Venkatagiri H: Clinical implications of an augmentative and alternative communication taxonomy. Augment Altern Commun 2002, 18: 45–57.
Article
Google Scholar
Glennen SL, DeCoste DC: Augmentative and Alternative Communication Systems. In The Handbook of Augmentative and Alternative Communication. San Diego, CA: Cengage Learning; 1997.
Google Scholar
Tai K, Blain S, Chau T: A review of emerging access technologies for individuals with severe motor impairments. Assist Technol 2008, 20: 204–219. 10.1080/10400435.2008.10131947
Article
Google Scholar
Mason SG, Birch GE: A general framework for brain-computer interface design. IEEE Trans Neural Syst Rehabil Eng 2003, 11: 70–85. 10.1109/TNSRE.2003.810426
Article
Google Scholar
Farwell LA, Donchin E: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988, 70: 510–523. 10.1016/0013-4694(88)90149-6
Article
Google Scholar
Townsend G, LaPallo B, Boulay C, Krusienski D, Frye G, Hauser C, Schwartz N, Vaughan T, Wolpaw J, Sellers E: A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 2010, 121: 1109–1120. 10.1016/j.clinph.2010.01.030
Article
Google Scholar
Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C: An adaptive P300-based control system. J Neural Eng 2011., 8: 036006
Google Scholar
Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K: Visual stimuli for the P300 brain-computer interface: A comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol 2009, 120: 1562–1566. 10.1016/j.clinph.2009.06.002
Article
Google Scholar
McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR: The P300-based brain-computer interface (BCI): Effects of stimulus rate. Clin Neurophysiol 2011, 122: 731–737. 10.1016/j.clinph.2010.10.029
Article
Google Scholar
Vidaurre C, Sannelli C, Muller KR, Blankertz B: Co-adaptive calibration to improve BCI efficiency. J Neural Eng 2011., 8: 025009
Google Scholar
Vidaurre C, Schlogl A, Cabeza R, Scherer R, Pfurthscheller G: A fully on-line adaptive BCI. IEEE Trans Biomed Eng 2006, 53: 1214–1219. 10.1109/TBME.2006.873542
Article
Google Scholar
Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE: A Comprehensive Survey of Brain Interface Technology Designs. Ann Biomed Eng 2006, 35: 137–169.
Article
Google Scholar
Blankertz B, Dornhege G, Krauledat M, Schoroder M, Williamson J, Murray-Smith R, Muller KR: The Berlin Brain-Computer Interface Presents the Novel Mental Typewriter Hex-O-Spell. 2006. [3rd International Brain-Computer Interface Workshop and Training Course]
Google Scholar
Ryan DB, Frye GE, Townsend G, Berry DR, Mesa-G S, Gates NA, Sellers EW: Predictive spelling with a P300-Based brain-computer interface: increasing the rate of communication. Int J Human-Computer Inter 2011, 27: 69–84.
Article
Google Scholar
Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kubler A: An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 2009, 46: 617–625. 10.1111/j.1469-8986.2008.00783.x
Article
Google Scholar
Dal Seno B, Matteucci M, Mainardi LT: The utility metric: a novel method to assess the overall performance of discrete brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 20–29.
Article
Google Scholar
Bianchi L, Quitadamo LR, Garreffa G, Cardarilli GC, Marciani MG: Performances evaluation and optimization of brain computer interface systems in a copy spelling task. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 207–216.
Article
Google Scholar
Beukelman DR, Mirenda P: Augmentative and Alternative Communication: Management of Severe Communication Disorders in Children and Adults. Baltimore, MD: Paul H Brookes; 1992.
Google Scholar
Goodenough-Trepagnier C, Rosen MJ: Predicitive assessmet for communication aid prescription: Motor-determined maximum communication rate. In The Vocally Impaired: Clinical Practice and Research. Edited by: Bernstein L. Philadelphia: Grune & Stratton; 1988.
Google Scholar
Koester HH, Levine SP: Learning and performance of able-bodied individuals using scanning systems with and without word prediction. Assist Technol 1994, 6: 42–53. 10.1080/10400435.1994.10132226
Article
Google Scholar
Koester HH, Levine SP: Modeling the speed of text entry with a word prediction interface. IEEE Trans Rehabil Eng 1994, 2: 177–187. Sep 10.1109/86.331567
Article
Google Scholar
Lesher G, Moulton B: Techniques for augmenting scanning communication. Augment Altern Commun 1998, 14: 81–81. 10.1080/07434619812331278236
Article
Google Scholar
Hill K, Romich B: A rate index for augmentative and alternative communication. Int J Speech Technol 2002, 5: 57–64. 10.1023/A:1013638916623
Article
MATH
Google Scholar
Waller A, Dennis F, Brodie J, Cairns AY: Evaluating the use of TalksBac, a predictive communication device for nonfluent adults with aphasia. Int J Lang Commun Disord 1998, 33: 45–70. 10.1080/136828298247929
Article
Google Scholar
Scherer MJ, Gray DB, Quatrano LA, Lieberman ML: The impact of assistive technology on the lives of people with disabilities. In Designing and Using Assistive Technology: The Human Perspective. Balitmore, MD: Paul H. Brookes Publishing Co; 1996:99–115.
Google Scholar
Wolpaw JR: Brain–computer interfaces as new brain output pathways. J Physiol 2007, 579: 613–619. 10.1113/jphysiol.2006.125948
Article
Google Scholar
Friedrich EVC, Scherer R, Sonnleitner K, Neuper C: Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks. Clin Neurophysiol 2011, 122: 2003–2009.
Google Scholar
Hsu WY, Lin CY, Kuo WF, Liou M, Sun YN, Tsai ACH, Hsu HJ, Chen PH, Chen IR: Unsupervised fuzzy c-means clustering for motor imagery EEG recognition. Int J Innovative Comput Inform Control 2011, 7: 4965–4976.
Google Scholar
Hsu WY: EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier. Comput Biol Med 2011, 41: 633–639. 10.1016/j.compbiomed.2011.05.014
Article
Google Scholar
Bobrov P, Frolov A, Cantor C, Fedulova I, Bakhnyan M, Zhavoronkov A: Brain-Computer Interface Based on Generation of Visual Images. PLoS One 2011, 6: e20674. 10.1371/journal.pone.0020674
Article
Google Scholar
Arvaneh M, Guan CT, Ang KK, Quek C: Optimizing the channel selection and classification accuracy in EEG-Based BCI. IEEE Trans Biomed Eng 2011, 58: 1865–1873.
Article
Google Scholar
Ikegami S, Takano K, Saeki N, Kansaku K: Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury. Clin Neurophysiol 2011, 122: 991–996. 10.1016/j.clinph.2010.08.021
Article
Google Scholar
Krusienski DJ, Shih JJ: Control of a visual keyboard using an electrocorticographic brain-computer interface. Neurorehabil Neural Repair 2011, 25: 323–331. 10.1177/1545968310382425
Article
Google Scholar
Cecotti H, Rivet B, Congedo M, Jutten C, Bertrand O, Maby E, Mattout J: A robust sensor-selection method for P300 brain-computer interfaces. J Neural Eng 2011., 8: 016001
Google Scholar
Li YQ, Nam CS, Shadden BB, Johnson SL: A P300-Based Brain-Computer Interface: Effects of Interface Type and Screen Size. Int J Hum-Comput Interact 2011, 27: 52–68.
Article
Google Scholar
Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G: Does the “P300” speller depend on eye gaze? J Neural Eng 2010, 7: 056013. 10.1088/1741-2560/7/5/056013
Article
Google Scholar
Sellers EW, Vaughan TM, Wolpaw JR: A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 2010, 11: 449–455. 10.3109/17482961003777470
Article
Google Scholar
Hashimoto Y, Ushiba J, Kimura A, Liu MG, Tomita Y: Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy. BMC Neurosci 2010, 11: 9. 10.1186/1471-2202-11-9
Article
Google Scholar
Zhang D, Maye A, Gao XR, Hong B, Engel AK, Gao SK: An independent brain-computer interface using covert non-spatial visual selective attention. J Neural Eng 2010., 7: 016010
Google Scholar
Cabrera AF, Farina D, Dremstrup K: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med Biol Eng Comput 2010, 48: 123–132. 10.1007/s11517-009-0569-2
Article
Google Scholar
Guger C, Daban S, Sellers EW, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G: How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 2009, 462: 94–98. 10.1016/j.neulet.2009.06.045
Article
Google Scholar
Fazel-Rezai R, Abhari K: A region-based P300 speller for brain-computer interface. Can J Elect Comput Eng 2009, 34: 81–85.
Article
Google Scholar
Kayagil TA, Bai O, Henriquez CS, Lin P, Furlani SJ, Vorbach S, Hallett M: A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training. J Neuroeng Rehabil 2009., 6: 10.1186/1743-0003-6-14
Google Scholar
Friedrich EVC, McFarland DJ, Neuper C, Vaughan TM, Brunner P, Wolpaw JR: A scanning protocol for a sensorimotor rhythm-based brain-computer interface. Biol Psychol 2009, 80: 169–175. 10.1016/j.biopsycho.2008.08.004
Article
Google Scholar
Sano A, Bakardjian H: Movement-related cortical evoked potentials using four-limb imagery. Int J Neurosci 2009, 119: 639–663. 10.1080/00207450802325561
Article
Google Scholar
Guo F, Hong B, Gao X, Gao S: A brain-computer interface using motion-onset visual evoked potential. J Neural Eng 2008, 5: 477–485. 10.1088/1741-2560/5/4/011
Article
Google Scholar
Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Muller K-R: The Berlin brain–computer interface: accurate performance from first-session in BCI-NaÏve subjects. IEEE Trans Biomed Eng 2008, 55: 2452–2462.
Article
Google Scholar
Bai O, Lin P, Vorbach S, Floeter MK, Hattori N, Hallett M: A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. J Neural Eng 2008, 5: 24–35. 10.1088/1741-2560/5/1/003
Article
Google Scholar
Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV: A brain-computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil 2007., 4: 10.1186/1743-0003-4-40
Google Scholar
Liao X, Yao D, Li C: Transductive SVM for reducing the training effort in BCI. J Neural Eng 2007, 4: 246–254. 10.1088/1741-2560/4/3/010
Article
Google Scholar
Wei Q, Fei M, Wang Y, Gao X, Gao S: Feature combination for classifying single-trial ECoG during motor imagery of different sessions. Progress Natural Sci 2007, 17: 851–858. 10.1080/10002007088537482
Article
Google Scholar
Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Mueller K-R: Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 2006, 53: 2274–2281. 10.1109/TBME.2006.883649
Article
Google Scholar
Mahmoudi B, Erfanian A: Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Med Biol Eng Comput 2006, 44: 959–969. 10.1007/s11517-006-0111-8
Article
Google Scholar
Phothisonothai M, Nakagawa M: EEG-based classification of new imagery tasks using three-layer feedforward neural network classifier for brain-computer interface. J Physical Soc Japan 2006, 75: 104801. 10401–6 10.1143/JPSJ.75.104801
Article
Google Scholar
Ince NF, Arica S, Tewfik A: Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. J Neural Eng 2006, 3: 235–244. 10.1088/1741-2560/3/3/006
Article
Google Scholar
Neuper C, Scherer R, Reiner M, Pfurtscheller G: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res 2005, 25: 668–677. 10.1016/j.cogbrainres.2005.08.014
Article
Google Scholar
Burke DR, Kelly SR, de Chazal P, Reilly RB, Finucane C: A parametric feature extraction and classification strategy for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 12–17. 10.1109/TNSRE.2004.841881
Article
Google Scholar
Kamousi B, Liu ZM, He B: Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 166–171. 10.1109/TNSRE.2005.847386
Article
Google Scholar
Kelly SP, Lalor EC, Reilly RB, Foxe JJ: Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 172–178. 10.1109/TNSRE.2005.847369
Article
Google Scholar
Treder MS, Schmidt NM, Blankertz B: Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng 2011., 8: 10.1088/1741-2560/8/6/066003
Google Scholar
Chen M, Guan J, Liu H: Enabling fast brain-computer interaction by single-trial extraction of visual evoked potentials. J Med Syst 2011, 35: 1323–1331. 10.1007/s10916-011-9696-z
Article
Google Scholar
Kaufmann T, Schulz SM, Gruenzinger C, Kuebler A: Flashing characters with famous faces improves ERP-based brain-computer interface performance. J Neural Eng 2011., 8: 056016
Google Scholar
Garcia Cossio E, Fernandez C, Eugenia Gaviria M, Palacio C, Alvaran L, Torres Villa RA: P300 based Brain computer interface for alternative communication: a case study with two teenagers with motor disabilities. Rev Fac Ing-Univ Antioquia 2011, 60: 9–19.
Google Scholar
Kim DW, Hwang HJ, Lim JH, Lee YH, Jung KY, Im CH: Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing. J Neurosci Methods 2011, 197: 180–185. 10.1016/j.jneumeth.2011.02.007
Article
Google Scholar
Pires G, Nunes U, Castelo-Branco M: Statistical spatial filtering for a P300-based BCI: Tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. J Neurosci Methods 2011, 195: 270–281. 10.1016/j.jneumeth.2010.11.016
Article
Google Scholar
Mugler EM, Ruf CA, Halder S, Bensch M, Kubler A: Design and Implementation of a P300-Based Brain-Computer Interface for Controlling an Internet Browser. IEEE Trans Neural Syst Rehabil Eng 2011, 18: 599–609.
Article
Google Scholar
Lee PL, Sie JJ, Liu YJ, Wu CH, Lee MH, Shu CH, Li PH, Sun CW, Shyu KK: An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system. Ann Biomed Eng 2010, 38: 2383–2397. 10.1007/s10439-010-9964-y
Article
Google Scholar
Nam CS, Li YQ, Johnson S: Evaluation of P300-Based Brain-Computer Interface in Real-World Contexts. Int J Human-Comput Interact 2010, 26: 621–637. 10.1080/10447311003781326
Article
Google Scholar
Chen CW, Ju MS, Sun YN, Lin CCK: Model analyses of visual biofeedback training for EEG-based brain-computer interface. J Comput Neurosci 2009, 27: 357–368. 10.1007/s10827-009-0148-4
Article
MathSciNet
Google Scholar
Bin G, Gao X, Yan Z, Hong B, Gao S: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng 2009., 6: 046002
Google Scholar
Klobassa DS, Vaughan TM, Brunner P, Schwartz NE, Wolpaw JR, Neuper C, Sellers EW: Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol 2009, 120: 1252–1261. 10.1016/j.clinph.2009.04.019
Article
Google Scholar
Lee P-L, Hsieh J-C, Wu C-H, Shyu K-K, Wu Y-T: Brain computer interface using flash onset and offset visual evoked potentials. Clin Neurophysiol 2008, 119: 605–616. 10.1016/j.clinph.2007.11.013
Article
Google Scholar
Hoffmann U, Vesin J-M, Ebrahimi T, Diserens K: An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 2008, 167: 115–125. 10.1016/j.jneumeth.2007.03.005
Article
Google Scholar
Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR: A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol Psychol 2006, 73: 242–252. 10.1016/j.biopsycho.2006.04.007
Article
Google Scholar
Lee P-L, Hsieh J-C, Wu C-H, Shyu K-K, Chen S-S, Yeh T-C, Wu Y-T: The brain computer interface using flash visual evoked potential and independent component analysis. Ann Biomed Eng 2006, 34: 1641–1654. 10.1007/s10439-006-9175-8
Article
Google Scholar
Lee PL, Wu CH, Hsieh JC, Wu YT: Visual evoked potential actuated brain computer interface: a brain-actuated cursor system. Electron Lett 2005, 41: 832–834. 10.1049/el:20050892
Article
Google Scholar
Lee P-L, Yeh C-L, Cheng JY-S, Yang C-Y, Lan G-Y: An SSVEP-Based BCI Using High Duty-Cycle Visual Flicker. IEEE Trans Biomed Eng 2011, 58: 3350–3359.
Article
Google Scholar
Volosyak I, Valbuena D, Luth T, Malechka T, Graser A: BCI Demographics II: How Many (and What Kinds of) People Can Use a High-Frequency SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 2011, 19: 232–239.
Article
Google Scholar
Takahashi H, Yoshikawa T, Furuhashi T: Error Control for Performance Improvement of Brain-Computer Interface: Reliability-Based Automatic Repeat Request. Ieice Transactions on Information and Systems 2011, E94D: 1243–1252.
Article
Google Scholar
Volosyak I: SSVEP-based Bremen-BCI interface-boosting information transfer rates. J Neural Eng 2011., 8: 036020
Google Scholar
Wang YT, Wang YJ, Jung TP: A cell-phone-based brain-computer interface for communication in daily life. J Neural Eng 2011., 8: 025018
Google Scholar
Blankertz B, Dornhege G, Krauledat M, Mueller K-R, Curio G: The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 2007, 37: 539–550. 10.1016/j.neuroimage.2007.01.051
Article
Google Scholar
Royer AS, Rose ML, He B: Goal selection versus process control while learning to use a brain-computer interface. J Neural Eng 2011., 8: 036012
Google Scholar
Vlek RJ, Schaefer RS, Gielen C, Farquhar JDR, Desain P: Sequenced subjective accents for brain-computer interfaces. J Neural Eng 2011., 8: 036002
Google Scholar
Solis-Escalante T, Müller-Putz G, Brunner C, Kaiser V, Pfurtscheller G: Analysis of sensorimotor rhythms for the implementation of a brain switch for healthy subjects. Biomed Signal Process Control 2010, 5: 15–20. 10.1016/j.bspc.2009.09.002
Article
Google Scholar
Liu Y, Zhou ZT, Hu DW: Gaze independent brain-computer speller with covert visual search tasks. Clin Neurophysiol 2011, 122: 1127–1136. 10.1016/j.clinph.2010.10.049
Article
Google Scholar
Treder MS, Blankertz B: (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 2010., 6: 10.1186/1744-9081-6-28
Google Scholar
Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kuebler A: An auditory brain-computer interface (BCI). J Neurosci Methods 2008, 167: 43–50. 10.1016/j.jneumeth.2007.02.009
Article
Google Scholar
Lee S, Lim H: Brain-Operated Typewriter using the Language Prediction Model. KSII Trans Internet Inf Syst 2011, 5: 1770–1782.
Google Scholar
Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, Staiger-Saelzer P, Hoogerwerf E-J, Desideri L, Mattia D, Kuebler A: A Brain-Computer Interface as Input Channel for a Standard Assistive Technology Software. Clin EEG Neurosci 2011, 42: 236–244. 10.1177/155005941104200409
Article
Google Scholar
Jutai JW, Fuhrer MJ, Demers L, Scherer MJ, DeRuyter F: Toward a Taxonomy of Assistive Technology Device Outcomes. Am J Phys Med Rehabil 2005, 84: 294–302. 10.1097/01.PHM.0000157313.88732.DC
Article
Google Scholar
Scherer MJ: Living in the State of Stuck: How Technology Impacts the Lives of People with Disabilities. Cambridge, MA: Brookline Books; 1993.
Google Scholar
Scherer MJ: Outcomes of assistive technology use on quality of life. Disabil Rehabil 1996, 18: 439–448. 10.3109/09638289609165907
Article
Google Scholar
Sellers EW, Donchin E: A P300-based brain-computer interface: Initial tests by ALS patients. Clin Neurophysiol 2006, 117: 538–548. 10.1016/j.clinph.2005.06.027
Article
Google Scholar
Wolpaw JR: An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 1991, 78: 252–259. 10.1016/0013-4694(91)90040-B
Article
Google Scholar
Gao Y, Black MH: A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions. Int IEEE EMBS Conf Neural Eng 2003, 189–192. 10.1109/CNE.2003.1196789
Google Scholar
Nykopp T: Statistical modelling issues for the adaptive brain interface. Helsinki, Finland: Helsinki University of Technology; 2001.
Google Scholar
Blankertz B, Muller K, Curio G, Vaughan TM, Schalk G, Wolpaw J, Schlogl A, Neuper C, Pfurtscheller G, Hinterberger T, Schroder M, Birbaumer N: The BCI Competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 2003, 2004(51):1044–1052.
Google Scholar
Cohen J: A coefficient of agreement for nominal scales. Educ Psychol Meas 1960, 20: 37–46. 10.1177/001316446002000104
Article
Google Scholar
Schlogl A, Lee FY: Characterization of Four-Class Motor Imagery EEG Data for the BCI-Competition 2005. J Neural Eng 2005, 2: 14–22. 10.1088/1741-2560/2/4/L02
Article
Google Scholar
Gwet K: Inter-rater reliability: Dependency on trait prevalence and marginal homogeneity. Statistical Methods for Inter-Rater Reliability Assessment Series 2002, 2: 1–9.
Google Scholar
Obermaier B, Neuper C, Guger C, Pfurtscheller G: Information transfer rate in a five-classes brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2001, 9: 283–288. 10.1109/7333.948456
Article
Google Scholar
Schlogl A, Neuper C, Pfurtscheller G: Estimating the mutual information of an EEG-based brain-computer interface. Biomed Tech 2002, 47: 3–8.
Article
Google Scholar
Wolpaw J, Ramoser H: EEG-based communication: improved accuracy by response verification. IEEE Trans Rehabil Eng 1998, 6: 326–333. 10.1109/86.712231
Article
Google Scholar
Kronegg J, Voloshynovskiy S, Pun T: Analysis of bit-rate definitions for Brain-Computer Interfaces. Las Vegas: Conference on Human-Computer Interactions; 2005.
Google Scholar
Buttfield A, Ferrez PW, Millan JR: Towards a robust BCI: Error potentials and online learning. IEEE Trans Neural Syst Rehabil Eng 2006, 14: 164–168. 10.1109/TNSRE.2006.875555
Article
Google Scholar
Baker B: Minspeak: A semantic compaction system that makes self-expression easier for communicatively disabled individuals. Byte 1982, 7: 186–202.
Google Scholar
Zhang D, Wang Y, Gao X, Hong B, Gao S: An algorithm for idle-state detection in motor-imagery-based brain-computer interface. Comput Intell Neurosci 2007. 39714
Google Scholar
Thompson DE, Gruis KL, Huggins JE: A plug-and-play brain-computer interface to operate commercial assistive technology. Disabil Rehabil Assist Technol 2013. in press PMID: 23590556
Google Scholar
Mason SG, Kronegg J, Huggins J, Fatourechi M, Schlogl A: Evaluating the Performance of Self-Paced Brain-Computer Interface Technology. 2006. http://ipl.ece.ubc.ca/bci_files/self_paced_tech_report-2006–05–19.pdf
Google Scholar
Panicker RC, Puthusserypady S: Ying Sun: An Asynchronous P300 BCI With SSVEP-Based Control State Detection. IEEE Trans Biomed Eng 2011, 58: 1781–1788.
Article
Google Scholar
Davis J, Goadrich M: The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. New York, NY, USA: ACM; 2006:233–240. [ICML’06]
Google Scholar
Schogl A, Anderer P: Artefact detection in sleep EEG by the use of Kalman filtering. Vienna, Austria: Proceedings EMBEC; 1999. [EMBEC]
Google Scholar
Simpson RC, Koesten HH: Adaptive one-switch row-column scanning. IEEE Trans Rehabil Eng 1999, 7: 464–473. 10.1109/86.808950
Article
Google Scholar