Jalife J: Ventricular fibrillation: Mechanisms of initiation and maintenance. Annu Rev Physiol 2000, 62: 25–50. 10.1146/annurev.physiol.62.1.25
Article
Google Scholar
Chen PS, Wu TJ, Ting CT, Karagueuzian HS, Garfinkel A, Lin SF, Weiss JN: A tale of two fibrillations. Circulation 2003, 108: 2298–2203. 10.1161/01.CIR.0000094404.26004.07
Article
Google Scholar
Mines GR: On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Transactions of the Royal Society of Canada 1914, 4: 43–53.
Google Scholar
Han J, Moe GK: Nonuniform recovery of excitability in ventricular muscle. Circulation Research 1964, 14: 44–60.
Article
Google Scholar
Han J, Garcia DeJalon PD, Moe GK: Adrenergic effects on ventricular vulnerability. Circulation Research 1964, 14: 516–524.
Article
Google Scholar
Behrens S, Li C, Franz MR: Effects of myocardial ischaemia on ventricular fibrillation inducibility. Journal of the American College of Cardiology 1997, 29: 17–24.
Article
Google Scholar
Kirchhof PF, Fabritz CL, Zabel M, Franz MR: The vulnerable period for low and high energy T-wave shocks: Role of dispersion of repolarization and effect of d-sotalol. Cardiovascular Research 1996, 31: 953–962. 10.1016/0008-6363(96)00058-2
Article
Google Scholar
Moe GK, Rheinboldt WC, Abildskov JA: A computer model of atrial fibrillation. American Heart Journal 1964, 67: 200–220. 10.1016/0002-8703(64)90371-0
Article
Google Scholar
Gough WB, Mehra R, Restivo M, Zeiler RH, El-Sherif N: Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circulation Research 1985, 57: 432–442.
Article
Google Scholar
Boersma L, Zetelaki Z, Brugada J, Allessie MA: Polymorphic re-entrant ventricular tachycardia in the isolated rabbit heart studied by high density mapping. Circulation 2002, 105: 3053–3061. 10.1161/01.CIR.0000019407.35848.AF
Article
Google Scholar
Robert E, Aya AGM, De La Coussaye JE, Peray P, Juan JM, Brugada J, Davy JM, Eledjam JJ: Dispersion-based reentry: mechanism of initiation of ventricular tachycardia in isolated rabbit hearts. Americal Journal of Physiology (Heart and Circulatory Physiology) 1999, 45: H413-H423.
Google Scholar
Wolk R, Cobbe SM, Kane KA, Hicks MN: Relevance of inter- and intraventricular electrical dispersion to arrhythmogenesis in normal and ischaemic rabbit myocardium: A study with Cromalkim, 5-Hydroxydecanoate and Glibenclamide. Journal of Cardiovascular Pharmacology 1999, 33: 323–334. 10.1097/00005344-199902000-00022
Article
Google Scholar
Allessie MA, Bonke FI, Schopmann FTG: Circus movement in rabbit atrial muscle as a mechanism of tachycardia II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block studied with multiple microelectrodes. Circulation Research 1976, 39: 168–177.
Article
Google Scholar
Panfilov A, Vasiev BN: Vortex initiation in a heterogeneous excitable medium. Physica D 1991, 49: 107–113.
Article
MATH
Google Scholar
Vigmond E, Tsoi V, Kuo S, Arevalo H, Kneller J, Nattel S, Trayanova N: The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 2004, 1: 334–344. 10.1016/j.hrthm.2004.03.077
Article
Google Scholar
Lesh MD, Pring M, Spear JF: Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Circulation Research 1989, 65: 1426–1440.
Article
Google Scholar
Burton FL, Cobbe SM: Dispersion of ventricular repolarization and refractory period. Cardiovascular Research 2001, 50: 10–23. 10.1016/S0008-6363(01)00197-3
Article
Google Scholar
Kuo CS, Munkata K, Reddy P, Surawicz B: Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation 1983, 67: 1356–1367.
Article
Google Scholar
Restivo M, Gough WB, El-Sherif N: Ventricular arrhythmias in the subacute myocardial infarction period. High resolution activation and refractory patterns of re-entrant rhythms. Circulation Research 1990, 66: 1310–1327.
Article
Google Scholar
Osaka T, Kodama I, Tsuboi N, Toyama J, Yamada K: Effects of activation sequence and anisotropic cellular geometry on the repolarization phase of action potential in the dog ventricles. Circulation 1987, 76: 226–236.
Article
Google Scholar
Clayton RH, Holden AV: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Progress in Biophysics & Molecular Biology 2004, 85: 473–499. 10.1016/j.pbiomolbio.2003.12.002
Article
Google Scholar
Viswanathan PC, Shaw RM, Rudy Y: Effects of I-Kr and I-Ks heterogeneity on action potential duration and its rate dependence - A simulation study. Circulation 1999, 99: 2466–2474.
Article
Google Scholar
Clayton RH: Computational models of normal and abnormal action potential propagation in cardiac tissue: Linking experimental and clinical cardiology. Physiological Measurement 2001, 22: R15-R34. 10.1088/0967-3334/22/3/201
Article
Google Scholar
Luo CH, Rudy Y: A model of the ventricular cardiac action potential. Depolarization, repolarization and their interaction. Circulation 1991, 68: 1501–1526.
Article
Google Scholar
Luo CH, Rudy Y: A Dynamic-Model of the Cardiac Ventricular Action-Potential .1. Simulations of Ionic Currents and Concentration Changes. CircRes 1994, 74: 1071–1096.
Google Scholar
Qu ZL, Garfinkel A: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng 1999, 46: 1166–1168. 10.1109/10.784149
Article
Google Scholar
Shaw RM, Rudy Y: The vulnerable window for unidirectional block in cardiac tissue: Characterisation and dependence on membrane excitability and intercellular coupling. Journal of Cardiovascular Electrophysiology 1995, 6: 115–131.
Article
Google Scholar
Biktashev VN: Dissipation of the excitation wave fronts. Physical Review Letters 2002, 89: 168102. 10.1103/PhysRevLett.89.168102
Article
Google Scholar
Qu ZL, H.S. K, A. G, Weiss J: Effects of Na+ channel and cell coupling abnormalities on vulnerability to re-entry: a simulation study. American Journal of Physiology (Heart and Circulatory Physiology) 2004, 286: H1310-H1321. 10.1152/ajpheart.00561.2003
Article
Google Scholar
Samie FH, Berenfeld O, Anumono J, Mironov S, Udassi S, Beaumont J, Taffet S, Pertsov A, Jalife J: Rectification of the background potassium current. A determinant of rotor dynamics in ventricular fibrillation. Circulation Research 2001, 89: 1216–1223.
Article
Google Scholar
Beaumont J, Davidenko N, Davidenko JM, Jalife J: Spiral waves in two-dimensional models of ventricular muscle: Formation of a stationary core. Biophys J 1998, 75: 1–14. 10.1016/S0301-4622(98)00194-X
Article
Google Scholar
Kneller J, Zou R, Vigmond E, Wang Z, Leon LJ, Nattel S: Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circulation Research 2002, 90: e73-e87. 10.1161/01.RES.0000019783.88094.BA
Article
Google Scholar
Wit AL, Janse MJ: The ventricular arrhythmias of ischaemia and infarction. New York, Futura; 1993.
Google Scholar
Saumarez RC, Camm AJ, Panagos A, Gill JS, Stewart JT, Belder MAD, Simpson IA, McKenna WJ: Ventricular fibrillation in hypertrophic cardiomyopathy is associated with increased fractionation of paced right ventricular electrograms. Circulation 1992, 86: 467–474.
Article
Google Scholar
Conrath CE, Wilders R, Coronel R, De Bakker JMT, Taggart P, De Groot JR, Opthof T: Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovascular Research 2004., 62:
Google Scholar
Sampson KJ, Henriquez CS: Simulation and prediction of functional block in the presence of structural and functional ionic heterogeneity. American Journal of Physiology (Heart and Circulatory Physiology) 2001, 281: H2597-H2603.
Google Scholar
Sampson KJ, Henriquez CS: Interplay of ionic and structural heterogeneity on functional action potential duration gradients: Implications for arrhythmogenesis. Chaos 2002, 12: 819–828. 10.1063/1.1497735
Article
Google Scholar
Qu ZL, Garfinkel A, Chen PS, Weiss JN: Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 2000, 102: 1664–1670.
Article
Google Scholar
Euler DE: Cardiac alternans: Mechanisms and pathophysiological significance. Cardiovascular Research 1999, 42: 583–590. 10.1016/S0008-6363(99)00011-5
Article
Google Scholar
Watanabe M, Fenton F, Evans SJ, Hastings HM, Karma A: Mechanism for discordant alternans. Journal of Cardiovascular Electrophysiology 2001, 12: 196–206. 10.1046/j.1540-8167.2001.00196.x
Article
Google Scholar
Qu ZL, Weiss JN, Garfinkel A: Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am J Physiol-Heart Circul Physiol 1999, 276: H269-H283.
Google Scholar
Yuuki K, Hosoya Y, Kubota I, Yamaki M: Dynamic and not static change in ventricular repolarisation is a substrate of ventricular ischaemia on chronic ischaemic myocardium. Cardiovascular Research 2004, 63: 645–652. 10.1016/j.cardiores.2004.04.017
Article
Google Scholar
Xie FG, Qu ZL, Garfinkel A, Weiss JN: Electrophysiological heterogeneity and stability of reentry in simulated cardiac tissue. Am J Physiol-Heart Circul Physiol 2001, 280: H535-H545.
Google Scholar
Starmer CF, Romashko DN, Reddy RS, Zilberter YI, Starobin J, Grant AO, Krinsky VI: Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation 1995, 92: 595–605.
Article
Google Scholar
Noble D, Rudy Y: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 2001, 359: 1127–1142.
Article
Google Scholar
Faber GM, Rudy Y: Action potential and contractility changes in Na+ (i) overloaded cardiac myocytes: A simulation study. Biophys J 2000, 78: 2392–2404.
Article
Google Scholar
Clayton RH, Holden AV: Effect of regional differences in cardiac cellular electrophysiology in the stability of ventricular arrhythmias: A computational study. Physics in Medicine and Biology 2003, 48: 95–111. 10.1088/0031-9155/48/1/307
Article
Google Scholar
Nash MP, Panfilov AV: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progress in Biophysics & Molecular Biology 2004, 85: 501–522. 10.1016/j.pbiomolbio.2004.01.016
Article
Google Scholar
Rice JJ, Winslow RL, Dekanski J, McVeigh E: Model studies of the role of mechano-sensitive currents in the generation of cardiac arrhythmias. Journal of Theoretical Biology 1998., 190:
Google Scholar
Garny A, Kohl P: Mechanical induction of arrhythmias during ventricular repolarization. Modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences 2004, 1015: 133–143. 10.1196/annals.1302.011
Article
Google Scholar