Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cerebral Blood Flow Metab. 1997;17:64–72.

Article
Google Scholar

Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage. 2000;12:466–77.

Article
Google Scholar

Riera JJ, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashima R. A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. NeuroImage. 2004;21:547–67.

Article
Google Scholar

Johnston LA, Duff E, Egan GF. Particle filtering for nonlinear BOLD signal analysis. In: 9th international conference on medical image computing and computer assisted intervention (MICCAI), Copenhagen, Denmark. 2006. p. 292–9.

Hu ZH, Zhao XH, Liu HF, Shi PC. Nonlinear analysis of the BOLD signal. EURASIP J Adv Signal Process. 2009;2009:1–13.

Article
Google Scholar

Deneux T, Faugeras O. Using nonlinear models in fMRI data analysis: model selection and activation detection. NeuroImage. 2006;32:1669–89.

Article
Google Scholar

Hu ZH, Zhang HY, Wang LW, Song XL, Shi PC. Joint estimation for nonlinear dynamic system from fMRI time series. In: 10th international conference on medical image computing and computer assisted intervention (MICCAI), Brisbane, Australia. 2007. p. 734–41.

Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19:1273–302.

Article
Google Scholar

Stephan KE, Kasper L, Harrison LM, Daunizeau J, Ouden HEM, Breakspear M, Friston KJ. Nonlinear dynamic causal models for fMRI. NeuroImage. 2008;42:649–62.

Article
Google Scholar

Li XF, Marrelec G, Hess RF, Benali H. A nonlinear identification method to study effective connectivity in functional MRI. Med Image Anal. 2010;14:30–8.

Article
Google Scholar

Li XF, Coyle D, Maguire L, McGinnity TM, Benali H. A model selection method for nonlinear system identification based fMRI effective connectivity analysis. IEEE Trans Med Imaging. 2011;30(7):1365–80.

Article
Google Scholar

Hu ZH, Shi PC. Sensitivity analysis for biomedical models. IEEE Trans Med Imaging. 2010;29(11):1870–81.

Article
Google Scholar

Johnston LA, Duff E, Mareels I, Egan GF. Nonlinear estimation of the BOLD signal. NeuroImage. 2008;40:504–14.

Article
Google Scholar

Hettiarachchi IT, Pathirana PN, Brotchie P. A state space based approach in non-linear hemodynamic response modeling with fMRI data. In: 32nd annual international conference of the IEEE EMBS, Buenos Aires, Argentina. 2010. p. 2391–4.

Hu ZH, Shi PC. Nonlinear analysis of BOLD signal: biophysical modeling, physiological states, and functional activation. In: 2007 IEEE international conference on image processing (ICIP), San Antonio, Texas, USA. 2007. p. 145–8.

Jezzard P, Matt PM, Smith SM. Functional MRI: an introduction to methods. New York: Oxford University Press; 2001.

Google Scholar

Lu HZ, Law M, Johnson G, Ge Y, van Zijl PCM, Helpern JA. Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med. 2005;54:1403–11.

Article
Google Scholar

Hu ZH, Liu C, Liu PS, Liu HF. Exploiting magnetic resonance angiography imaging improves model estimation of BOLD signal. PLoS One. 2012;7(2):31612.

Article
Google Scholar

Rempp KA, Brix G, Wenz F, Becker CR, Lorenz FGWJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology. 1994;193:637–41.

Article
Google Scholar

Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, Neuder MS, Fisel CR, Aronen HJ, Kwong KK, Weisskoff RM, Cohen MS, Brady TJ. Contrast agents and cerebral hemodynamics. Magn Reson Med. 1991;19:285–92.

Article
Google Scholar

Norman D, Axel L, Berninger WH, Edwards MS, Cann CE, Redington RW, Cox L. Dynamic computed tomography of the brain: techniques, data analysis, and applications. Am J Roentgenol. 1981;136(4):1–12.

Article
Google Scholar

Madsen MT. A simplified formulation of the gamma variate function. Phys Med Biol. 1992;37(7):1597–600.

Article
MathSciNet
Google Scholar

Chan AA, Nelson SJ. Simplified gamma-variate fitting of perfusion curves. In: 2th IEEE international symposium on biomedical imaging (ISBI), Arlington, VA, USA. 2004. p. 1067–70.

Hu ZH, Peng JL, Kong DX, Chen YM, Zhang HY, Lu MH, Liu HF. A novel statistical optimization strategy for estimating intravascular indicator dynamics using susceptibility contrast-enhanced MRI. IEEE Trans Med Imaging **(submitted)**

Hu ZH, Ni PY, Liu C, Zhao XH, Liu HF, Shi PC. Quantitative evaluation of activation state in functional brain imaging. Brain Topogr. 2012;25:362–73.

Article
Google Scholar

Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc IEEE. 2004;92(3):401–22.

Article
Google Scholar

Merwe R, Wan EA. The square-root unscented Kalman filter for state and parameter-estimation. In: 2001 IEEE international conference on acoustics, speech and signal processing, Salt Lake City, Utah, USA. 2001. p. 3461–4.

Immisch I, Waldvogel D, VanGelderen P, Hallett M. The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. NeuroImage. 2001;14:674–84.

Article
Google Scholar

Weerd PD, Reinke K, Ryan L, McIsaac T, Perschler P, Schnyer D, Trouard T, Gmitrof A. Cortical mechanisms for acquisition and performance of bimanual motor sequences. NeuroImage. 2003;19:1405–16.

Article
Google Scholar

Kim DS, Duong TQ, Kim SG. High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci. 2000;3:164–9.

Article
Google Scholar

David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 2008;6(12):e315.

Article
Google Scholar

Roebroeck A, Formisano E, Goebel R. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. NeuroImage. 2011;58:296–302.

Article
Google Scholar

Lohmann G, Erfurth K, Muller K, Turner R. Critical comments on dynamic causal modelling. NeuroImage. 2011;59(3):2322–9.

Article
Google Scholar

Friston KJ, Li BJ, Daunizeau J, Stephan KE. Network discovery with DCM. NeuroImage. 2011;56(2):1202–21.

Article
Google Scholar

Uǧurbil K, Adriany G, Andersen P, Chen W, Gruetter R, Hu XP, Merkle H, Kim DS, Kim SG, Strupp J, Zhu XH, Ogawa S. Magnetic resonance studies of brain function and neurochemistry. Ann Rev Biomed Eng. 2000;2:633–60.

Article
Google Scholar

Ito H, Kanno I, Lida H, Hatazawa J, Shimosegawa E, Tamura H, Okudera T. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med. 2001;15(2):111–6.

Article
Google Scholar

An HY, Lin WL. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magn Reson Med. 2002;47:958–66.

Article
Google Scholar