Drew BJ, Califf RM, Funk M, Kaufman ES, Krucoff MW, Laks MM, et al. Practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. Circulation. 2004;110(17):2721–46.
Article
Google Scholar
NantesButton VLDS. Principles of measurement and transduction of biomedical variables. New York: Academic Press; 2015.
Google Scholar
Chi YM, Jung T-P, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng. 2010;3:106–19.
Article
Google Scholar
Ask P, ÖDerg P, Ödman S, Tenland T, Skogh M. ECG electrodes: a study of electrical and mechanical long-term properties. Acta Anaesthesiol Scand. 1979;23(2):189–206.
Article
Google Scholar
Tronstad C, Johnsen GK, Grimnes S, Martinsen ØG. A study on electrode gels for skin conductance measurements. Physiol Meas. 2010;31(10):1395.
Article
Google Scholar
Ying B, Wu Q, Li J, Liu X. An ambient-stable and stretchable ionic skin with multimodal sensation. Mater Horiz. 2020;7(2):477–88.
Article
Google Scholar
Zalar P, Saalmink M, Raiteri D, van den Brand J, Smits EC. Screen-printed dry electrodes: basic characterization and benchmarking. Adv Eng Mater. 2020;22(11):2000714.
Article
Google Scholar
Takamatsu S, Lonjaret T, Crisp D, Badier J-M, Malliaras GG, Ismailova E. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci Rep. 2015;5(1):1–7.
Article
Google Scholar
Eskandarian L, Lam E, Rupnow C, Meghrazi MA, Naguib HE. Robust and multifunctional conductive yarns for biomedical textile computing. ACS Appl Electron Mater. 2020;2(6):1554–66.
Article
Google Scholar
Acar G, Ozturk O, Golparvar AJ, Elboshra TA, Böhringer K, Yapici MK. Wearable and flexible textile electrodes for biopotential signal monitoring: a review. Electronics. 2019;8(5):479.
Article
Google Scholar
Soroudi A, Hernández N, Wipenmyr J, Nierstrasz V. Surface modification of textile electrodes to improve electrocardiography signals in wearable smart garment. J Mater Sci Mater Electron. 2019;30(17):16666–75.
Article
Google Scholar
Castrillón R, Pérez JJ, Andrade-Caicedo H. Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: a comparative study. Biomed Eng Online. 2018;17(1):1–23.
Article
Google Scholar
Catrysse M, Puers R, Hertleer C, Van Langenhove L, Van Egmond H, Matthys D. Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A. 2004;114(2–3):302–11.
Article
Google Scholar
Ishijima M. Cardiopulmonary monitoring by textile electrodes without subject-awareness of being monitored. Med Biol Eng Comput. 1997;35(6):685–90.
Article
Google Scholar
Marquez JC, Seoane F, Välimäki E, Lindecrantz K. Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements. J Phys Conf Ser. 2010;224(1):012140.
Article
Google Scholar
Yoo J, Yan L, Lee S, Kim H, Yoo H-J. A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Trans Inf Technol Biomed. 2009;13(6):897–902.
Article
Google Scholar
Sinha SK, Noh Y, Reljin N, Treich GM, Hajeb-Mohammadalipour S, Guo Y, et al. Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces. 2017;9(43):37524–8.
Article
Google Scholar
Negru D, Buda C-T, Avram D. Electrical conductivity of woven fabrics coated with carbon black particles. Fibres Text East Eur. 2012;1(90):53–6.
Google Scholar
Reyes BA, Posada-Quintero HF, Bales JR, Clement AL, Pins GD, Swiston A, et al. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng. 2014;61(6):1863–76.
Article
Google Scholar
Yang K, Freeman C, Torah R, Beeby S, Tudor J. Screen printed fabric electrode array for wearable functional electrical stimulation. Sens Actuators A. 2014;213:108–15.
Article
Google Scholar
Chu M, Naguib HE. Soft flexible conductive CNT nanocomposites for ECG monitoring. Smart Mater Struct. 2021;30(6):065003.
Article
Google Scholar
Zhang Y, Liang B, Jiang Q, Li Y, Feng Y, Zhang L, et al. Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Mater Struct. 2020;29(7):075027.
Article
Google Scholar
Khan S, Lorenzelli L. Recent advances of conductive nanocomposites in printed and flexible electronics. Smart Mater Struct. 2017;26(8):083001.
Article
Google Scholar
Qin H, Li J, He B, Sun J, Li L, Qian L. Novel wearable electrodes based on conductive chitosan fabrics and their application in smart garments. Materials. 2018;11(3):370.
Article
Google Scholar
Zhang H, Li W, Tao X, Xu P, Liu H, editors. Textile-structured human body surface biopotential signal acquisition electrode. In: 2011 4th international congress on image and signal processing. IEEE; 2011.
Pola T, Vanhala J, editors. Textile electrodes in ECG measurement. In: 2007 3rd international conference on intelligent sensors, sensor networks and information. IEEE; 2007.
Liu S, Ma K, Yang B, Li H, Tao X. Textile electronics for VR/AR applications. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202007254.
Article
Google Scholar
Maji S, Burke MJ. Establishing the input impedance requirements of ECG recording amplifiers. IEEE Trans Instrum Meas. 2019;69(3):825–35.
Article
Google Scholar
Zhang L, Kumar KS, He H, Cai CJ, He X, Gao H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020;11(1):1–13.
Article
Google Scholar
Marozas V, Petrenas A, Daukantas S, Lukosevicius A. A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. J Electrocardiol. 2011;44(2):189–94.
Article
Google Scholar
Yao S, Zhu Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM. 2016;68(4):1145–55.
Article
Google Scholar
Tseghai GB, Mengistie DA, Malengier B, Fante KA, Van Langenhove L. PEDOT: PSS-based conductive textiles and their applications. Sensors. 2020;20(7):1881.
Article
Google Scholar
Idrissi A, Kaiser M, Albrecht S, Richert S, Gries T, Blaeser A. Development of a test bench for the characterization of movement artifacts in smart textile systems. Int J Bioelectromagn. 2018;20(1):80–3.
Google Scholar
MacRae BA, Cotter JD, Laing RM. Compression garments and exercise. Sports Med. 2011;41(10):815–43.
Article
Google Scholar
Lawrence D, Kakkar V. Graduated, static, external compression of the lower limb: a physiological assessment. Br J Surg. 1980;67(2):119–21.
Article
Google Scholar
Leleux P, Johnson C, Strakosas X, Rivnay J, Hervé T, Owens RM, et al. Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv Healthc Mater. 2014;3(9):1377–80.
Article
Google Scholar
Mustonen T, Kordás K, Saukko S, Tóth G, Penttilä JS, Helistö P, et al. Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites. Phys Status Solidi (b). 2007;244(11):4336–40.
Article
Google Scholar
Park J, Lee A, Yim Y, Han E. Electrical and thermal properties of PEDOT: PSS films doped with carbon nanotubes. Synth Met. 2011;161(5–6):523–7.
Article
Google Scholar
Kee S, Kim N, Kim BS, Park S, Jang YH, Lee SH, et al. Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv Mater. 2016;28(39):8625–31.
Article
Google Scholar
Teo MY, Kim N, Kee S, Kim BS, Kim G, Hong S, et al. Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl Mater Interfaces. 2017;9(1):819–26.
Article
Google Scholar
Razzaq N, Butt M, Salman M, Ali R, Sadiq I, Munawar K, et al., editors. Self tuned SSRLS filter for online tracking and removal of power line interference from electrocardiogram. In: 2013 5th international conference on modelling, identification and control (ICMIC). IEEE; 2013.
Cömert A, Honkala M, Hyttinen J. Effect of pressure and padding on motion artifact of textile electrodes. Biomed Eng Online. 2013;12(1):1–18.
Article
Google Scholar
Smith DC. Effects of skin blood flow and temperature on skin-electrode impedance and offset potential: measurements at low alternating current density. J Med Eng Technol. 1992;16(3):112–6.
Article
Google Scholar
Bareket L, Inzelberg L, Rand D, David-Pur M, Rabinovich D, Brandes B, et al. Temporary-tattoo for long-term high fidelity biopotential recordings. Sci Rep. 2016;6(1):25727.
Article
Google Scholar
Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;3:230–6.
Article
Google Scholar
Norland K, Sveinbjornsson G, Thorolfsdottir RB, Davidsson OB, Tragante V, Rajamani S, et al. Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun. 2019;10(1):1–10.
Article
Google Scholar
Clifford G, Behar J, Li Q, Rezek I. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas. 2012;33(9):1419.
Article
Google Scholar
Beckmann L, Neuhaus C, Medrano G, Jungbecker N, Walter M, Gries T, et al. Characterization of textile electrodes and conductors using standardized measurement setups. Physiol Meas. 2010;31(2):233.
Article
Google Scholar
Besio W, Prasad A, editors. Analysis of skin-electrode impedance using concentric ring electrode. In: 2006 international conference of the IEEE engineering in medicine and biology society. IEEE; 2006.
Medrano G, Ubl A, Zimmermann N, Gries T, Leonhardt S, editors. Skin electrode impedance of textile electrodes for bioimpedance spectroscopy. In: 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography. Springer; 2007.
Li G, Wang S, Duan YY. Towards gel-free electrodes: a systematic study of electrode–skin impedance. Sens Actuators B Chem. 2017;241:1244–55.
Article
Google Scholar
Sunaga T, Ikehira H, Furukawa S, Shinkai H, Kobayashi H, Matsumoto Y, et al. Measurement of the electrical properties of human skin and the variation among subjects with certain skin conditions. Phys Med Biol. 2001;47(1):N11.
Article
Google Scholar
Paul G, Torah R, Beeby S, Tudor J. The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sens Actuators A. 2014;206:35–41.
Article
Google Scholar
Myers AC, Huang H, Zhu Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 2015;5(15):11627–32.
Article
Google Scholar
Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater. 2012;24(37):5117–22.
Article
Google Scholar
Lam CL, Saleh SM, Yudin MBM, Harun FK, Sriprachuabwong C, Tuantranont A, et al., editors. Graphene ink-coated cotton fabric-based flexible electrode for electrocardiography. In: 2017 5th international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME). IEEE; 2017.
Celik N, Manivannan N, Strudwick A, Balachandran W. Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials. 2016;6(9):156.
Article
Google Scholar
Yapici MK, Alkhidir T, Samad YA, Liao K. Graphene-clad textile electrodes for electrocardiogram monitoring. Sens Actuators B Chem. 2015;221:1469–74.
Article
Google Scholar
Hallfors N, Alhawari M, Abi Jaoude M, Kifle Y, Saleh H, Liao K, et al. Graphene oxide: nylon ECG sensors for wearable IoT healthcare—nanomaterial and SoC interface. Analog Integr Circ Sig Process. 2018;96(2):253–60.
Article
Google Scholar
Chen Y-H, De Beeck MO, Vanderheyden L, Carrette E, Mihajlović V, Vanstreels K, et al. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014;14(12):23758–80.
Article
Google Scholar
Peng H-L, Liu J-Q, Tian H-C, Xu B, Dong Y-Z, Yang B, et al. Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording. Sens Actuators A. 2015;235:48–56.
Article
Google Scholar
Liu B, Chen Y, Luo Z, Zhang W, Tu Q, Jin X. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography. J Biomater Sci Polym Ed. 2015;26(16):1229–35.
Article
Google Scholar
Lam CL, Rajdi NNZM, Wicaksono DH, editors. MWCNT/cotton-based flexible electrode for electrocardiography. In: Sensors, 2013 IEEE. IEEE; 2013.
Lidón-Roger JV, Prats-Boluda G, Ye-Lin Y, Garcia-Casado J, Garcia-Breijo E. Textile concentric ring electrodes for ECG recording based on screen-printing technology. Sensors. 2018;18(1):300.
Article
Google Scholar
Pani D, Dessì A, Saenz-Cogollo JF, Barabino G, Fraboni B, Bonfiglio A. Fully textile, PEDOT: PSS based electrodes for wearable ECG monitoring systems. IEEE Trans Biomed Eng. 2015;63(3):540–9.
Article
Google Scholar
Bihar E, Roberts T, Saadaoui M, Hervé T, De Graaf JB, Malliaras GG. Inkjet-printed PEDOT: PSS electrodes on paper for electrocardiography. Adv Healthc Mater. 2017;6(6):1601167.
Article
Google Scholar