The conceptual framework by which a neurological syndrome such as apraxia is presently explained is based on a computational understanding of brain function. Briefly, this framework assumes the existence of well-defined, determinate perceptual representations and motor programs that interact in a fashion similar to the way that symbols are manipulated in a computer. Recent theoretical and applied work in natural and artificial systems, however, has conspired to shift the emphasis in neuroscience from the computational paradigm to a dynamical understanding of brain function [1–5]. This approach emphasizes that cognition occurs in an embodied agent interacting dynamically with its environment and avoids the assumptions of determinate motor programs and perceptual representations implicit in the computational framework [6, 7]. The identification of the dynamical changes in an apractic nervous system may provide a causally mechanistic explanation for the syndrome that may complement the higher-level descriptive explanation of the standard computational approach.
The apraxias constitute a spectrum of movement disorders in which there is impairment in the performance of a skilled, learned movement that cannot be attributed to an elementary motor or sensory deficit. Based of the pioneering work of Liepmann [8], the apraxias have traditionally been divided into ideational, ideomotor and limb-kinetic apraxia. Limb-kinetic apraxia, which is felt by many to not be a true apraxia, manifests as slowness or clumsiness of distal limb movements with preservation of knowledge of the appropriate action to perform. Ideational apraxia is characterized by loss of knowledge of how an object is used or as impairment in the sequencing of constituent movements in a complex movement. Ideomotor apraxia is usually diagnosed on the basis of spatiotemporal errors that occur on transitive gesture tasks requiring demonstration of the pantomime appropriate to specific object use [9]. Asking a patient to demonstrate how they would use a comb or a hammer would be typical transitive gesture tasks used in the assessment of the presence or absence of ideomotor apraxia. In many cases of ideomotor apraxia, the spatiotemporal errors improve when the object is actually used rather than when its use is pantomimed. In addition, the movements are often performed normally when they occur spontaneously but are impaired when the patient is instructed to perform the movement. The patient may scratch his nose spontaneously but may be unable to perform this task to command. This voluntary-automatic dissociation, although frequently seen in ideomotor apraxia, is not universal [10].
The standard conceptualization of apraxia is based on a two-system model of action: a conceptual system, located in the dominant parietal lobe, and a production system localized to the frontal lobe [11]. Dysfunction of the former would lead to ideational apraxia and dysfunction in the latter would result in ideomotor or limb-kinetic apraxia. With improved knowledge of the multiple frontoparietal circuits that subserve visuospatial transformations for reaching, somatosensory transformations for postural adjustments and the coding of peripersonal space for limb and neck movements, it has been possible to analyze the deficits which occur in apraxia in more detail than afforded by the standard conceptualization. Based primarily on primate studies, specialized circuits responsible for more detailed properties of action have been identified and provide a framework by which the idiosyncratic deficits evident in the apractic patient that defy explanation by the simple two-system model have been explained [11].
Regardless of whether the standard two-system scheme of action or the more detailed model based on multiple, specialized parietofrontal circuits is used, the standard conceptualization of the origin of apraxia still conforms to the computational paradigm in which a specific motor program is activated based on the conceptual framework in place in the dominant parietal lobe. Similarly, the usual explanation for the automatic-voluntary dissociation frequently seen in ideomotor apraxia relies on this computational framework. This framework postulates that a verbal command establishes a conceptual bias in the parietal lobe that activates the appropriate motor program in the frontal lobe. In ideomotor apraxia there would be a disconnection between the instruction and the effector mechanisms frontally. To explain the preservation of the corresponding automatic movement, alternative pathways not dependent on the parietal lobe would need to remain functional.
Evolutionary autonomous agents (EAAs) are robots or robot simulations whose controller is a dynamical neural network and whose evolution is guided by a genetic algorithm. They are embodied agents-either software programs living in a virtual environment or true robots that function in a specified environment. These agents function autonomously in their environments with the agents performing such functions as navigation around obstacles, gathering food, seeking prey or mating partners. [12] Their development is guided by evolutionary algorithms which utilizes a fitness function to select the most appropriate agents for propagation. Motor or sensory activity, in particular, evolves autonomously in response to the constraints of the fitness function without the organizational restrictions imposed by the notions of determinate motor programs or perceptual representations. Such agents provide a system in which the organization of motor or perceptual activity can be followed and analyzed. Because its nervous system is limited to a small number of neuron-like elements, the analysis of the network dynamics of these agents is also more tractable. Their primary value for the neurosciences is that they provide simple systems unencumbered by the assumptions inherent in present day neurosciences that can serve as a test-bed for thinking about neural processing and techniques for deciphering these processes [13].
To model the voluntary-automatic dissociation seen in ideomotor apraxia, a lesioned EAA needs to demonstrate a behavioral dissociation between a movement that the agent does automatically and an identical movement that has a symbolic context. An analysis of the change in network dynamics that occurs in the apractic EAA will provide information on the physical basis of the dissociation without the assumptions inherent in a computational formalism. The extrapolation of results in the EAA to human brain function is based on a principle concerning the organization of complex systems that has been emphasized by Herbert Simon. He suggested that the organization of self-organizing complex systems is dependent only on the behavioral characteristics of the system and not the nature of the constituent elements of the system. "My central theme is that complexity takes the form of hierarchy and that hierarchic systems have some common properties independent of their specific content" [14]. Regardless of whether the system consists of 100 billion interacting living cells or a small number of computer generated input-output units, it is not inconceivable that the organizational structure of the systems will be similar if their demands are identical and if they are allowed to evolve autonomously. In the absence of an evolved agent with language capabilities, a paradigm is needed that captures the essential elements of an inability to move to command with preservation of that same movement if performed spontaneously. It is felt that the ability to move to a target location without ongoing visual feedback from the target represents the simplest activity upon which the dynamics and connectivity of a robotic system could develop cognitive functions such as off-line reasoning [15]. Since predicative activity such as language may originate in this type of network activity, this particular movement paradigm may be used as a surrogate for a verbal command.
The presence of multiple time scales in the dynamics of a neural network is indicative of a temporal hierarchical structure. Simon discussed the presence of higher and lower frequency dynamics in complex systems and associated more executive function with the lower frequency components. He stated that "it is generally believed that the relevant planning horizon of executives is longer, the higher their location in the organizational hierarchy" and that "the average interval between interactions are greater at higher than lower levels [14]." In the nervous system, it is also expected that such a multiple time scale framework would occur with a hierarchical structure requiring more executive function reflecting lower frequency dynamics evolving as tasks become more complicated. In this paper, the temporal hierarchical structure of the dynamics of the neural network controller of an EAA will be assessed by the analysis of the power spectral distribution and Hurst exponent of all nodes in the network [16]. The analysis will be applied to an EAA model of the voluntary-automatic dissociation seen in ideomotor apraxia in an attempt to causally explain its physical origin.