Murphy SL, Xu J: Deaths: preliminary data for 2010. Natl Vital Stat Rep 2012, 4(60):31.
Google Scholar
Bonow RO, Mann DL, Zipes DP, Libby P: Book Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 9th edition. Saunders Elsevier: Philadelphia, Pa; 2011.
Google Scholar
Lavdaniti M: Invasive and non-invasive methods for cardiac output measurement. Int J Caring Sci 2008, 1(3):112–117.
Google Scholar
Courtois MA, Kovacs SJ, Ludbrook PA: Physiologic early diastolic intraventricular pressure gradient is lost during acute myocardial ischemia. Circulation 1990, 82: 1413–1423. 10.1161/01.CIR.82.4.1413
Article
Google Scholar
Brenner JI, Baker KR, Berman MA: Prediction of left ventricular pressure in infants with aortic stenosis. Br Heart J 1980, 44(4):406–410. 10.1136/hrt.44.4.406
Article
Google Scholar
Greenberg NL, Vandervoort PM, Thomas JD: Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am J Physiol 1996, 271: H1267-H1276.
Google Scholar
Firstenberg MS, Vandervoort PM, Greenberg NL, et al.: Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular fi lling. J Am Coll Cardiol 2000, 36: 1942–1949. 10.1016/S0735-1097(00)00963-3
Article
Google Scholar
Tonti G, Pedrizzetti G, Trambaiolo P, Salustri A: Space and time dependency of inertial and convective contribution to the transmitral pressure drop during ventricular fi lling. J Am Coll Cardiol 2001, 38: 290–291. 10.1016/S0735-1097(01)01355-9
Article
Google Scholar
Pasipoularides A, Murgo JP, Miller JW, Craig WE: Nonobstructive left ventricular ejection pressure gradients in man. Circ Res 1987, 61(2):220–227. 10.1161/01.RES.61.2.220
Article
Google Scholar
Redaelli A, Montevecchi FM: Computational evaluation of intraventricular pressure gradients based on a fluid–structure approach. J Biomech Eng, transactions of the ASME 1996, 118(4):529–537. 10.1115/1.2796040
Article
Google Scholar
Clavin OE, Spinelli JC, Alonso H, Solarz P, Valentinuzzi ME, Pichel RH: Left intraventricular pressure–impedance diagrams (DPZ) to assess cardiac function. Part 1: morphology and potential sources of artifacts. Med Progn Technol 1986, 11: 17–24.
Google Scholar
Spinelli JC, Clavin OE, Cabrera EI, Chatruc MR, Pichel RH, Valentinuzzi ME: Left intraventricular pressure–impedance diagrams (DPZ) to assess cardiac function. Part II: determination of end-systolic loci. Med Progn Technol 1986, 11: 25–32.
Google Scholar
Bahraseman HG, Hassani K, Navidbakhsh M, Espino DM, Sani ZA, Fatouraee N: Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Comput Methods Biomech Biomed Engin 2013. In Press. DOI: 10.1080/10255842.2013.771179
Google Scholar
Bellhouse BJ: The fluid mechanics of heart valves. In Book Cardiovascular fluid mechanics. Volume 1 edition. Edited by: Bergel DH. London: Academic Press; 1972.
Google Scholar
Caro CG, Pedley TJ, Schroter RC, Seed WA: Book The mechanics of the circulation. Oxford: Oxford University Press; 1978.
Google Scholar
Donea J, Giuliani S, Halleux JP: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Engrg 1982, 33(1–3):689–723.
Article
Google Scholar
Formaggia L, Nobile F: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East–West J Numer Math 1999, 7(2):105–132.
MathSciNet
Google Scholar
Al-Atabi M, Espino DM, Hukins DWL: Computer and experimental modelling of blood flow through the mitral valve of the heart. J Biomech Sci Eng 2010, 5(1):78–84. 10.1299/jbse.5.78
Article
Google Scholar
De Hart J, Peters GW, Schruers PJ, Baaijens FP: A two-dimensional fluid–structure interaction model of the aortic valve. J Biomech 2000, 33(9):1079–1088. 10.1016/S0021-9290(00)00068-3
Article
Google Scholar
De Hart J, Peters GW, Schreurs PJ, Baaijens FP: A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 2003, 36(1):103–112. 10.1016/S0021-9290(02)00244-0
Article
Google Scholar
De Hart J, Baaijens FP, Peters GW, Schreurs PJ: A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 2003, 36(5):699–712. 10.1016/S0021-9290(02)00448-7
Article
Google Scholar
Espino DM, Shepherd DET, Hukins DWL: Evaluation of a transient, simultaneous, Arbitrary Lagrange Euler based multi-physics method for simulating the mitral heart valve. Comput Methods Biomech Biomed Engin 2013. In Press. DOI: 10.1080/10255842.2012.688818
Google Scholar
Espino DM, Shepherd DET, Hukins DWL: A simple method for contact modelling in an arbitrary frame of reference within multiphysics software. J Mech 2013, 29(3):N9-N14. 10.1017/jmech.2012.128
Article
Google Scholar
Stijnen JMA, De Hart J, Bovendeerd PHM, Van de Vosse FN: Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 2004, 19(6):835–850. 10.1016/j.jfluidstructs.2004.04.007
Article
Google Scholar
Xia GH, Zhao Y, Yeo JH: Numerical Simulation of 3D Fluid–structure Interaction Using AN Immersed Membrane Method. Modern Physics Letters B 2005, 19(28–29):1447–1450.
Article
Google Scholar
Peskin CS, Wolfe AW: The aortic sinus vortex. Fed Proc 1978, 37(14):2784–92.
Google Scholar
Christie J, Sheldahl LM, Tristani FE, Sagar KB, Ptacin MJ, Wann S: Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and Thermodilution. Circulation 1987, 76(3):539–547. 10.1161/01.CIR.76.3.539
Article
Google Scholar
Park SH, Lee SJ, Kim JY, Kim MJ, Lee JY, Cho AR, Lee HG, Lee SW, Shin WY, Jin DK: Direct comparison between brachial pressure obtained by oscillometric method and central pressure using invasive method. Soonchunhyang Medical Science 2011, 17(2):65–71.
Article
Google Scholar
Laske A, Jenni R, Maloigne M, Vassalli G, Bertel O, Turina MI: Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. Ann Thorac Surg 1996, 61(1):48–57. 10.1016/0003-4975(95)00922-1
Article
Google Scholar
Weinberg EJ, Kaazempur-Mofrad MR: A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 2008, 41(16):3482–3487. 10.1016/j.jbiomech.2008.08.006
Article
Google Scholar
Govindarajan V, Udaykumar HS, Herbertson LH, Deutsch S, Manning KB, Chandran KB: Two-dimensional FSI simulation of closing dynamics of a tilting disk mechanical heart valve. J. Med. Devices 2010, 4(1):011001(1–11).
Article
Google Scholar
Koch TM, Reddy BD, Zilla P, Franz T: Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput Methods Biomech Biomed Engin 2010, 13(2):225–34. 10.1080/10255840903120160
Article
Google Scholar
Winslow AM: Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. J Comput Phys 1966, 1(2):149–172. 10.1016/0021-9991(66)90001-5
Article
MathSciNet
Google Scholar
Espino DM, Shepherd DET, Hukins DWL: Development of a transient large strain contact method for biological heart valve simulations. Comput Methods Biomech Biomed Engin 2013, 16(4):413–424. 10.1080/10255842.2011.623676
Article
Google Scholar
Dowell EH, Hall KC: Modelling of fluid–structure interaction. Annu Rev Fluid Mech 2001, 33(1):445–490. 10.1146/annurev.fluid.33.1.445
Article
Google Scholar
Wall W, Gerstenberger A, Gamnitzer P, Forster C, Ramm E: Large deformation fluid–structure interaction – advances in ALE methods and new fixed grid approaches. In Fluid–structure interaction. Edited by: Bungartz HJ, Shafer M. Berlin: Springer; 2006.
Google Scholar
Van de Vosse FN, De Hart J, Van Oijen CHGA, Bessems D, Gunther TWM, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT: Finite-element-based computational methods for cardiovascular fluid–structure interaction. J Eng Math 2003, 47(3–4):335–368.
Article
MathSciNet
Google Scholar
MATLAB version 7.10.0. Natick, MA, USA: The MathWorks; 2010.
Intraventricular Pressure Measurement in a Langendorff Preparation. http://cdn.adinstruments.com/adi-web/techniques/TN-BalloonCatheter.pdf
Guyton AC, Hall JE: Textbook of Medical Physiology. Philadelphia, PA: WB Saunders; 1996:27.
Google Scholar
Mahutte CK, Jaffe MB, Chen PA, Sasse SA, Wong DH, Sassoon CS: Oxygen Fick and modified carbon dioxide Fick cardiac outputs. Crit Care Med 1994, 22(1):86–95.
Google Scholar
Jarvis SS, Levine BD, Prisk GK, Shykoff BE, Elliott AR, Rosow E, Blomqvist CG, Pawelczyk JA: J Appl Physiol. 2007, 103(3):867–874. Epub 2007 Jun 7 10.1152/japplphysiol.01106.2006
Article
Google Scholar
Maroni JM, Oelberg DA, Pappagianopoulos P, Boucher CA, Systrom DM: Maximum cardiac output during incremental exercise by first-pass radionuclide ventriculography. Chest 1998, 114(2):457–461. 10.1378/chest.114.2.457
Article
Google Scholar
Sugawara J, Tanabe T, Miyachi M, Yamamoto K, Takahashi K, Iemitsu M, Otsuki T, Homma S, Maeda S, Ajisaka R, Matsuda M: Non-invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta Physiol Scand 2003, 179(4):361–366. 10.1046/j.0001-6772.2003.01211.x
Article
Google Scholar
Monroe RG, La Farge CG, Gamble WJ, Hammond RP, Gamboa R: Left ventricular performance and blood catecholamine levels in the isolated heart. Am J Physiol 1966, 211(5):124854.
Google Scholar
Öhman C, Espino DM, Heinmann T, Baleani M, Delingette H, Viceconti M: Subject-specific knee joint model: design of an experiment to validate a multi-body finite element model. Visual Comp 2011, 27(2):153–159. 10.1007/s00371-010-0537-8
Article
Google Scholar
Verhey JF, Nathan NS, Otto R, Ron K, Fabian R, D’Ambra MN: Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed Eng Online 2006, 5: 17. Published online 2006 March 3. doi: 10.1186/1475–925X-5–17 10.1186/1475-925X-5-17
Article
Google Scholar