Otterman N, Veerbeek J, Schiemanck S, van der Wees P, Nollet F, Kwakkel G. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke. DisabilRehabil. 2017;39(14):1449–57.
Google Scholar
Sullivan JE, Crowner BE, Kluding PM, Nichols D, Rose DK, Yoshida R, et al. Outcome measures for individuals with stroke: process and recommendations from the American Physical Therapy Association neurology section task force. PhysTher. 2013;93(10):1383–96.
Google Scholar
Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29.
Article
Google Scholar
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
Google Scholar
Chen HF, Lin KC, Wu CY, Chen CL. Rasch validation and predictive validity of the action research arm test in patients receiving stroke rehabilitation. Arch Phys Med Rehabil. 2012;93(6):1039–45.
Article
Google Scholar
Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90.
Article
Google Scholar
Demers M, Levin MF. Do activity level outcome measures commonly used in neurological practice assess upper-limb movement quality? Neurorehabil Neural Repair. 2017;31(7):623–37.
Article
Google Scholar
Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. ClinRehabil. 2005;19(4):404–11.
Google Scholar
Sigirtmac IC, Oksuz C. Investigation of reliability, validity, and cutoff value of the Jebsen-Taylor Hand Function Test. J Hand Ther. 2020. https://doi.org/10.1016/j.jht.2020.01.004.
Article
Google Scholar
Johansson GM, Hager CK. A modified standardized nine hole peg test for valid and reliable kinematic assessment of dexterity post-stroke. J NeuroengRehabil. 2019;16(1):8.
Google Scholar
Barreca SR, Stratford PW, Lambert CL, Masters LM, Streiner DL. Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke. Arch Phys Med Rehabil. 2005;86(8):1616–22.
Article
Google Scholar
Fulk G, Martin R, Page SJ. Clinically important difference of the arm motor ability test in stroke survivors. Neurorehabil Neural Repair. 2017;31(3):272–9.
Article
Google Scholar
De Souza LH, Hewer RL, Miller S. Assessment of recovery of arm control in hemiplegic stroke patients. 1. Arm function tests. Int Rehabil Med. 1980;2(1):3–9.
Google Scholar
Johansson GM, Hager CK. Measurement properties of the motor evaluation scale for upper extremity in stroke patients (MESUPES). DisabilRehabil. 2012;34(4):288–94.
Google Scholar
Vianna de Andrade FPP, Padula RS, Binda AC, da Silva ML, Alouche SR. Measurement properties of the reaching performance scale for stroke. DisabilRehabil. 2019. https://doi.org/10.1080/09638288.2019.1650963.
Article
Google Scholar
Desrosiers J, Hebert R, Bravo G, Dutil E. Upper extremity performance test for the elderly (TEMPA): normative data and correlates with sensorimotor parameters. Test d’Evaluation des MembresSuperieurs de PersonnesAgees. Arch Phys Med Rehabil. 1995;76(12):1125–9.
Article
Google Scholar
Berardi A, Dhrami L, Tofani M, Valente D, Sansoni J, Galeoto G. Cross-cultural adaptation and validation in the Italian population of the wolf motor function test in patients with stroke. FunctNeurol. 2018;33(4):229–53.
Google Scholar
Ekstrand E, Lindgren I, Lexell J, Brogardh C. Test–retest reliability of the ABILHAND questionnaire in persons with chronic stroke. PM & R J InjFunctRehabil. 2014;6(4):324–31.
Article
Google Scholar
Marino RJ, Shea JA, Stineman MG. The capabilities of upper extremity instrument: reliability and validity of a measure of functional limitation in tetraplegia. Arch Phys Med Rehabil. 1998;79(12):1512–21.
Article
Google Scholar
Kim G, Lim S, Kim H, Lee B, Seo S, Cho K, et al. Is robot-assisted therapy effective in upper extremity recovery in early stage stroke?—a systematic literature review. J PhysTher Sci. 2017;29(6):1108–12.
Google Scholar
Thrasher TA, Zivanovic V, McIlroy W, Popovic MR. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil Neural Repair. 2008;22(6):706–14.
Article
Google Scholar
Sathian K, Greenspan AI, Wolf SL. Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil Neural Repair. 2000;14(1):73–6.
Article
Google Scholar
Jovanovic LI, Kapadia N, Lo L, Zivanovic V, Popovic MR, Marquez-Chin C. Restoration of upper limb function after chronic severe hemiplegia: a case report on the feasibility of a brain-computer interface-triggered functional electrical stimulation therapy. Am J Phys Med Rehabil. 2020;99(3):e35–40.
Article
Google Scholar
Kapadia N, Zivanovic V, Verrier M, Popovic MR. Toronto rehabilitation institute-hand function test: assessment of gross motor function in individuals with spinal cord injury. Top Spinal Cord InjRehabil. 2012;18(2):167–86.
Article
Google Scholar
Lunsford C, Grindle G, Salatin B, Dicianno BE. Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature. PM & R J InjFunctRehabil. 2016;8(12):1201–12.
Article
Google Scholar
Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–6.
Article
Google Scholar
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473–84.
Article
Google Scholar
Huotilainen E, Paloheimo M, Salmi M, Paloheimo KS, Björkstrand R, Tuomi J, et al. Imaging requirements for medical applications of additive manufacturing. Acta radiologica (Stockholm, Sweden: 1987). 2014;55(1):78–85.
Article
Google Scholar
Telfer S, Munguia J, Pallari J, Dalgarno K, Steultjens M, Woodburn J. Personalized foot orthoses with embedded temperature sensing: proof of concept and relationship with activity. Med EngPhys. 2014;36(1):9–15.
Article
Google Scholar
Gretsch KF, Lather HD, Peddada KV, Deeken CR, Wall LB, Goldfarb CA. Development of novel 3D-printed robotic prosthetic for transradial amputees. ProsthetOrthot Int. 2016;40(3):400–3.
Google Scholar
Medola FO, Fortulan CA, PurquerioBde M, Elui VM. A new design for an old concept of wheelchair pushrim. DisabilRehabil Assist Technol. 2012;7(3):234–41.
Article
Google Scholar
Hull C, Inventor; Uvp Inc, Assignee. Apparatus for production of three‐dimensional objects by stereolithography. 1984.
Available from: https://3dprinthq.com/how-3d-printing-has-evolved-in-the-last-10-years/.
Roach KEP. PT measurement of health outcomes: reliability, validity and responsiveness. JPO J ProsthetOrthot. 2006;18(6):8–12.
Google Scholar
Duncan Millar J, van Wijck F, Pollock A, Ali M. Outcome measures in post-stroke arm rehabilitation trials: do existing measures capture outcomes that are important to stroke survivors, carers, and clinicians? ClinRehabil. 2019;33(4):737–49.
Google Scholar
Pandian S, Arya KN. Stroke-related motor outcome measures: do they quantify the neurophysiological aspects of upper extremity recovery? J BodywMovTher. 2014;18(3):412–23.
Google Scholar
Wang S, Hsu CJ, Trent L, Ryan T, Kearns NT, Civillico EF, et al. Evaluation of performance-based outcome measures for the upper limb: a comprehensive narrative review. PM & R J InjFunctRehabil. 2018;10(9):951-62.e3.
Article
Google Scholar
Galeoto G, Iori F, De Santis R, Santilli V, Mollica R, Marquez MA, et al. The outcome measures for loss of functionality in the activities of daily living of adults after stroke: a systematic review. Top Stroke Rehabil. 2019;26(3):236–45.
Article
Google Scholar
Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24(1):58–63.
Article
Google Scholar
Dawson-Saunders BTR. Basic and clinical biostatistics. 2nd ed. East Norwalk: Appleton & Lange; 1994.
Google Scholar