Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q, Yi D: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci-Mater M 2009, 20: 2327–2336. 10.1007/s10856-009-3791-4
Article
Google Scholar
Filova E, Straka F, Mirejovský T, Mašín J, Bačáková L: Tissue-engineered heart valves. Physiol Res 2009, 58: S141-S158.
Google Scholar
Dohmen PM: Clinical results of implanted tissue engineered heart valves. HSR Proceedings In Intensive Care & Cardiovascular Anesthesia 2012, 4: 225–231.
Google Scholar
Dijkman PE, Driessen-Mol A, Frese L, Hoerstrup SP, Baaijens FP: Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 2012, 33: 4545–4554. 10.1016/j.biomaterials.2012.03.015
Article
Google Scholar
Simionescu DT, Chen J, Jaeggli M, Wang B, Liao J: Form follows function: advances in trilayered structure replication for aortic heart valve tissue engineering. J Healthcare Engineering 2012, 3: 179–202. 10.1260/2040-2295.3.2.179
Article
Google Scholar
Wu S, Liu YL, Cui B, Qu XH, Chen GQ: Study on decellularized porcine aortic valve/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) hybrid heart valve in sheep model. Artif Organs 2007, 31: 689–697. 10.1111/j.1525-1594.2007.00442.x
Article
Google Scholar
Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A: Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardio-Thorac 1998, 14: 279–284. 10.1016/S1010-7940(98)00171-7
Article
Google Scholar
Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E: Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 2002, 11: 457–462.
Google Scholar
Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA: Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 2003, 143: 201–208. 10.1016/j.jsb.2003.08.002
Article
Google Scholar
Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X: Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials 2006, 27: 3684–3690.
Google Scholar
Ye XF, Hu X, Wang HZ, Liu J, Zhao Q: Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Acta Biomater 2012, 8: 1057–1067. 10.1016/j.actbio.2011.11.011
Article
Google Scholar
Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, Hu S, Stock UA: Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 2010, 31: 2549–2554. 10.1016/j.biomaterials.2009.11.088
Article
Google Scholar
Liao J, Joyce EM, Sacks MS: Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 2008, 29: 1065–1074. 10.1016/j.biomaterials.2007.11.007
Article
Google Scholar
Mendoza-Novelo B, Avila EE, Cauich-Rodriguez JV, Jorge-Herrero E, Rojo FJ, Guinea GV, Mata-Mata JL: Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta biomater 2011, 7: 1241–1248. 10.1016/j.actbio.2010.11.017
Article
Google Scholar
Tudorache I, Cebotari S, Sturz G, Kirsch L, Hurschler C, Hilfiker A, Haverich A, Lichtenberg A: Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 2007, 16: 567–573. discussion 574
Google Scholar
Somers P, De Somer F, Cornelissen M, Thierens H, Van Nooten G: Decellularization of heart valve matrices: search for the ideal balance. Artif Cells Blood Substit Immobil Biotechnol 2012, 40: 151–162. 10.3109/10731199.2011.637925
Article
Google Scholar
Vismara R, Soncini M, Talo G, Dainese L, Guarino A, Redaelli A, Fiore GB: A bioreactor with compliance monitoring for heart valve grafts. Ann Biomed Eng 2010, 38: 100–108. 10.1007/s10439-009-9803-1
Article
Google Scholar
Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A: Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 2000, 102: III50-III55.
Article
Google Scholar
Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, De Ruiter MC: Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardio-Thorac 2005, 27: 566–571. 10.1016/j.ejcts.2004.12.052
Article
Google Scholar
Shi J, Dong N, Sun Z: Immobilization of decellularized valve scaffolds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion. J Huazhong Univ Sci 2009, 29: 503–507. 10.1007/s11596-009-0422-8
Article
Google Scholar
Yang M, Chen CZ, Shu YS, Shi WP, Cheng SF, Gu YJ: Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve: an in vitro and in vivo feasibility study. J Biomed Mater Res B 2012, 100: 1654–1661.
Article
Google Scholar
Chen JS, Noah EM, Pallua N, Steffens GC: The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices. J Mater Sci-Mater M 2002, 13: 1029–1035. 10.1023/A:1020380203499
Article
Google Scholar
Riener CK, Kada G, Gruber HJ: Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4'-dithiodipyridine. Anal Bioanal Chem 2002, 373: 266–276. 10.1007/s00216-002-1347-2
Article
Google Scholar
Christmann A, Ienny P, Quantin J, Caro-Bretelle A, Lopez-Cuesta J: Mechanical behaviour at large strain of polycarbonate nanocomposites during uniaxial tensile test. Polymer 2011, 52: 4033–4044. 10.1016/j.polymer.2011.06.056
Article
Google Scholar
Baudin B, Bruneel A, Bosselut N, Vaubourdolle M: A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2007, 2: 481–485.
Article
Google Scholar
Jain N, Nahar M: PEGylated nanocarriers for systemic delivery. Methods Mol Biol 2010, 624: 221–234. 10.1007/978-1-60761-609-2_15
Article
Google Scholar
Joralemon MJ, McRae S, Emrick T: PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun (Camb) 2010, 46: 1377–1393. 10.1039/b920570p
Article
Google Scholar
Ingavle GC, Dormer NH, Gehrke SH, Detamore MS: Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate. J Mater Sci-Mater M 2012, 23: 157–170. 10.1007/s10856-011-4499-9
Article
Google Scholar
Davidovich-Pinhas M, Bianco-Peled H: Novel mucoadhesive system based on sulfhydryl-acrylate interactions. J Mater Sci-Mater M 2010, 21: 2027–2034. 10.1007/s10856-010-4069-6
Article
Google Scholar
Porter AM, Klinge CM, Gobin AS: Biomimetic hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC. Biomacromolecules 2011, 12: 242–246. 10.1021/bm101220b
Article
Google Scholar
Jevševar S, Kunstelj M, Porekar VG: PEGylation of therapeutic proteins. J Biotechnol 2010, 5: 113–128. 10.1002/biot.200900218
Article
Google Scholar
Zhu J: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31: 4639–4656. 10.1016/j.biomaterials.2010.02.044
Article
Google Scholar
Knop K, Hoogenboom R, Fischer D, Schubert US: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010, 49: 6288–6308. 10.1002/anie.200902672
Article
Google Scholar
Vanderhooft JL, Mann BK, Prestwich GD: Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007, 8: 2883–2889. 10.1021/bm0703564
Article
Google Scholar
Abuchowski A, van Es T, Palczuk NC, Davis FF: Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 1977, 252: 3578–3581.
Google Scholar
Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF: Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977, 252: 3582–3586.
Google Scholar
Dingels C, Wurm F, Wagner M, Klok HA, Frey H: Squaric acid mediated chemoselective pegylation of proteins: reactivity of single-step-activated alpha-amino poly(ethylene glycol)s. Chemistry 2012, 18: 16828–16835. 10.1002/chem.201200182
Article
Google Scholar
Banerjee SS, Aher N, Patil R, Khandare J: Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Del 2012, 2012: 103973.
Google Scholar
Roberts M, Bentley M, Harris J: Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev 2012, 64(supplement):116–127.
Article
Google Scholar