Trondsen E: Games and Simulations in E-Learning. SRI Business Intelligence Consultig. 2001.
Google Scholar
Chi D, Kokkevis E, Ogunyemi O, Bindiganavale R, Hollick M, Clarke J, Webber B, Badler N: Simulated casualties and medics for emergency training. In Medicine Meets Virtual Reality. Edited by: Morgan KS, Hoffman HM, Stredney D, Weghorst SJ. Amsterdam: IOS Press; 1997:486–494.
Google Scholar
Okuda Y, Bryson EO, DeMaria S, Jacobson L, Quinones J, Shen B, Levine AI: The utility of simulation in medical education: what is the evidence? Mt Sinai J Med 2009,76(4):330–343. 10.1002/msj.20127
Article
Google Scholar
Suebnukarn S, Haddawy P: COMET: a collaborative tutoring system for medical problem-based learning. IEEE Intell Syst 2007,22(4):70–77.
Article
Google Scholar
De Lazzari C: CARDIOSIM©- cardiovascular software simulator. Italy: C.N.R. National Research Council; 2011. [https://cardiosim.dsb.cnr.it/]
Google Scholar
De Lazzari C, Ferrari G, Mimmo R, Tosti G, Ambrosi D: A desk top computer model of the circulatory system for heart assistance simulation: effect of an LVAD on energetic relationships inside the left ventricle. Med Eng Phys 1994,16(2):97–103. 10.1016/1350-4533(94)90022-1
Article
Google Scholar
De Lazzari C, L’Abbate A, Micalizzi M, Trivella MG, Neglia D: Effects of amlodipine and adenosine on coronary haemodynamics: in vivo study and numerical simulation. Comput Meth Biomech Biomed Eng 2014,17(15):42–52.
Article
Google Scholar
De Lazzari C, Darowski M, Ferrari G, Pisanelli DM, Tosti G: The impact of rotary blood pump in conjunction with mechanical ventilation on ventricular energetic parameters: numerical simulation. Methods Inf Med 2006, 45: 574–583.
Google Scholar
De Lazzari C, Darowski M, Ferrari G, Pisanelli DM, Tosti G: Modelling in the study of interaction of Hemopump device and artificial ventilation. Comput Biol Med 2006, 36: 1235–1251. 10.1016/j.compbiomed.2005.08.001
Article
Google Scholar
De Lazzari C, D’Ambrosi A, Tufano F, Fresiello L, Garante M, Sergiacomi R, Stagnitti F, Caldarera CM, Alessandri N: Cardiac resynchronization therapy: could a numerical simulator be a useful tool in order to predict the response of the biventricular pacemaker synchronization? Eur Rev Med Pharmacol Sci 2010,14(11):969–978.
Google Scholar
De Lazzari C, Del Prete E, Genuini I, Fedele F: In silico study of the haemodynamic effects induced by mechanical ventilation and biventricular pacemaker. Comput Methods Prog Biomed 2013,110(3):519–527. 10.1016/j.cmpb.2013.02.010
Article
Google Scholar
Perme SC, Southard RE, Joyce DL, Noon GP, Loebe M: Early mobilization of LVAD recipients who require prolonged mechanical ventilation. Tex Heart Inst J 2006,33(2):130–133.
Google Scholar
McGillicuddy JW, Chambers SD, Galligan DT, Hirschl RB, Bartlett RH, Cook KE: In vitro fluid mechanical effects of thoracic artificial lung compliance. ASAIO J 2005,51(6):789–794. 10.1097/01.mat.0000182473.47668.f1
Article
Google Scholar
Boschetti F, Perlman CE, Cook KE, Mockros LF: Hemodynamic effects of attachment modes and device design a thoracic artificial lung. ASAIO J 2000,46(1):42–48. 10.1097/00002480-200001000-00013
Article
Google Scholar
Colquitt RB, Colquhoun DA, Thiele RH: In silico modeling of physiologic systems. Best Pract Res Clin Anaesthesiol 2011, 25: 499–510. 10.1016/j.bpa.2011.08.006
Article
Google Scholar
Sinz E: Simulation-based education for cardiac, thoracic, and vascular anesthesiology. Semin Cardiothorac Vasc Anesth 2005,9(4):291–307. 10.1177/108925320500900403
Article
Google Scholar
Wildhaber RA, Verrey F, Wenger RH: A graphical simulation software for instruction in cardiovascular mechanics physiology. Biomed Eng Online 2011, 10: 8. doi:10.1186/1475–925X-10–8 10.1186/1475-925X-10-8
Article
Google Scholar
Zwischenberger JB, Anderson CM, Cook KE, Lick SD, Mockros LF, Bartlett RH: Development of an implantable artificial lung: challenges and progress. ASAIO J 2001,47(4):316–320. 10.1097/00002480-200107000-00003
Article
Google Scholar
Federspiel WJ, Svitek RG: Artificial lungs: current research and future directions. In Encyclopedia of Biomaterials and Biomedical Engineering. Edited by: Wnek GE, Bowlin GL. New York: Marcel Dekker, Inc; 2004:922–931.
Google Scholar
Maughan WL, Sunagawa K, Sagawa K: Ventricular systolic interdependence: volume elastance model in isolated canine hearts. Am J Physiol Heart Circ Physiol 1987, 253: H1381-H1390.
Google Scholar
Sagawa K, Maughan WL, Suga H, Sunagawa K: Cardiac Contraction and the Pressure-Volume Relationships. New York: Oxford University Press; 1988.
Google Scholar
Korakianitis T, Shi Y: A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys 2006, 28: 613–628. 10.1016/j.medengphy.2005.10.004
Article
Google Scholar
De Lazzari C: Interaction between the septum and the left (right) ventricular free wall in order to evaluate the effects on coronary blood flow: numerical simulation. Comput Meth Biomech Biomed Eng 2012,15(12):1359–1368. 10.1080/10255842.2011.597354
Article
Google Scholar
Starling EH: The Linacre Lecture on the Law of the Heart. London: Longmans, Green & Co; 1918:1–27.
Google Scholar
Guyton AC, Jones CE, Coleman TG: Computer analysis of total circulatory function and of cardiac output regulation. In Circulatory Physiology: Cardiac Utput and its Regulation. Philadelphia: Saunders WB Company; 1973.
Google Scholar
Frasch HF, Kresh JY, Noordergraaf A: Two-port analysis of microcirculation: an extension of windkessel. Am J Physiol 1996, 270: H376-H385.
Google Scholar
Shi Y, Lawford P, Hose R: Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMed Eng Online 2011, 10: 33. doi:10.1186/1475–925X-10–33 10.1186/1475-925X-10-33
Article
Google Scholar
Downey JM, Kirk ES: Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975, 36: 753–760. 10.1161/01.RES.36.6.753
Article
Google Scholar
Spaan JA, Nreuls NP, Laird JD: Diastolic–systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981, 49: 584–593. 10.1161/01.RES.49.3.584
Article
Google Scholar
Spaan JA, Nreuls NP, Laird JD: Forward coronary flow normally seen in systole is the result of both forward and concealed back flow. Basic Res Cardiol 1981, 76: 582–586. 10.1007/BF01908365
Article
Google Scholar
De Lazzari C, Darowski M, Ferrari G, Clemente F, Guaragno M: Ventricular energetics during mechanical ventilation and intraaortic balloon pumping – Computer simulation. J Med Eng Technol 2001,25(3):103–111. 10.1080/03091900110043630
Article
Google Scholar
De Lazzari C, Guerrieri E, Pisanelli DM: A domain ontology for mechanical circulatory support systems. In Proceeding of the 30TH Annual Conference of Computers in Cardiology: 21–24 Sept. 2003. Edited by: Murray A. Thessaloniki: IEEE Press; 2003:417–419.
Chapter
Google Scholar
Di Mario C, Kramas R, Gil R, Serruys PW: Slope of the instantaneous hyperemic diastolic CFV-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994,90(3):1215–1224. 10.1161/01.CIR.90.3.1215
Article
Google Scholar
Krams R, Ten Cate FJ, Carlier SG, van der Steen AFW, Serruys PW: Diastolic coronary vascular reserve: a new index to detect changes in the coronary microcirculation in hypertrophic cardiomyopathy. J Am Coll Cardiol 2003,43(4):670–677.
Article
Google Scholar
Lick SD, Zwischenberger JB, Wang D, Deyo DL, Alpard SK, Chambers SD: Improved right heart function with a compliant inflow artificial lung in series with the pulmonary circulation. Ann Thorac Surg 2001,72(3):899–904. 10.1016/S0003-4975(01)02842-9
Article
Google Scholar
Haft JW, Montoya P, Alnajjar O, Posner SR, Bull LL, Iannettoni MD, Bartlett RH, Hirschl RB: An artificial lung reduces pulmonary impedance and improves right ventricular efficiency in pulmonary hypertension. J Thorac Cardiovasc Surg 2001, 122: 1094–1100. 10.1067/mtc.2001.118049
Article
Google Scholar
Perlman CE, Cook KE, Seipelt R, Mavroudis C, Backer CL, Mockros LF: In vivo hemodynamic responses to artificial lung attachment. ASAIO J 2005,51(4):412–425. 10.1097/01.mat.0000170095.94988.90
Article
Google Scholar
Akay B, Reoma JL, Camboni D, Pohlmann JR, Albert JM, Kawatra A, Gouch AD, Bartlett RH, Cook KE: In-parallel artificial lung attachment at high flows in normal and pulmonary hypertension models. Ann Thorac Surg 2010,90(1):259–265. 10.1016/j.athoracsur.2010.03.085
Article
Google Scholar
Akay B, Foucher JA, Camboni D, Koch KL, Kawatra A, Cook KE: Hemodynamic design requirements for in series thoracic artificial lung attachment in a model of pulmonary hypertension. ASAIO J 2012,58(4):426–431. 10.1097/MAT.0b013e318256bb36
Article
Google Scholar
Haft J, Bull JL, Rose R, Katsra J, Grotberg JB, Bartlett RH, Hirschl RB: Design of an artificial lung compliance chamber for pulmonary replacement. ASAIO J 2003,49(1):35–40. 10.1097/00002480-200301000-00006
Article
Google Scholar
Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA 3rd, Ramel S, Smith CD, Arvidsson D: Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 2007, 193: 797–804. 10.1016/j.amjsurg.2006.06.050
Article
Google Scholar
Backhaus M, Chung JD, Cowan BR, Tao W, Young AA: The cardiac atlas project: towards a map of the heart. In Patient-Specific Modeling of the Cardiovascular System, Volume 1. Edited by: Kerckhoffs R. Springer Heidelberg; 2010:113–129.
Chapter
Google Scholar
Eccher C, Scipioni A, Miller AA, Ferro A, Pisanelli DM: An ontology of cancer therapies supporting interoperability and dataconsistency in EPRs. Comput Biol Med 2013, 43: 822–832. 10.1016/j.compbiomed.2013.04.012
Article
Google Scholar
Eccher C, Purin B, Pisanelli DM, Battaglia M, Apolloni I, Forti S: Ontologies supporting continuity of care: the case of heart failure. Comput Biol Med 2006,36(7–8):789–801.
Article
Google Scholar
Wayne DB, Didwania A, Feinglass J, Fudala MJ, Barsuk JH, McGaghie WC: Simulation-based education improves quality of care during cardiac arrest team responses at an academic teaching hospital: a case–control study. Chest 2008,133(1):56–61. 10.1378/chest.07-0131
Article
Google Scholar
Vincent C, Moorthy K, Sarker SK, Chang A, Darzi AW: Systems approaches to surgical quality and safety: from concept to measurement. Ann Surg 2004, 239: 475–482. 10.1097/01.sla.0000118753.22830.41
Article
Google Scholar
Chakravarthy B, ter Haar E, Bhat SS, McCoy CE, Denmark TK, Lotfipour S: Simulation in medical school education: review for emergency medicine. Western J Emerg Med 2011,12(4):461–466. 10.5811/westjem.2010.10.1909
Article
Google Scholar
Heldt T, Shim EB, Kamm RD, Mark RG: Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol 2002, 92: 1239–1254.
Article
Google Scholar
Mukkamala R, Cohen RJ: A forward model-based validation of cardiovascular system identification. Am J Physiol Heart Circ Physiol 2001,281(6):H2714-H2730.
Google Scholar
Mukkamala R, Kim JK, Li Y, Sala-Mercado J, Hammond RL, Scislo TJ, O’Leary DS: Estimation of arterial and cardiopulmonary total peripheral resistance baroreflex gain values: validation by chronic arterial baroreceptor denervation. Am J Physiol Heart Circ Physiol 2006,290(5):H1830-H1836. 10.1152/ajpheart.00898.2005
Article
Google Scholar
Sheffer L, Santamore WP, Barnea O: Cardiovascular simulation toolbox. Cardiovasc Eng 2007, 7: 81–88. 10.1007/s10558-007-9030-z
Article
Google Scholar
Brunberg A, Heinke S, Spillner J, Autschbach R, Abel D, Leonhardt S: Modeling and simulation of the cardiovascular system: a review of applications, methods, and potentials. Biomed Tech (Berlin) 2009,54(5):233–244.
Article
Google Scholar
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000,101(23):e215-e220. 10.1161/01.CIR.101.23.e215
Article
Google Scholar
Bassingthwaighte JB: Strategies for the physiome project strategies for the physiome project. Ann Biomed Eng 2000, 28: 1043–1058.
Article
Google Scholar
Garny A, Nickerson DP, Cooper J, dos Santos RW, Miller AK, McKeever S, Nielsen PMF, Hunter PJ: CellML and associated tools and techniques. Philos Trans A Math Phys Eng Sci 2008,366(1978):3017–3043.
Article
Google Scholar
Lian J: Open source modeling of cardiovascular system: a brief overview. TOPETJ 2010, 3: 1–3.
Google Scholar
Barnea O: Open-source programming of cardiovascular pressure-flow dynamics using SimPower toolbox in Matlab and Simulink. Open Pacing Electrophysiol Ther J 2010, 3: 55–59.
Article
Google Scholar
De Lazzari C, Genuini I, Quatember B, Fedele F: Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study. Comput Methods Programs Biomed 2014,113(2):642–654. 10.1016/j.cmpb.2013.11.011
Article
Google Scholar