Chan SC, Fan ST, Lo CM, Liu CL, Wei WI, Chik BHY, Wong J: A Decade of Right Liver Adult-to-Adult Living Donor Liver Transplantation - the Recipient Mid-Term Outcomes. Annals of Surgery 2008, 248: 411–418.
Google Scholar
United Network of Organ Sharing
[http://www.unos.org]
Fabre: Report of the British Transplantation Society Working Party on Organ Donation. 1995.
Google Scholar
Feest TG, Riad HN, Collins CH, Golby MGS, Nicholls AJ, Hamad SN: Protocol for Increasing Organ Donation after Cerebrovascular Deaths in District General-Hospital. Lancet 1990, 335: 1133–1135. 10.1016/0140-6736(90)91134-V
Article
Google Scholar
Riad H, Nicholls A: An Ethical Debate - Elective Ventilation of Potential Organ Donors. British Medical Journal 1995, 310: 714–715.
Article
Google Scholar
Perera M, Mirza DF, Elias E: Liver Transplantation: Issues for the Next 20 Years. Journal of Gastroenterology and Hepatology 2009, 24: S124-S131. 10.1111/j.1440-1746.2009.06081.x
Article
Google Scholar
Kaufmann PM, Kneser U, Fiegel HC, Kluth D, Herbst M, Rogiers X: Long-Term Hepatocyte Transplantation Using Three-Dimensional Matrices. Transplantation Proceedings 1999, 31: 1928–1929. 10.1016/S0041-1345(99)00208-0
Article
Google Scholar
Atala A: Experimental and Clinical Experience with Tissue Engineering Techniques for Urethral Reconstruction. Urologic Clinics of North America 2002, 29: 485. 10.1016/S0094-0143(02)00033-2
Article
Google Scholar
Atala A: Engineering Organs. Current Opinion in Biotechnology 2009, 20: 575–592. 10.1016/j.copbio.2009.10.003
Article
Google Scholar
Khademhosseini A, Langer R, Borenstein J, Vacanti JP: Microscale Technologies for Tissue Engineering and Biology. Proceedings of the National Academy of Sciences of the United States of America 2006, 103: 2480–2487. 10.1073/pnas.0507681102
Article
Google Scholar
Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE: Soft Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering 2001, 3: 335–373. 10.1146/annurev.bioeng.3.1.335
Article
Google Scholar
Albrecht DR, Sah RL, Bhatia SN: Geometric and Material Determinants of Patterning Efficiency by Dielectrophoresis. Biophysical Journal 2004, 87: 2131–2147. 10.1529/biophysj.104.039511
Article
Google Scholar
Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S: The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid. Hepatology 2010.
Google Scholar
Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K: Organ Reengineering through Development of a Transplantable Recellularized Liver Graft Using Decellularized Liver Matrix. Nat Med 2010, 16: 814-U120. 10.1038/nm.2170
Article
Google Scholar
Baptista P, Orlando G, Mirmalek-Sani S, Siddiqui M, Atala A, Soker S: Whole Organ Decellularization - a Tool for Bioscaffold Fabrication and Organ Bioengineering. 31st Annual International IEEE EMBS Conference; Minneapolis, Minnesota, USA 2009, 6526–6529.
Google Scholar
Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA: Perfusion-Decellularized Matrix: Using Nature's Platform to Engineer a Bioartificial Heart. Nat Med 2008, 14: 213–221. 10.1038/nm1684
Article
Google Scholar
Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M: Thermal Analysis Characterization of Aortic Tissues for Cardiac Valve Bioprostheses. Journal of Biomedical Materials Research 1999, 46: 531–538. 10.1002/(SICI)1097-4636(19990915)46:4<531::AID-JBM11>3.0.CO;2-2
Article
Google Scholar
Kawazoye S, Tian SF, Toda S, Takashima T, Sunaga T, Fujitani N, Higashino H, Matsumura S: The Mechanism of Interaction of Sodium Dodecyl-Sulfate with Elastic Fibers. Journal of Biochemistry 1995, 117: 1254–1260.
Google Scholar
Keeffe EB: Liver Transplantation: Current Status and Novel Approaches to Liver Replacement. Gastroenterology 2001, 120: 749–762. 10.1053/gast.2001.22583
Article
Google Scholar
Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP: Long-Term Survival of Neonatal Porcine Islets in Nonhuman Primates by Targeting Costimulation Pathways. Nat Med 2006, 12: 304–306. 10.1038/nm1375
Article
Google Scholar
Hering BJ, Wijkstrom M, Graham ML, Harstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mills CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchhof N, Schuurman HJ: Prolonged Diabetes Reversal after Intraportal Xenotransplantation of Wild-Type Porcine Islets in Immunosuppressed Nonhuman Primates. Nat Med 2006, 12: 301–303. 10.1038/nm1369
Article
Google Scholar
Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, O'Malley P, Nobori S, Vagefi PA, Patience C, Fishman J, Cooper DKC, Hawley RJ, Greenstein J, Schuurman HJ, Awwad M, Sykes M, Sachs DH: Marked Prolongation of Porcine Renal Xenograft Survival in Baboons through the Use of Alpha 1,3-Galactosyltransferase Gene-Knockout Donors and the Cotransplantation of Vascularized Thymic Tissue. Nat Med 2005, 11: 32–34. 10.1038/nm1172
Article
Google Scholar
Chari RS, Collins BH, Magee JC, Dimaio JM, Kirk AD, Harland RC, McCann RL, Platt JL, Meyers WC: Brief Report - Treatment of Hepatic-Failure with Ex-Vivo Pig-Liver Perfusion Followed by Liver-Transplantation. New England Journal of Medicine 1994, 331: 234–237. 10.1056/NEJM199407283310404
Article
Google Scholar
Makowka L, Cramer DV, Hoffman A, Breda M, Sher L, Eirashreha G, Tuso PJ, Yasunaga C, Cosenza CA, Duwu G: The Use of a Pig-Liver Xenograft for Temporary Support of a Patient with Fulminant Hepatic-Failure. Transplantation 1995, 59: 1654–1659. 10.1097/00007890-199506270-00002
Article
Google Scholar
Yang YG, Sykes M: Xenotransplantation: Current Status and a Perspective on the Future. Nature Reviews Immunology 2007, 7: 519–531. 10.1038/nri2099
Article
Google Scholar
Dutkowski P, de Rougemont O, Clavien PA: Machine Perfusion for 'Marginal' Liver Grafts. American Journal of Transplantation 2008, 8: 917–924. 10.1111/j.1600-6143.2008.02165.x
Article
Google Scholar
Monbaliu D, Brassil J: Machine Perfusion of the Liver: Past, Present and Future. Current Opinion in Organ Transplantation 2010, 15: 160–166. 10.1097/MOT.0b013e328337342b
Article
Google Scholar
Olschewski P, Gass P, Ariyakhagorn V, Jasse K, Hunold G, Menzel M, Schoning W, Schmitz V, Neuhaus P, Puhl G: The Influence of Storage Temperature During Machine Perfusion on Preservation Quality of Marginal Donor Livers. Cryobiology 2010, 60: 337–343. 10.1016/j.cryobiol.2010.03.005
Article
Google Scholar
Stegemann J, Hirner A, Rauen U, Minor T: Use of a New Modified Htk Solution for Machine Preservation of Marginal Liver Grafts. Journal of Surgical Research 2010, 160: 155–162. 10.1016/j.jss.2008.10.021
Article
Google Scholar
Yamamoto N, Konishi Y, Wakashiro S, Takayasu T, Tatsumi Y, Shimahara Y, Tanaka K, Yamaoka Y, Ozawa K: 72-Hour Preservation of Porcine Liver by Continuous Hypothermic Perfusion with Uw Solution in Comparison with Simple Cold-Storage. Journal of Surgical Research 1991, 51: 288–292. 10.1016/0022-4804(91)90109-Y
Article
Google Scholar
Schon MR, Kollmar O, Wolf S, Schrem H, Matthes M, Akkoc N, Schnoy NC, Neuhaus P: Liver Transplantation after Organ Preservation with Normothermic Extracorporeal Perfusion. Annals of Surgery 2001, 233: 114–123. 10.1097/00000658-200101000-00017
Article
Google Scholar
Brockmann J, Reddy S, Coussios C, Pigott D, Guirriero D, Hughes D, Morovat A, Roy D, Winter L, Friend PJ: Normothermic Perfusion a New Paradigm for Organ Preservation. Annals of Surgery 2009, 250: 1–6. 10.1097/SLA.0b013e3181a63c10
Article
Google Scholar
Weaver JC: Electroporation of Biological Membranes from Multicellular to Nano Scales. Ieee Transactions on Dielectrics and Electrical Insulation 2003, 10: 754–768. 10.1109/TDEI.2003.1237325
Article
MathSciNet
Google Scholar
Garcia PA, Rossmeisl JH Jr, Neal R II, Ellis TL, Olson JD, Henao-Guerrero N, Robertson J, Davalos RV: Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. J Membr Biol 2010, 236: 127–136. 10.1007/s00232-010-9284-z
Article
Google Scholar
Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D: Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Trans Biomed Eng 2005, 52: 816–827. 10.1109/TBME.2005.845212
Article
Google Scholar
Lee EW, Chen C, Prieto VE, Dry SM, Loh CT, Kee ST: Advanced Hepatic Ablation Technique for Creating Complete Cell Death: Irreversible Electroporation. Radiology 2010, 255: 426–433. 10.1148/radiol.10090337
Article
Google Scholar
Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation. IEEE Trans Biomed Eng 2006, 53: 1409–1415. 10.1109/TBME.2006.873745
Article
Google Scholar
Davalos RV, Mir LM, Rubinsky B: Tissue Ablation with Irreversible Electroporation. Annals of Biomedical Engineering 2005, 33: 223–231. 10.1007/s10439-005-8981-8
Article
Google Scholar
Maor E, Ivorra A, Leor J, Rubinsky B: The Effect of Irreversible Electroporation on Blood Vessels. Technology in Cancer Research & Treatment 2007, 6: 307–312.
Article
Google Scholar
Davalos RV: Irreversible Electroporation to Create Tissue Scaffolds. United States patent 2009.
Google Scholar
Phillips M, Maor E, Rubinsky B: Nonthermal Irreversible Electroporation for Tissue Decellularization. Journal of Biomechanical Engineering-Transactions of the Asme 2010., 132: 10.1115/1.4001882
Google Scholar
Miklavcic D, Semrov D, Mekid H, Mir LM: A Validated Model of in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy. Biochimica et Biophysica Acta 2000, 1523: 73–83.
Article
Google Scholar
Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G: The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues. Biophys J 1998, 74: 2152–2158. 10.1016/S0006-3495(98)77924-X
Article
Google Scholar
Pavselj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavcic D: The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals. IEEE Trans Biomed Eng 2005, 52: 1373–1381. 10.1109/TBME.2005.851524
Article
Google Scholar
Cukjati D, Batiuskaite D, Andre F, Miklavcic D, Mir LM: Real Time Electroporation Control for Accurate and Safe in Vivo Non-Viral Gene Therapy. Bioelectrochemistry 2007, 70: 501–507. 10.1016/j.bioelechem.2006.11.001
Article
Google Scholar
Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, Bracko M, Pecnik T, Gadzijev E, Sersa G: Towards Treatment Planning and Treatment of Deep-Seated Solid Tumors by Electrochemotherapy. BioMedical Engineering OnLine 2010, 9: 10. 10.1186/1475-925X-9-10
Article
Google Scholar
Davalos RV, Mir LM, Rubinsky B: Tissue Ablation with Irreversible Electroporation. Ann Biomed Eng 2005, 33: 223–231. 10.1007/s10439-005-8981-8
Article
Google Scholar
Duck FA: Physical Properties of Tissues: A Comprehensive Reference Book. San Diego: Academic Press; 1990.
Google Scholar
Deng ZS, Liu J: Blood Perfusion-Based Model for Characterizing the Temperature Fluctuations in Living Tissue. Phys A STAT Mech Appl 2001, 300: 521–530. 10.1016/S0378-4371(01)00373-9
Article
Google Scholar
Lackovic I, Magjarevic R, Miklavcic D: Three-Dimensional Finite-Element Analysis of Joule Heating in Electrochemotherapy and in Vivo Gene Electrotransfer. IEEE Trns Dielectr Electr Insul 2009, 16: 1338–1347. 10.1109/TDEI.2009.5293947
Article
Google Scholar
Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation. Ieee Transactions on Biomedical Engineering 2006, 53: 1409–1415. 10.1109/TBME.2006.873745
Article
Google Scholar
Sersa G, Jarm T, Kotnik T, Coer A, Podkrajsek M, Sentjurc M, Miklavcic D, Kadivec M, Kranjc S, Secerov A, Cemazar M: Vascular Disrupting Action of Electroporation and Electrochemotherapy with Bleomycin in Murine Sarcoma. British Journal of Cancer 2008, 98: 388–398. 10.1038/sj.bjc.6604168
Article
Google Scholar
Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH: A New Pulsed Electric Field Therapy for Melanoma Disrupts the Tumor's Blood Supply and Causes Complete Remission without Recurrence. International Journal of Cancer 2009, 125: 438–445. 10.1002/ijc.24345
Article
Google Scholar
Gehl J, Skovsgaard T, Mir LM: Vascular Reactions to in Vivo Electroporation: Characterization and Consequences for Drug and Gene Delivery. Biochim Biophys Acta-Gen Subj 2002, 1569: 51–58. 10.1016/S0304-4165(01)00233-1
Article
Google Scholar
Kanthou C, Kranjc S, Sersa G, Tozer G, Zupanic A, Cemazar M: The Endothelial Cytoskeleton as a Target of Electroporation-Based Therapies. Molecular Cancer Therapeutics 2006, 5: 3145–3152. 10.1158/1535-7163.MCT-06-0410
Article
Google Scholar
Jarm T, Cemazar M, Miklavcic D, Sersa G: Antivascular Effects of Electrochemotherapy: Implications in Treatment of Bleeding Metastases. Expert Review of Anticancer Therapy 2010, 10: 729–746. 10.1586/era.10.43
Article
Google Scholar
Sersa G, Krzic M, Sentjurc M, Ivanusa T, Beravs K, Kotnik V, Coer A, Swartz HM, Cemazar M: Reduced Blood Flow and Oxygenation in Sa-1 Tumours after Electrochemotherapy with Cisplatin. British Journal of Cancer 2002, 87: 1047–1054. 10.1038/sj.bjc.6600606
Article
Google Scholar
Sersa G, Cemazar M, Miklavcic D, Chaplin DJ: Tumor Blood Flow Modifying Effect of Electrochemotherapy with Bleomycin. Anticancer Research 1999, 19: 4017–4022.
Google Scholar
Folkman J: Self-Regulation of Growth in 3 Dimensions. Journal of Experimental Medicine 1973., 338:
Google Scholar
Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA: Hematopoietic Colony-Forming Cells Derived from Human Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 2001, 98: 10716–10721. 10.1073/pnas.191362598
Article
Google Scholar