPIE BiOS; 2017. p. 1006116.
Google Scholar
Scott CW, Peters MF, Dragan YP. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett. 2013;219:49–58.
Article
Google Scholar
Narsinh KH, Jordan P, Wu JC. Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther. 2011;19:635.
Article
Google Scholar
Zhao M-T, Chen H, Liu Q, Shao N-Y, Sayed N, Wo H-T, Zhang JZ, Ong S-G, Liu C, Kim Y, et al. Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci. 2017;114:E11111–20. https://doi.org/10.1073/pnas.1708991114.
Article
Google Scholar
Park D, Lim J, Park JY, Lee S-H. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl Med. 2015;4:1352–68. https://doi.org/10.5966/sctm.2015-0095.
Article
Google Scholar
Qian T, Shusta EV, Palecek SP. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells. Curr Opin Genet Dev. 2015;34:54–60. https://doi.org/10.1016/j.gde.2015.07.007.
Article
Google Scholar