 Research
 Open Access
 Published:
Fusion of detected multichannel maternal electrocardiogram (ECG) Rwave peak locations
BioMedical Engineering OnLinevolume 15, Article number: 4 (2016)
Abstract
Background
Almost all promising noninvasive foetal ECG extraction methods involve accurately determining maternal ECG Rwave peaks. However, it is not easy to robustly detect accurate Rwave peaks of the maternal ECG component in an acquired abdominal ECG since it often has a low signaltonoise ratio (SNR), sometimes containing a large foetal ECG component or other noises and interferences. This paper discusses, under the condition of acquiring multichannel abdominal ECG signals, how to improve the robustness of maternal ECG Rwave peak detection.
Methods
On the basis of summarising the current single channel ECG Rwave peak detection methods, the paper proposed a specific fusion algorithm of detected multichannel maternal ECG Rwave peak locations. The proposed entire algorithm was then tested using two databases; one database, created by us, was composed of 343 groups of 8channel data collected from 78 pregnant women, and the other one, called the challenge database, was from the Physionet/Computing in Cardiology Challenge 2013, including 175 groups of 4channel data. When using these databases, each group of data was classified into two parts, called the training part and the validation test part respectively; the training part was the first 8.192 s of each group of data and the validation test part was the next 8.192 s.
Results
To show the results, three evaluation parameters—sensitivity (Se), positive predictive value (PPV) and F1—are used. The validation test results for the database we collected are Se = 99.93 %, PPV = 99.98 %, and F1 = 99.95 %, while the results for the challenge database are Se = 99.91 %, PPV = 99.86 %, and F1 = 99.88 %.
Conclusion
The results of the test show that the robustness of our proposed whole fusion algorithm was superior to that of other outstanding algorithms for maternal Rwave detection, and is much better than that of single channel maternal Rwave detection algorithms.
Background
Hospitals have strived to include foetal ECG measurements in foetal monitoring, acquiring the foetal ECG waveform and calculating the foetal heart rate. A lot of studies have been conducted to extract foetal ECG from recorded pregnant abdominal ECG signals [1–5]. However, recent revelations have indicated that the key step for a successful foetal ECG extraction is to locate the maternal ECG Rwave peaks accurately, after which, the maternal ECG component can be accurately estimated and cleanly cancelled [3–5].
It is very challenging to robustly detect accurate Rwave peaks of the maternal ECG component in an acquired abdominal ECG. Although the maternal ECG component is usually much greater than the foetal ECG component in an abdominal ECG signal, there are still some cases in which the foetal ECG component is just as great as or greater than the maternal ECG component. In these cases, a lot of incorrect maternal ECG Rwave peak detections will inevitably appear when using a single channel ECG Rwave peak detection method. This is a major obstacle for implementing foetal ECG monitoring, although it has yet to gain widespread attention.
Multipoint measurements provide an opportunity to improve the robustness of maternal ECG Rwave peak detection. One easy way is to synchronously collect one thoracic ECG signal when recording abdominal ECG signals to help locate the Rwave peaks of the maternal ECG component in recorded abdominal ECG signals [6]. However, in this method, a disadvantage is that an extra thoracic electrode is needed, which is undesirable in clinical application. On the other hand, noises and disturbances in the thoracic ECG signal sometimes will also result in incorrect Rwave peak detection when using a single channel ECG Rwave peak detection method. Alternatively, we can try to combine the acquired multichannel abdominal ECG signals to produce a pure maternal ECG signal as a substitute for the thoracic ECG signal acquisition, based on a principal components analysis (PCA) or independent components analysis (ICA), but it is usually difficult to automatically select the pure maternal ECG signal from PCA or ICA outputs [2, 7–9].
In the Physionet/Computing in Cardiology Challenge 2013, there appear two outstanding maternal Rwave detection methods based on ICA [8, 9], called ICA$_{ACC}$ [8] and ICA$_{SMI}$ [9], respectively. The main steps of the ICA$_{ACC}$ algorithm are: (1) using FASTICA to produce N independent components for the Nchannel signals, (2) initial detection on both the inputs and outputs of ICA, (3) calculating the ACC measure for each output and choosing the purest maternal ECG from the N outputs using ACCs, and (4) further processing the MQRS detections on this chosen channel using kernel density estimation, a matched filter and RR correlation to obtain more accurate MQRS detections as the final output. For the ICA$_{SMI}$ algorithm, the main steps are: (1) performing ICA on Nchannel signals to obtain N independent components, (2) initial detection on both the inputs and the outputs of ICA, (3) calculating a parameter called SMI for each input and output, and (4) choosing the maternal QRS time series as the final output from the inputs and outputs using SMIs.
Noticeably, in previous research [10], an effective and simple scheme was used to improve the robustness of foetal Rwave detection after removing maternal components from the abdominal ECG signals. Its main idea is: first, to detect the foetal Rwave peaks of each estimated foetal ECG signal using a single channel ECG Rwave peak detection method, and then, to vote with the detected results of all channels’ estimated foetal ECG signals to correct the incorrect peak detections.
Referencing above, this paper will apply the new thought of fusion to the robust detection of maternal Rwave peaks of abdominal ECG signals. The proposed whole fusion algorithm consists of the first modification of the initial detection, channel selection, second modification, and voting.
The following chapters are arranged as follows. In the “Methods” chapter, first we will introduce, in detail, the two databases used for our research. Second, in the following subsections, each step of our proposed fusion algorithm will be thoroughly described and a block diagram for the algorithm will be provided. Finally, we will describe the parameter training and validation test method for the whole fusion algorithm. In the “Results” chapter, we will present the validation test results for the whole fusion algorithm, as well as for the two ICAbased maternal Rwave detection algorithms (ICA$_{ACC}$, ICA$_{SMI}$) for comparison. The final two chapters are the “Discussion” and “Conclusion”, respectively.
Methods
The block diagram for our proposed fusion algorithm can been found in Fig. 1. Our entire algorithm consists of five blocks: initial detection, first modification, channels selection, second modification and voting. In the following subsections, each individual block will be thoroughly explained.
Data description
Database 1 (collected ourselves)
The authors collected actual ECG data from a hospital for our research. The methods of collecting the data can be found in the literature [11]. We conducted the collecting experiment using 78 pregnant women in the 38–40th week of gestation in the Obstetrics Branch of Nanjing General Hospital of Nanjing Military Command. The data collecting system was composed of a standard 12lead ECG machine and a PC machine. The standard 12lead ECG machine, made by Nihon Kohden Corporation with the model No. 1350p, was connected to the PC machine with a dedicated USB cable. The ECG machine acted as a data acquisition module. The parameters of this machine must be preset; the sample frequency was set to 500 Hz, the cutoff frequency of antialiasing filter was set to 75 Hz, and the switches for baseline drift suppression and EMG interference suppression were turned on. Previous research [11] has described the placement of the electrodes on the abdominal surface more clearly. We collected 343 groups of data in all, and every group of data was comprised of 8channel abdominal ECG signals with a duration of 24 s. For every pregnant woman, we collected three to six groups of data.
Database 2 (challenge data)
The challenge data were gathered from the Physionet/Computing in Cardiology Challenge 2013. The datasets used for the challenge were obtained from five different sources (including real and simulated data), yielding a total of 447 records. All records were formatted to have a 1 kHz sampling frequency, 1min duration, and four channels of noninvasive abdominal maternal ECG leads. The whole records were divided into three datasets for the challenge: Set A (75 records, both records and reference for FQRS locations were made public), Set B (100 records, only the records were made public), and Set C (272 records, both records and reference for FQRS locations were withheld from the public). The more detailed information about the database can be seen in the literature [12]. In our test, we only used the public datasets A and B for the test.
Initial detection
A single channel ECG Rwave peak detection algorithm was the basis of the fusion algorithm for multichannel ECG signals. Researchers have proposed a variety of single channel ECG Rwave peak detection algorithms, and all of these algorithms can be generalised as three steps: (1) taking a preprocessing stage for the original single channel ECG signal to improve its signaltonoise ratio, (2) detecting the Rwave peaks on the enhanced signal obtained through the preprocessing stage, and (3) taking the initially detected Rwave peak positions of the enhanced signal as benchmarks and searching the real Rwave peaks within their neighbourhoods on the original wave. In the above three steps, the common methods for the first step are the difference method [13], the Hilbert transform method [14], the template matching method [15], the wavelet transform method [16, 17] and so on. For the second step, the common methods include all kinds of threshold setting and local searching methods [18, 19].
Among the preprocessing methods mentioned above, the robustness of the wavelet transform method was much stronger when compared to the others [20]. As long as the mother wavelet has been chosen appropriately, the wavelet transform method will suppress the baseline drift and high frequency noise at a high level. In detail, there are two ways for the wavelet transform method to enhance the original single channel ECG signal for Rwave detection: one, the modulus maxima method [21], computes the continuous wavelet transform coefficients of the original signal based on a selected wavelet and a certain scale and then takes the modulus of wavelet transform coefficients as the enhanced signal for the Rwave detection; the other was to compute the wavelet transform coefficients of the signal, followed by taking some scales’ coefficients to reconstruct an enhanced ECG signal with larger SNR [22].
This paper will apply the above first usage of the wavelet transform to do the preprocessing. In addition, before the wavelet transform, some prefiltering methods are applied to each channel of the multichannel data. First, a bandpass FIR filter between 0.5–80 Hz was used to suppress some noises, such as baseline wander, muscular artefacts and so on. Second, to remove the power line, two notch filters (at 50 and 60 Hz) were used. Third, to further suppress the baseline wander, a twoorder smooth filter (0.2 s window) was used to obtain it and then it was subtracted from the signal.
First modification
The first modification was used to prepare for the following channel selection, since there are usually many errors in the initial detection results and these errors will inevitably increase the difficulties in correct channel selection. The modification algorithm we used here was based on comparing each single signal’s RR interval value with the median value of all RR interval values of the channel. The main steps are as follows:
 Step 1::

After initial detection, for each single channel of the multichannel signals, compute its RR interval values and mark them as RRs.
 Step 2::

Compute the median value of the RRs and mark it asRR _{ m. }
 Step 3::

Compute the difference value between each RR interval value andRR _{ m }; if the difference value is smaller than one threshold (named thres1_1; see “Results”), one of the corresponding two detected Rwave peaks needs to be removed; if the difference value is greater than one threshold (named thres1_2; see “Results”), an additional Rwave peak needs to be detected between the corresponding two detected Rwave peaks.
Channel selection
Channel selection was an important step to guarantee the robustness of the whole fusion algorithm, since once the number of channels with erroneous single channel maternal Rwave peak detection was greater than or equal to half of the number of all channels, we cannot vote to get accurate maternal Rwave peak positions (described in next subsection).
To make the right channel selection, we used two kinds of indices to determine whether we should accept a signal. One index, named index1, was calculated based on the template method and the other, index2, was calculated using the RR interval values of the signal. The main steps of channel selection are as follows:
 Step 1::

After the first modification (above), recalculate RR intervals on each channel of the multichannel signals, then compute the median value of RR interval values of each channel and mark them as RR _{ m1}, RR _{ m2},\(\ldots\), RR _{ mi }, \(\ldots\), RR _{ mn }, respectively (n refers to the number of channels of the multichannel signals).
 Step 2::

Exclude the channels whose medians are lower than 0.4 s or higher than 1.6 s and mark the medians of the remaining channels as RL _{ m1}, RL _{ m2}, \(\ldots\), RL _{ mi }, \(\ldots\), RL _{ mk } (k is the number of remaining channels).
 Step 3::

Compute the median of RL _{ m1}, RL _{ m2}, \(\ldots\), RL _{ mi }, \(\ldots\), RL _{ mk } and mark it as RL _{ mm1.}
 Step 4::

Perform further exclusions. For each remaining channel, as we previously mentioned, first compute two indices, index1 and index2. Second multiply index1 by index2 and mark the result as index. Third, compute the maximal value of all indexes of the remaining channels and mark it as ma. Finally, compare each index with ma and if an index is greater than or equal to 0.5*ma, the corresponding channel is selected.
The method of calculating index1 of each remaining channel is as follows. For each channel’s firstmodified signal, first we need to make a maternal wave complex template. In our paper, a maternal wave complex, whose duration is assigned as RL _{ mm1}, is defined as 0.5*RL _{ mm1} before and 0.5*RL _{ mm1} after the detected maternal Rwave peak location. Averaging all the maternal wave complexes synchronised on their Rwave peaks results in the maternal wave complex template. Second, compute the correlation coefficient between the template and each actual maternal wave complex. Third, compute the number of correlation coefficients that are greater than or equal to one threshold (named thres2_1; see “Results”) and then compute the ratio of this number to the number of all maternal Rwave peaks obtained by the first modification. The ratio value was taken as the index1of this channel.
Regarding the method of calculating index2, for each remaining channel, first compute the absolute difference value between itsRL _{ mi } and RL _{ mm1}, marking the absolute difference value as med_diff. Second, compute the minimum of all med_diffs of the remaining channels and mark it as mi. Finally, for each med_diff, if the difference value between it andmi is lower than one threshold (named thres2_2; see “Results”), the index2 of the corresponding channel is set to 0.3, and if the different value is between the thres2_2 and 2*thres2_2, the index2 of the corresponding channel is set to 0.2, while in other situations, the index2 is set to 0.1.
Second modification
This section is also very important because it corrects the error detections on the selected channels more carefully than the first modification does, reducing the pressure to the voting and improving the robustness of the whole fusion algorithm to some degree. The second modification includes two parts: the first part is a modification using the template method and the second is a modification through the RR interval values of the signal.
The steps of the first part are as follows. First, compute the median value of all of the RR interval values of each selected channel. Then, compute the median value of all of the selected channels’ median values and mark it as RR _{ mm2}. Second, for each selected channel, make a maternal wave complex template whose duration is RR _{ mm2} and then compute the correlation coefficient between the template and each actual maternal wave complex. Finally, remove the detected maternal Rwave peaks whose correlation coefficients are lower than one threshold (named thres3_3; see “Results”).
The fundamental idea of the second part is just like that of the first modification. It is also based on the difference values between the RR interval values and the median value of the RR intervals of each selected channel. If there is a difference value which is less than one threshold (named thres3_1; see “Results”), one of the corresponding two detected Rwave peaks will be removed; if the different value is greater than one threshold (named thres3_2; see “Results”), another Rwave peak needs to be detected between the corresponding two detected Rwave peaks.
However, there is an important detail that is different from the first modification: for different groups of data, the thresholds (thres3_1 and thres3_2) are different and are assigned according to one parameter (named med_cha) related to the actual heart rate variability (HRV) of the group of data. The method of calculating the parameter, med_cha, is described as follows:
After finishing the first part of the second modification, for each selected channel of the multichannel signals, first, we compute its RR interval values, named RRs, and the median value of them, named RR _{ median }. Second, we exclude the RR interval values that are greater than 1.4*RR _{ median } or less than 0.6*RR _{ median }. Third, we group the remaining RR interval values according to the original sequence and make each group consist of five values (each group can partially overlap). The number of groups can be computed using the formula ceil(length(N)/5), where (N) is the number of all remaining RR interval values of this channel. Finally, we calculated the absolute difference value between the maximal value and the minimum value of each group, and the median value of all absolute difference values for each selected channel. After finishing all of the above steps, the minimum of the median values for all selected channels was the parameter, med_cha, we needed.
Thres3_1 is set to a*med_cha and thres3_2 is set to a*med_cha (the parameter a was a constant value). At the same time, the absolute value of thres3_1 and thres3_2 must be restricted to between 0.12 s and 0.25 s.
Voting
Voting is the final step of our fusion algorithm and further corrects the error detections. Noticeably, even if the channel selection is not totally correct, we can obtain the correct results through the voting, as long as the number of error selected channels is lower than half of the number of all selected channels.
The voting part of the whole proposed fusion algorithm is based on the theory of clustering, and its basic steps are: (1) taking the detected and corrected maternal Rwave peak positions of each selected channel of the multichannel pregnant abdominal ECG signals, (2) projecting or drawing the all detected Rpeak positions of selected channels on a time axis and regarding them as samples, (3) clustering all of the samples according to their distances and labelling their classes, (4) determining whether or not the number of samples in a clustered class is greater than or equal to half of the number of all channels (if so, the class and its samples will be kept, otherwise the class and its samples will be deleted), and (5) for each remaining class, taking the median value of its samples as its representative Rwave peak position, and then searching for the peak in the neighbourhood of the representative position on each original signal, resulting in the all exact maternal Rwave peak positions of the multichannel signals. In Step 3 above, if the distance between two samples was less than 30 ms, we assume that they belong to the same class; otherwise we assume that they belong to different classes [11]. In Step 4, we removed the classes that have few samples since we assume that they are false classes clustered with incorrectly detected peaks.
For explicitness, the voting is illustrated in Fig. 2, taking the 4channel signals as an example and letting red circles represent the maternal Rwave peak positions of each signal. The pseudo code of the voting is described as follows:
Parameter training
The parameter training was used for more accurately determining the parameters’ values in our algorithm. For each group of data in each database, the first 8.192 s of the data are used as the training data. The training can be further divided into two kinds—offline training and online training. In our paper, both thres3_1 and thres3_2 training belong to online training since we must train the two parameters for each group of data and different individual data have different HRVs. Regarding the other parameters, their trainings belong to offline training, which means that once the parameters are adjusted to be good with some groups of data, the trained parameters will stay invariant for other groups of data. All of the values of the trained parameters are shown in the "Results" section.
Validation test method
The validation test part involves three algorithms (our fusion algorithm, ICA$_{ACC)$ and ICA$_{SMI}$), as well as two abovementioned databases (Database 1 and Database 2). Every algorithm will be tested using the two databases to compare with each other. In the validation test for each group of data in each database, only the second 8.192 s of the data are used, since we need to determine the correctness of detections through our observations and there would be a significant burden to the eyes if we used more sample points for each signal in the multichannel signals. Additionally, though we just decided the correctness of the detections through our observations, we believe that the decisions are reliable because the data used are all multichannel and in almost all conditions, there is at least one channel whose MQRS peaks are clearly visible.
To show the results, we use three measurement parameters—Se, PPV, and F1 [9]. The Se, PPV, and F1 are obtained by first counting the number of correctly detected maternal Rwave peaks (TP), the number of extra falsely detected maternal Rwave peaks (FP), and the number of missed maternal Rwave peaks (FN) of all groups of data used, and then calculating the three parameters’ values according to previous research [9]. In the comparison of three algorithms, the average time spent after the initial detection for each group of data will be also included.
Results
In the test, first, we detected the maternal Rwave peaks on each signal of the multichannel ECG signals respectively using the waveletbased single channel Rwave detection method. The parameters of the waveletbased method for preprocessing are set as follows: the selected mother wavelet is bior1.5 [23], the selected decomposition scale for Database 1 is 2^{^}5 and for Database 2, it is 2^{^}6 according to the frequency characteristics of the data (the sampling frequency).
Next, we conducted the parameter training of the fusion algorithm with Database 1, and through the training part, the parameters were finally assigned as follows: in the first modification, thres1_1 = −0.30 s and thres1_2 = 0.30 s; in the channel selection, thres2_1 = 0.6, thres2_2 = 0.06 s; in the second modification, thres3_3 = 0.5, a = 2.5. Since thres3_1 and thres3_2 are usually different for different groups of data, their values are not included in this manuscript.
After finishing the training, we conducted the test with Database 1 for our fusion algorithm. We also tested the ICA$_{ACC}$, ICA$_{SMI}$, respectively, with Database 1 to compare them to our whole fusion algorithm. The results are shown in Table 1.
Similar to the above, next we conducted the test for the fusion algorithm and the other two algorithms with Database 2, and the results are shown in Table 2.
In addition, in Fig. 3, the record ‘b20’ in Database 2 was taken as an example to show the performance of the three methods. In the figure, ‘★’ refers to the maternal R wave peak location obtained by the ICA$_{ACC}$ algorithm, ‘□’ means the location obtained by the ICA$_{SMI}$ algorithm, and the red lines represent the locations of the Rwave peaks detected using our fusion algorithm. Observing it carefully, we can find that the fusion algorithm has detected all of the maternal Rwave peaks correctly while the other two algorithms have not.
Through the results of test for the fusion algorithm, we can see that it is a large improvement for the single channel maternal Rwave algorithms. Additionally, considering the results of the comparison test between the three algorithms, we also found that though our algorithm does not have the fastest speed, its detection results are the best and are superior to the other two algorithms.
Discussion
Our proposed fusion algorithm and other two comparative fusion algorithms are much better than single channel maternal Rwave detection algorithms. Let’s take an example to show this. The data for this example was the first channel signal of the 88th group of data in Database 1. Although the data have a low signaltonoise ratio (containing a large foetal ECG component) and we obtained bad maternal Rwave detection results when directly using the single channel Rwave detection methods, shown in Fig. 4a, the three fusion algorithms in this paper were all able to give perfect maternal Rwave detection results, shown in Fig. 4c. Thus, with the correct maternal Rwave detection results, the ideal final foetal ECG were extracted using the foetal ECG extraction method in previous research [24], shown in Fig. 4d, which was in contrast with the bad foetal extraction result based on the singlechannel Rwave detection results using the same extraction method [24], shown in Fig. 4b.
The comparative fusion algorithm ICA$_{SMI}$, involving choosing the channel with the best maternal QRS peak detection, was simple and cost the least amount of time, but it was found to be very sensitive to the initial detection, since it did not modify the initial detection results, and once the initial detection results on the selected output was incorrect due to other reasons, such as low quality, this algorithm was eventually not able to obtain the correct detection results.
Regarding another comparative fusion algorithm of ICA$_{ACC}$, although it is less sensitive to the initial detection step than ICA$_{SMI}$, it was found that a few times its channel selecting for the maternal component after doing ICA was incorrect. Let’s take the record ‘b76’ in Database 2 as an example. Both its initial detection results on preprocessed signals and the detection results on ICA outputs were shown in Fig. 5, where the red circles refer to the detected maternal Rwave peak locations. In testing, the ICA$_{ACC}$ algorithm selected the wrong maternal component (the second independent component separated, IC2), since IC2 had the highest ACC value, resulting in the incorrect final detection results, shown in Fig. 6. Nevertheless, when we applied our proposed fusion algorithm to this group of data, the correct results are obtained; in Fig. 6, the red circles refer to the maternal Rwave peak locations detected by ICA$_{ACC}$ and the red lines represent the locations of the Rwave peaks detected by our fusion algorithm. In addition to above, the fusion algorithm of ICA$_{ACC}$ was much more complex and cost the most time.
Comparing our whole fusion algorithm with other two algorithms, the time required was a little more than ICA$_{SMI}$, but much less than ICA$_{ACC}$. In comparison with the ICA$_{SMI}$, our fusion algorithm’s dependence on the initial detection was much lower since it has done a lot of work on the modification. In comparison with ICA$_{ACC}$, the voting of our fusion algorithm was slightly similar to that, but the whole fusion algorithm also had many other different elements, such as channel selection and so on. In addition, since our fusion algorithm was not based on ICA, it avoided some problems that ICAbased methods may have, such as the incorrect selection of the separated independent maternal component, and the lowquality independent component outputs of ICA due to the failed global optimal solution search when solving the ICA problem.
Although, in general, the proposed whole fusion algorithm was superior to others, it still did not work well for some groups of data in Databases 1 and 2. The 254th group of data in Database 1 was used as an example, shown in Fig. 7. Obviously, the second Rwave peak of each channel, which is labelled by red lines, was ignored by our algorithm, since there was a sudden HRV on the signal and the parameters of our algorithm was not able to adapt it.
Future work on our algorithm we think is how to better set the parameters of the waveletbased single channel maternal Rwave detection algorithm, such as the selection of the mother wavelet, the selection of the decomposition scale and so on. The setting of these parameters in our paper was from previous research [23]. Perhaps they can be further optimised in the future so as to improve the initial Rwave detection results of multichannel signals.
Conclusion
Through the above analysis and comparison, we can conclude that though the single channel maternal Rwave detection algorithms are also useful algorithms, the detection results when directly used to detect the maternal Rwave peaks of the signal with low SNR may be not satisfactory. A lot of multichannel maternal R wave detection algorithms based on them can greatly improve the correct rate of maternal Rwave detection in the condition of multichannel abdominal ECG signals, especially our proposed whole fusion algorithm when compared with the other two outstanding ICAbased maternal Rwave peak detection algorithms.
In summary, the proposed complete fusion algorithm based on the single channel ECG Rwave peak detection algorithm is promising for use in improving the robustness and accuracy of the maternal Rwave detections in the condition of multichannel abdominal ECG signals.
Abbreviations
 ECG:

electrocardiogram
 SNR:

signaltonoise ratio
 PCA:

principal components analysis
 ICA:

independent components analysis
 HRV:

heart rate variability
 Se:

sensitivity
 PPV:

positive predictive value
References
 1.
Ghaffari A, Atyabi SA, Mollakazemi MJ, Niknazar M, Niknami M, Soleimani A. A novel noninvasive technique to recognize fetal QRS complexes from noninvasive fetal electrocardiogram signals. Computing Cardiol. 2013;40:293–6.
 2.
Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G, Balocchi R. An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol Meas. 2014;35:1607–19.
 3.
Kuzilek J, Lhotska L. Advanced signal processing techniques for fetal ECG analysis. Computing Cardiol. 2013;40:177–80.
 4.
Rodrigues R. Fetal ECG detection in abdominal recordings: a method for QRS location. Computing Cardiol. 2013;40:325–8.
 5.
Di Maria C, Duan W, Bojarnejad M, Pan F, King S, Zheng D, Murray A, Langley P. An algorithm for the analysis of fetal ECGs from 4channel noninvasive abdominal recordings. Computing Cardiol. 2013;40:305–8.
 6.
JianBao Z, Huan W, QingShui K. Electrocardio Rwave crest realtime locating method assisted by chest impedance second order difference image: China, CN103083011 A[P], 2013.5.8, http://www.google.com/patents/CN103083011A?cl=zh&hl=zhCN.
 7.
Sameni R, Jutten C, Shamsollahi MB. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans Biomed Eng. 2008;55(8):1935–40.
 8.
Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Wessel N, Stepan H, Schmieder C, Jank A, Malberg H, Zaunseder S. Robust fetal ECG extraction and detection from abdominal leads. Physiol Meas. 2014;35:1551–67.
 9.
Behar J, Oster J, Clifford GD. Combining and benchmarking methods of foetal ECG extraction without maternal. Physiol Meas. 2014;35:1569–89.
 10.
Almeida R, Gonçalves H, Bernardes J, Rocha AP. Fetal QRS detection and heart rate estimation: a waveletbased approach. Physiol Meas. 2014;35:1723–35.
 11.
JieMin Z, Qun G, LiMing T, TieBing L, HongXing L, XiaoLin H, JunFeng S. Position difference regularity of corresponding Rwave peaks for maternal ECG components from different abdominal points. Chin Phys B. 2014;23(1):018701.
 12.
Clifford GD, Silva I, Behar J, Moody GB. Noninvasive fetal ECG analysis. Physiol Meas. 2014;35:1521–9.
 13.
Pan J, Tompkins WJ. Realtime QRS detection algorithm. IEEE Trans Biomed Eng. 1985;BEM32:230–6.
 14.
Nygards M, Sommo L. Delineation of the QRS complex using the envelope of the e.c.g. Med Biol Eng Compu. 1983;21(5):538–47.
 15.
Krasteva V, Jekova I. QRS template matching for recognition of ventricular ectopic beats. Ann Biomed Eng. 2007;35(12):2065–76.
 16.
Golbayani AH, Ghasemi M, A new mathematical based QRS detector using continuous wavelet transform. Comput Electri Eng, Elsevier Science Ltd, 2008: 81–91.
 17.
Kadambe S, Murray R, BoudreauxBartels GF, Wavelet transformbased QRS complex detector. IEEE Trans Biomed Eng. 1999;46(7).
 18.
Chouhan VS, Mehta SS. Detection of QRS complexes in 12channel ECG using adaptive quantized threshold. JCSNS Int J Comput Sci Network Secur. 2008;8(1):155–63.
 19.
Elgendi M, Mahalingam S, Jonkman M, Boer FD. A robust QRS complex detection algorithm using dynamic thresholds, Proceedings of the International Symposium on Computer Science and its Applications, Hobart, Australia 2008:153–158.
 20.
Ma Y, Tian Y, Ma Y, Zhang Y, Zhan K. A new realtime Rwave detection algorithm based on integral projection function, IEEE EMBS International Conference on Biomedical Engineering and Sciences 2012.
 21.
Legameta IR, Addison PS, Grubb N, Clegg GR, Robertson CE, Fox KAA, Watson JN. Rwave detection using continuous wavelet modulus maxima. Computing Cardiol. 2003;30:565–8.
 22.
Castillo E, Morales DP, Botella G, García A, Parrilla L, Palma AJ. Efficient waveletbased ECG processing for single channel FHR extraction. Digit Signal Proc. 2013;23:1897–909.
 23.
Wu S, Shen Y, Zhou Z, Lin L, Zeng Y, Gao X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput Biol Med. 2013;43:1622–7.
 24.
Martens SMM, Rabotti C, Mischi M, Sluijter RJ. A robust fetal ECG detection method for abdominal recordings. Physiol Meas. 2007;28:373–88.
Authors’ contributions
YQ was responsible for writing the codes and carrying out the experiments. LHX conducted the experiments and designed the algorithm. All of the authors contributed to the general concept and the writing of the paper. All authors read and approved the final manuscript.
Acknowledgements
The National Natural Science Foundation of China (No. 61271079) supported this paper.
Competing interests
The authors declare that they have no competing interests.
Author information
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Received
Accepted
Published
DOI
Keywords
 Multichannel
 Abdominal ECG signal
 Rwave detection
 Fusion