Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–65.
Article
Google Scholar
Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol. 2010;55:483.
Article
Google Scholar
Liu H, Ren G, Miao Z. Molecular optical imaging with radioactive probes. PLoS ONE. 2010;5:e9470.
Article
Google Scholar
Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med. 2012;53:312–7.
Article
Google Scholar
Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD. Multimodal imaging with 18F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J Nucl Med. 2011;52:1764–9.
Article
Google Scholar
Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging. 2011;10:177–86.
Article
Google Scholar
Liu H, Carpenter CM, Jiang H. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med. 2012;53:1579–84.
Article
Google Scholar
Spinelli AE, Ferdeghini M, Cavedon C. First human Cerenkography. J Biomed Opt. 2013;18:020502.
Article
Google Scholar
Thorek DLJ, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55:95–8.
Article
Google Scholar
Hu H, Cao X, Kang F. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25:1814–22.
Article
Google Scholar
Li C, Mitchell GS, Cherry SR. Cerenkov luminescence tomography for small-animal imaging. Opt Lett. 2010;35:1109–11.
Article
Google Scholar
Hu Z, Liang J, Yang W, Fan W, Li C, Ma X, Chen X, Ma X, Li X, Qu X, Wang J, Cao F, Tian J. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express. 2010;18:24441–50.
Article
Google Scholar
Hu Z, Ma X, Qu X, Yang W, Liang J, Wang J, Tian J. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS ONE. 2012;7:e37623.
Article
Google Scholar
Zhong J, Tian J, Yang X, Qin C. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann Biomed Eng. 2011;39:1728–35.
Article
Google Scholar
Zhong J, Qin C, Yang X, Zhu S, Zhang X, Tian J. Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging. Int J Biomed Imaging. 2011;2011:641618.
Article
Google Scholar
Spinelli AE, Kuo C, Rice BW, Calandrino R, Marzola P, Sbarbati A, Boschi F. Multispectral Cerenkov luminescence tomography for small animal optical imaging. Opt Express. 2011;19:12605–18.
Article
Google Scholar
Sun C, Pratx G, Carpenter CM, Liu H, Cheng Z, Gambhir SS, Xing L. Synthesis and radioluminescence of PEGylated Eu3+-doped nanophosphors as bioimaging probes. Adv Mater. 2011;23:H195–9.
Article
Google Scholar
Carpenter CM, Sun C, Pratx G, Liu H, Cheng Z, Xing L. Radioluminescent nanophosphors enable multiplexed small-animal imaging. Opt Express. 2012;20:11598–604.
Article
Google Scholar
Spinelli AE, Boschi F. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging. Phys Med. 2015;31:120–9.
Article
Google Scholar
Cao X, Chen X, Kang F, Zhan Y, Cao X, Wang J, Liang J, Tian J. Intensity Enhanced Cerenkov luminescence imaging using terbium doped Gd2O2S microparticles. ACS Appl Mater Inter. 2015;7:11775–82.
Article
Google Scholar
Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T, Bao C, Liu H, Wang Z, Wang J, Liu Z, Liu H, Tian J. In vivo nanoparticle mediated radiopharmaceutical excited fluorescence molecular imaging. Nat Commun. 2015;30:7560.
Article
Google Scholar
Boschi F, Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A. Combined optical and single photon emission imaging: preliminary results. Phys Med Biol. 2009;54:L57.
Article
Google Scholar
King MT, Carpenter CM, Sun C, Ma X, Le QT, Sunwoo JB, Cheng Z, Pratx G, Xing L. β-Radioluminescence Imaging: a comparative evaluation with cerenkov luminescence imaging. J Nucl Med. 2015;56:1458–64.
Article
Google Scholar
Pratx G, Chen K, Sun C, Martin L, Carpenter CM, Olcott PD, Xing L. Radioluminescence microscopy: measuring the heterogeneous uptake of radiotracers in single living cells. PLoS ONE. 2012;7:e46285.
Article
Google Scholar
Zaman RT, Kosuge H, Pratx G, Carpenter C, Xing L, McConnell MV. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques. PLoS ONE. 2014;9:e108108.
Article
Google Scholar
Carpenter CM, Sun C, Pratx G, Rao R, Xing L. Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys. 2010;37:4011–8.
Article
Google Scholar
Pratx G, Carpenter CM, Sun C, Rao RP, Xing L. Tomographic molecular imaging of x-ray-excitable nanoparticles. Opt Lett. 2010;35:3345–7.
Article
Google Scholar
Li C, Di K, Bec J, Cherry SR. X-ray luminescence optical tomography imaging: experimental studies. Opt Lett. 2013;38:2339–41.
Article
Google Scholar
Zhang W, Zhu D, Lun M, Li C. Multiple pinhole collimator based X-ray luminescence computed tomography. Biomed Opt Express. 2016;7:2506–23.
Article
Google Scholar
Cong W, Pan Z, Filkins RJ, Srivastava AM, Ishaque AN, Stefanov P, Wang G. X-ray micromodulated luminescence tomography in dual-cone geometry. J Biomed Opt. 2014;19:076002.
Article
Google Scholar
Zhang W, Lun MC, Nguyen AAT, Li C. X-ray luminescence computed tomography using a focused x-ray beam. J Biomed Opt. 2017;22:116004.
Google Scholar
Chen D, Zhu S, Yi H, Zhang X, Chen D, Liang J, Tian J. Cone beam X-ray luminescence computed tomography: a feasibility study. Med Phys. 2013;40:031111.
Article
Google Scholar
Zhang G, Liu F, Liu J, Luo J, Xie Y, Bai J, Xing L. Cone beam x-ray luminescence computed tomography based on Bayesian method. IEEE Trans Med Imaging. 2017;36:225–35.
Article
Google Scholar
Zou W, Pan X. Compressed-sensing-based fluorescence molecular tomographic image reconstruction with grouped sources. Biomed Eng Online. 2014;13:119.
Article
Google Scholar
Zhang X, Cao X, Zhu S. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method. Biomed Eng Online. 2017;16:86.
Article
Google Scholar
Arridge AR. Optical tomography in medical imaging. Inverse Prob. 1999;15:41–93.
Article
MathSciNet
MATH
Google Scholar
Ripoll J, Nieto-Vesperinas M, Weissleder R, Ntziachristos B. Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt Lett. 2002;27:527–9.
Article
Google Scholar
Chen H, Moore T, Qi B, Colvin DC, Jelen EK, Hitchcock DA, He J, Mefford OT, Gore JC, Alexis F, Anker JN. Monitoring pH-triggered drug release from radioluminescent nanocapsules with X-ray excited optical luminescence. ACS Nano. 2013;7:1178–87.
Article
Google Scholar
Zhan Y, Ai F, Chen F, Valdovinos HF, Orbay H, Sun H, Liang J, Barnhart TE, Tian J, Cai W. Intrinsically zirconium-89 Labeled Gd2O2S: Eu Nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small. 2016;12:2872–6.
Article
Google Scholar
Spinelli AE, Calandrino R, Meo SL, Sbarbati A, Boschi F. Optical imaging of Tc-99 m-based tracers: in vitro and in vivo results. J Biomed Opt. 2011;16:116023.
Article
Google Scholar
Cong W, Wang G, Kumar G, Liu Y, Jiang M, Wang LV, Hoffman EA, McLennan G, McCray PB, Zabner J, Cong A. Practical reconstruction method for bioluminescence tomography. Opt Express. 2005;13:6756–71.
Article
Google Scholar
He X, Liang J, Qu X, Huang H, Hou Y, Tian J. Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem. Int J Biomed Imaging. 2010;2010:291874.
Article
Google Scholar
Huang H, Qu X, Liang J, He X, Chen X, Yang D, Tian J. A multi-phase level set framework for source reconstruction in bioluminescence tomography. J Comput Phys. 2010;229:5246–56.
Article
MATH
Google Scholar
Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found Comput Math. 2009;9:317–34.
Article
MathSciNet
MATH
Google Scholar