Habash M, Reid G: Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 1999, 39: 887–899. 10.1177/00912709922008506
Article
Google Scholar
Lowy FD: Stapylococcus aureus infections. New Eng J Med 1998, 339: 520–535. 10.1056/NEJM199808203390806
Article
Google Scholar
Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362: 801–809. 10.1038/362801a0
Article
Google Scholar
Beachey EH: Bacterial adherence: adhesion-receptor interactions mediating the attachment of bacterial to mucosal surfaces. J Infect Dis 1981, 143: 325–345. 10.1093/infdis/143.3.325
Article
Google Scholar
Sinha B, Herrmann M: Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus . Thromb Haemostas 2005, 94: 266–277.
Google Scholar
Fowler VG, Miro JM, Hoen B, et al.: Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005, 293: 3012–3021. 10.1001/jama.293.24.3012
Article
Google Scholar
Cabell CH, Jollis JG, Peterson GE, Corey GR, Anderson DJ, Sexton DJ, Woods CW, Reller LB, Ryan T, Fowler VG: Changing patient characteristics and the effect on mortality in endocarditis. Arch Intern Med 2002, 162: 90–94. 10.1001/archinte.162.1.90
Article
Google Scholar
Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E: Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public health threat. Lancet 2006, 368: 874–885. 10.1016/S0140-6736(06)68853-3
Article
Google Scholar
Klevins RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK: Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States. JAMA 2007, 298: 1763–1771. 10.1001/jama.298.15.1763
Article
Google Scholar
Klevins RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R: Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis 2006, 42: 389–391. 10.1086/499367
Article
Google Scholar
Stern DM: Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. Blood 1998, 91: 3527–3561.
Google Scholar
Malek AM, Alper SL, Izumo S: Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282: 2035–2042. 10.1001/jama.282.21.2035
Article
Google Scholar
Reneman RS, Theo Arts Arnold P.G Hoeks: Wall Shear Stress - an Important Determinant of Endothelial Cell Function and Structure - in the Arterial System in vivo Discrepancies with Theory. J Vasc Res 2006, 43: 251–269. 10.1159/000091648
Article
Google Scholar
Baddour LM, Bettmann MA, Bolger AF, Epstein AE, Ferrieri P, Gerber MA, Gewitz MH, Jacobs AK, Levison ME, Newburger JW, Pallasch TJ, Wilson WR, Baltimore RS, Falace DA, Shulman ST, Tani LY, Taubert KA: Nonvalvular Cardiovascular Device-Related Infections. Circulation 2003, 108: 2015–2031. 10.1161/01.CIR.0000093201.57771.47
Article
Google Scholar
Rinker KD, Prabhakar V, Truskey GA: Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys J 2001, 30: 1722–1732. 10.1016/S0006-3495(01)76143-7
Article
Google Scholar
Rinker KD, Kirkpatrick AP, Ting-Beall HP, Shepherd RD, Levin JD, Irick J, Thomas JL, Truskey GA: Linoleic acid increases monocyte deformation and adhesion to endothelium. Atherosclerosis 2004, 177: 275–285. 10.1016/j.atherosclerosis.2004.07.017
Article
Google Scholar
Lawrence MB, Kansas GS, Kunkel EJ, Ley K: Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E). J Cell Biol 1997, 136: 717–727. 10.1083/jcb.136.3.717
Article
Google Scholar
Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C: Direct observation of catch bonds involving cell-adhesion molecules. Nature 2003, 423: 190–193. 10.1038/nature01605
Article
Google Scholar
Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V: Catch-Bond Model Derived from Allostery Explains Force-Activated Bacterial Adhesion. Biophys J 2006, 90: 753–764. 10.1529/biophysj.105.066548
Article
Google Scholar
Yakovenko O, Sharma S, Forero M, Tchesnokova V, Aprikian P, Kidd B, Mach A, Vogel V, Sokurenko E, Thomas WE: FimH Forms Catch Bonds That Are Enhanced by Mechanical Force Due to Allosteric Regulation. J Biol Chem 2008, 283: 11596–11605. 10.1074/jbc.M707815200
Article
Google Scholar
Reddy K, Ross JM: Shear stress prevents fibronectin binding protein-mediated Staphylococcus aureus adhesion to resting endothelial cells. Infect Immun 2001, 69: 3472–3475. 10.1128/IAI.69.5.3472-3475.2001
Article
Google Scholar
Shenkman B, Rubinstein E, Cheung AL, Brill GE, Dardik R, Tamarin I, Savion N, Varon D: Adherence properties of Staphylococcus aureus under static and flow conditions: roles of agr and sar loci, platelets, and plasma ligands. Infect Immun 2001, 69: 4473–4478. 10.1128/IAI.69.7.4473-4478.2001
Article
Google Scholar
Shenkman B, Varon D, Tamarin I, Dardik R, Peisachov M, Savion N, Rubinstein E: Role of agr (RNAIII) in Staphylococcus aureus adherence to fibrinogen, fibronectin, platelets and endothelial cells under static and flow conditions. J Med Microbiol 2002, 51: 747–754.
Article
Google Scholar
Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, Sumpio BE: Differential Effects of Orbital and Laminar Shear Stress on Endothelial Cells. J Vasc Surg 2005, 41: 869–880. 10.1016/j.jvs.2005.01.020
Article
Google Scholar
Dewey CF, Bussolari SR, Gimbrone MA, Davies PF: The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981, 103: 177–185. 10.1115/1.3138276
Article
Google Scholar
Blackman BR, Garcia-Cardena G, Gimbrone MA: A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng 2002, 124: 397–407. 10.1115/1.1486468
Article
Google Scholar
Levesque MJ, Nerem RM: The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 1985, 4: 341–348. 10.1115/1.3138567
Article
Google Scholar
Ruel J, Lemay J, Dumas G, Doillon C, Charara J: Development of a parallel plate flow chamber for studying cell behavior under pulsatile flow. Am Society Artif Intern Organs J 1995, 41: 876–883.
Article
Google Scholar
Lawrence MB, McIntire LV, Eskin SG: Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 1987, 70: 1284–1290.
Google Scholar
Shepherd RD, Kos SM, Rinker KD: Long-term pulsatile shear stress leads to increased phosphorylation of multiple MAPK species in cultured human aortic endothelial cells. Biorheology 2009, 46: 529–538.
Google Scholar
Yee A, Sakurai Y, Eskin SG, McIntire LV: A validated system for simulating common carotid arterial flow in vitro: alteration of endothelial cell response. Ann Biomed Eng 2006, 34: 593–604. 10.1007/s10439-006-9078-8
Article
Google Scholar
Bakker DP, van der Plaats A, Verkerke GJ, Busscher HJ, van der Mei HC: Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl Environ Microbiol 2003, 69: 6280–6287. 10.1128/AEM.69.10.6280-6287.2003
Article
Google Scholar
Anderson EJ, Falls TD, Sorkin AM, Tate MLK: The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online 2006, 5: 1–14. 10.1186/1475-925X-5-27
Article
Google Scholar
McCann JA, Peterson SD, Plesniak MW, Webster TJ, Haberstroh KM: Non-Uniform Flow Behavior in a Parallel Plate Flow Chamber Alters Endothelial Cell Responses. Ann Biomed Eng 2005, 33: 328–336. 10.1007/s10439-005-1735-9
Article
Google Scholar
Beekhuizen H, van de Gevel JS, Olsson B, van Benten IJ, van Furth R: Infection of human vascular endothelial cells with Staphylococcus aureus induces hyperadhesiveness for human monocytes and granulocytes. J Immunol 1997, 158: 774–782.
Google Scholar
Edgell CJS, McDonald CC, Graham JB: Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983, 80: 3734–3737. 10.1073/pnas.80.12.3734
Article
Google Scholar
Edwards AM, Potts JR, Josefsson E, Massey RC: Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathogens 2010, 6: 1–16. 10.1371/journal.ppat.1000964
Article
Google Scholar
Dol SS, Salek MM, Viegas KD, Rinker KD, Martinuzzi RJ: Micro-PIV and CFD studies show non-uniform wall shear stress distributions over endothelial cells. Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels and MiniChannels 2010. Montreal, Canada. Paper: FEDSM-ICNMM2010–30605
Google Scholar
Barber KM, Pinero A, Truskey GA: Effects of recirculating flow on U-937 cell adhesion to human umbilical vein endothelial cells. Am J Physiol Heart Circ Physiol 1998, 44: H591-H599.
Google Scholar
Munn LL, Melder RJ, Jain RK: Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies. Biophys J 1994, 67: 889–895. 10.1016/S0006-3495(94)80550-8
Article
Google Scholar
Mohamed N, Rainier TR Jr, Ross JM: Novel experimental study of receptor-mediated bacterial adhesion under the influence of fluid shear. Biotechnol Bioeng 2000, 68: 628–636. 10.1002/(SICI)1097-0290(20000620)68:6<628::AID-BIT5>3.0.CO;2-D
Article
Google Scholar
Huff E, Oxley H, Silverman CS: Density-gradient patterns of Staphylococcus aureus cells and cell walls during growth and mechanical disruption. J Bacteriol 1964, 88: 1155–1162.
Google Scholar
Dickenson RB, Cooper ST: Analysis of shear-dependent bacterial adhesion kinetics to biomaterial surfaces. AIChE J 1995, 41: 2160–2174. 10.1002/aic.690410915
Article
Google Scholar
Goldman AJ, Cox RG, Brenner H: Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chem Eng Science 1967, 22: 653–660. 10.1016/0009-2509(67)80048-4
Article
Google Scholar
Meinhart CD, Wereley ST, Gray MHB: Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 2000, 11: 809–814. 10.1088/0957-0233/11/6/326
Article
Google Scholar
Pohlmann-Dietze P, Ulrich M, Kiser KB, Doring G, Lee JC, Fournier JM, Botzenhart K, Wolz C: Adherence of Staphylococcus aureus to endothelial cells: influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect Immun 2000, 68: 4865–4871. 10.1128/IAI.68.9.4865-4871.2000
Article
Google Scholar
Van Wamel WJB, Vandenbroucke-Grauls CMJE, Verhoef J, Fluit AC: The effect of culture conditions on the in-vitro adherence of methicillin-resistant Staphylococcus aureus . J Med Microbiol 1998, 47: 705–709. 10.1099/00222615-47-8-705
Article
Google Scholar
Tompkins DC, Hatcher VB, Patel D, Orr GA, Higgins LL, Lowy FD: A human endothelial cell membrane protein that binds Staphylococcus aureus in vitro. J Clin Invest 1990, 85: 1248–1254. 10.1172/JCI114560
Article
Google Scholar
Becker RC, DiBello PM, Lucas FV: Bacterial tissue tropism: an in vitro model for infective endocarditis. Cardiovascular Research 1987, 21: 813–820. 10.1093/cvr/21.11.813
Article
Google Scholar
Boks NP, Norde W, van der Mei HC, Busscher HJ: Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 2008, 154: 3122–3133. 10.1099/mic.0.2008/018622-0
Article
Google Scholar
Mohamed N, Teeters MA, Patti JM, Hook M, Ross JM: Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions. Infect Immun 1999, 67: 589–594.
Google Scholar
Simpson KH, Bowden AG, Peacock SJ, Arya M, Hook M, Anvari B: Adherence of Staphylococcus aureus fibrinectin binding protein A mutants: an investigation using optical tweezers. Biomol Eng 2004, 21: 105–111. 10.1016/j.bioeng.2004.08.001
Article
Google Scholar
Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV: Bacterial adhesion to target cells enhanced by shear force. Cell 2002, 109: 913–923. 10.1016/S0092-8674(02)00796-1
Article
Google Scholar
Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V: Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys J 2006, 90: 753–764. 10.1529/biophysj.105.066548
Article
Google Scholar