Yoon JW, Wang MY. The evolution of minimally invasive spine surgery: Jnspg 75th anniversary invited review article. J Neurosurg Spine. 2019;30(2):149–58.
Article
Google Scholar
Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18(6):741–9.
Article
Google Scholar
Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, et al. Clinical acceptance and accuracy assessment of spinal implants guided with spineassist surgical robot: retrospective study. Spine. 2010;35(24):2109–15.
Article
Google Scholar
Burström G, Nachabe R, Persson O, Edström E, Terander AE. Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine. 2019;44(15):1097–104.
Article
Google Scholar
Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM. Intraoperative iso-c c-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery. 2004;54(5):1131–7.
Article
Google Scholar
Elmi-Terander A, Nachabe R, Skulason H, Pedersen K, Söderman M, Racadio J, Babic D, Gerdhem P, Edström E. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine. 2018;43(14):1018.
Article
Google Scholar
Elmi-Terander A, Burström G, Nachabé R, Fagerlund M, Ståhl F, Charalampidis A, Edström E, Gerdhem P. Augmented reality navigation with intraoperative 3d imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10(1):1–8.
Article
Google Scholar
Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the o-arm imaging system and stealthstation navigation. Spine. 2012;37(25):1580–7.
Article
Google Scholar
Malham GM, Parker RM. Early experience of placing image-guided minimally invasive pedicle screws without k-wires or bone-anchored trackers. J Neurosurg Spine. 2018;28(4):357–63.
Article
Google Scholar
Virk S, Qureshi S. Navigation in minimally invasive spine surgery. J Spine Surg. 2019;5(Suppl 1):25.
Article
Google Scholar
Suenaga H, Tran HH, Liao H, Masamune K, Dohi T, Hoshi K, Takato T. Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. BMC Med Imag. 2015;15(1):1–11.
Article
Google Scholar
Seitel A, Bellemann N, Hafezi M, Franz AM, Servatius M, Saffari A, Kilgus T, Schlemmer H-P, Mehrabi A, Radeleff BA, et al. Towards markerless navigation for percutaneous needle insertions. Int J Comput Assist Radiol Surg. 2016;11(1):107–17.
Article
Google Scholar
Zhu S, Zhao Z, Pan Y, Zheng G. Markerless robotic pedicle screw placement based on structured light tracking. Int J Comput Assist Radiol Surg. 2020;15(8):1347–58.
Article
Google Scholar
Hübner P, Clintworth K, Liu Q, Weinmann M, Wursthorn S. Evaluation of hololens tracking and depth sensing for indoor mapping applications. Sensors. 2020;20(4):1021.
Article
Google Scholar
Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14(3):525–35.
Article
Google Scholar
Edström E, Burström G, Nachabe R, Gerdhem P, Elmi Terander A. A novel augmented-reality-based surgical navigation system for spine surgery in a hybrid operating room: design, workflow, and clinical applications. Operat Neurosurg. 2020;18(5):496–502.
Article
Google Scholar
Elmi-Terander A, Burström G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, Ståhl F, Charalampidis A, Söderman M, Holmin S, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3d imaging: a first in-human prospective cohort study. Spine. 2019;44(7):517.
Article
Google Scholar
Dieterich S, Tang J, Rodgers J, Cleary K. Skin respiratory motion tracking for stereotactic radiosurgery using the cyberknife. In: International Congress Series; 2003, vol. 1256, p. 130–6. Elsevier.
Helm PA, Teichman R, Hartmann SL, Simon D. Spinal navigation and imaging: history, trends, and future. IEEE Trans Med Imag. 2015;34(8):1738–46.
Article
Google Scholar
Burström G, Buerger C, Hoppenbrouwers J, Nachabe R, Lorenz C, Babic D, Homan R, Racadio JM, Grass M, Persson O, et al. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine. 2019;31(1):147–54.
Article
Google Scholar
Wang F, Behrooz A, Morris M. High-contrast subcutaneous vein detection and localization using multispectral imaging. J Biomed Optics. 2013;18(5):050504.
Article
Google Scholar
Yang R, Wang Z, Liu S, Wu X. Design of an accurate near infrared optical tracking system in surgical navigation. J Lightwave Technol. 2012;31(2):223–31.
Article
Google Scholar
Asrar M, Al-Habaibeh A, Houda M. Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation. Appl Optics. 2016;55(34):67–75.
Article
Google Scholar
Xue Y, Cheng T, Xu X, Gao Z, Li Q, Liu X, Wang X, Song R, Ju X, Zhang Q. High-accuracy and real-time 3d positioning, tracking system for medical imaging applications based on 3d digital image correlation. Optics Lasers Eng. 2017;88:82–90.
Article
Google Scholar
Donoser M, Riemenschneider H, Bischof H. Shape guided maximally stable extremal region (mser) tracking. In: 2010 20th international conference on pattern recognition; 2010, p. 1800–3. IEEE.
Donoser M, Bischof H. Efficient maximally stable extremal region (mser) tracking. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06); 2006, vol. 1, p. 553–560. IEEE.
Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features. In: European conference on computer vision; 2006, p. 404–17. Springer.
Manni F, Mamprin M, Zinger S, Shan C, Holthuizen R, de With P. Multispectral image analysis for patient tissue tracking during complex interventions. In: 2018 25th IEEE international conference on image processing (ICIP); 2018, p. 3149–53. IEEE.
Moura GM, Da Silva RLDS. Analysis and evaluation of feature detection and tracking techniques using open cv with focus on markerless augmented reality applications. J Mob Multimedia. 2017;12(3&4):291–302.
Google Scholar
Ta D-N, Chen W-C, Gelfand N, Pulli K. Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: 2009 IEEE conference on computer vision and pattern recognition; 2009, p. 2937–44. IEEE.
Manni F, Elmi-Terander A, Burström G, Persson O, Edström E, Holthuizen R, Shan C, Zinger S, van der Sommen F, et al. Towards optical imaging for spine tracking without markers in navigated spine surgery. Sensors. 2020;20(13):3641.
Article
Google Scholar
Burström G, Nachabe R, Homan R, Hoppenbrouwers J, Holthuizen R, Persson O, Edström E, Elmi-Terander A. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery. Spine. 2020;45:1598–604.
Article
Google Scholar
Hoppe H, Dauber S, Raczkowsky J, Worn H, Moctezuma JL. Intraoperative visualization of surgical planning data using video projectors. In: Studies in health technology and informatics; 2001, p. 206–8.
Hoppe H, Däuber S, Kübler C, Raczkowsky J, Wörn H. A new, accurate and easy to implement camera and video projector model. Stud Health Technol Inform. 2002;85:204–6.
Google Scholar
Dauber S, Hoppe H, Krempien R, Hassfeld S, Brief J, Worn H. Intraoperative guidance of pre-planned bone deformations with a surface scanning system. In: Studies in health technology and informatics; 2002, p. 110–5.
Eggers G, Salb T, Hoppe H, Kahrs L, Ghanai S, Sudra G, Raczkowsky J, Dillmann R, Worn H, Hassfeld S, et al. Intraoperative augmented reality: the surgeons view. Stud Health Technol Inform. 2005;111:123–5.
Google Scholar
Kahrs LA, Hoppe H, Eggers G, Raczkowsky J, Marmulla R, Wörn H. Visualization of surgical 3d information with projector-based augmented reality. Stud Health Technol Inform. 2005;111:243–6.
Google Scholar
Marmulla R, Hoppe H, Mühling J, Eggers G. An augmented reality system for image-guided surgery: this article is derived from a previous article published in the journal international congress series. Int J Oral Maxillofacial Surg. 2005;34(6):594–6.
Article
Google Scholar
Wörn H, Aschke M, Kahrs LA. New augmented reality and robotic based methods for head-surgery. Int J Med Robot Comput Assist Surg. 2005;1(3):49–56.
Article
Google Scholar
Manni F, van der Sommen F, Zinger S, Shang C, Holthuizen R, Lai M, Buström G, Hoveling RJ, Edström E, Elmi-Terander A, et al. Hyperspectral imaging for skin feature detection: Advances in markerless tracking for spine surgery. Appl Sci. 2020;10(12):4078.
Article
Google Scholar
Multiple View Geometry in Computer Vision. Cambridge university press
Zuiderveld K. Contrast limited adaptive histogram equalization. Graphics gems; 1994, p.474–85.
Hartley RI. In defense of the eight-point algorithm. IEEE Trans Pattern Anal Mach Intell. 1997;19(6):580–93.
Article
Google Scholar
Torr PH, Zisserman A. Mlesac: a new robust estimator with application to estimating image geometry. Comput Vis Image Understanding. 2000;78(1):138–56.
Article
Google Scholar
Aurenhammer F, Klein R, Lee D-T. Voronoi diagrams and delaunay triangulations; 2013.