Overgaard J, Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, Bentzen SM: Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995, 345: 540–543. 10.1016/S0140-6736(95)90463-8
Article
Google Scholar
Kouloulias VE, Kouvaris JR, Nikita KS, Golematis BC, Uzunoglu NK, Mystakidou K, Papavasiliou C, Vlahos L: Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma. Int J Hypertherm 2002, 18: 233–252. 10.1080/02656730110108794
Article
Google Scholar
Hand JW, Machin D, Vernon CC, Whaley JB: Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma. Int J Hypertherm 1997, 13: 343–364. 10.3109/02656739709046538
Article
Google Scholar
Kapp DS, Hahn GM, Carlson RW, et al.: Principles of hyperthermia. In Cancer Medicine. Hamilton, Ontario: BC Decker: Edited by Bast RC, Kufe DW, Pollack RE, Weichselbaum RR; 2000:479–88.
Google Scholar
Falk MH, Issels RD: Hyperthermia in oncology. Int J Hypertherm 2001, 17: 1–18.
Article
Google Scholar
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol 2002, 3: 487–497. 10.1016/S1470-2045(02)00818-5
Article
Google Scholar
Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, Vander Zee J, Van Putten WJ, Van Rhoon GC, Van Dijk JDP, Gonzalez DG, Liu FF, Goodman P, Sherar M: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int J Radiat Oncol Biol Phys 1996, 35: 731–744. 10.1016/0360-3016(96)00154-X
Article
Google Scholar
Jones EL, Oleson JR, Prosnitz L, Samulski T, Vujaskovic Z, Yu D, Sanders L, Dewhirst M: Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 2005, 23: 3079–3085. 10.1200/JCO.2005.05.520
Article
Google Scholar
Salcman M, Samaras GM: Hyperthermia for brain tumors: biophysical rationale. Neurosurgery 1981, 4: 327–335.
Article
Google Scholar
Stea B, Kittleson J, Cassady JR: Treatment of malignant glioma with interstitial irradiation and hyperthermia. Int J Radiat Oncol Biol Phys 1992, 24: 657–667. 10.1016/0360-3016(92)90711-P
Article
Google Scholar
Ryan TP, Trembly BS, Roberts DW, Strohbehn JW, Coughlin CT, Hoopes PJ: Brain hyperthermia: I. Interstitial microwave antenna array techniques: the Dartmouth experience. Int J Radiat Oncol Biol Phy 1994, 29: 1065–1078. 10.1016/0360-3016(94)90402-2
Article
Google Scholar
Sneed PK, Gutin PH, Sneed PK, Gutin PH In The Gliomas. In Interstitial radiation and hyperthermia. Philadelphia: Saunders WB: Edited by Berger MS, Wilson CB; 1999:499–510.
Google Scholar
Maccarini PF, Rolfsnes H, Neuman D, Stauffer PR: Optimization of a dual concentric conductor antenna for superficial hyperthermia applications. Conf Proc IEEE Eng Med Biol Soc 2004, 4: 2518–2521.
Google Scholar
Correia E, Kok HP, de Greef M, Bel A, van Wieringen N, Crezee J: Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior. IEEE Trans Biomed Eng 2009, 56: 2917–2926.
Article
Google Scholar
Jouvie F, Bolomey JC, Gaboriaud G: Discussion of the capabilities of microwave phased arrays for hyperthermia treatment of neck tumors. IEEE Trans Micr Theor Tech 1986, 34: 495–501.
Article
Google Scholar
Magin RL, Peterson AF: Noninvasive microwave phased arrays for local hyperthermia: a review. Int J Hyperthermia 1989, 5: 429–450. 10.3109/02656738909140470
Article
Google Scholar
Jacobsen S, Melandso F: The concept of using multifrequency energy transmission to reduce hot-spots during deep-body hyperthermia. Ann Biom Eng 2002, 30: 1–10.
Article
Google Scholar
Guy AW, Chou CK, Luk KH: 915-MHz phased-array system for treating tumors in cylindrical structures. IEEE Trans Micr Theor Tech 1986, 34: 502–507. 10.1109/TMTT.1986.1133383
Article
Google Scholar
Gross EJ, Ceetas TC, Stauffer PR, Liu RL, Lumori ML: Experimental assessment of phased-array heating of neck tumors. Int J Hyperthermia 1990, 6: 454–474.
Article
Google Scholar
Paulides MM, Bakker JF, van Rhoon GC: A patch antenna design for application in a phased-array head and neck hyperthermia applicator. IEEE Trans Biomed Eng 2007, 54: 2057–2063.
Article
Google Scholar
Ishihara Y, Gotanda Y, Wadamori N, Matsuda J: Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors. Rev Sci Instrum 2007, 78: 024301. 10.1063/1.2437203
Article
Google Scholar
Trefna HD, Vrba J, Persson M: Time-reversal focusing in microwave hyperthermia for deep-seated tumors. Phys Med Biol 2010, 55: 2167–2185. 10.1088/0031-9155/55/8/004
Article
Google Scholar
Paulides MM, Bakker JF, Neufeld E, van der Zee J, Jansen PP, Levendagand PC, van Rhoon GC: The HYPERcollar: a novel applicator for hyperthermia in the head and neck. Int J Hyperthermia 2007, 23: 567–576. 10.1080/02656730701670478
Article
Google Scholar
Gouzouasis IA, Karanasiou IS: Uzunoglu NKP: FDTD Study of the focusing properties of a hybrid hyperthermia and radiometry imaging system using a realistic human head model. Proceedings of the 29th IEEE Engineering in Med and Biology Soc 2007, 3552: 3552–3555.
Google Scholar
Karanasiou IS, Karathanasis KT, Garetsos A, Uzunoglu NK: Development and Laboratory Testing of a Noninvasive Intracranial Focused Hyperthermia System. IEEE Trans Micr Theor and Tech 2008, 56: 2160–2171.
Article
Google Scholar
Gouzouasis IA, Karathanasis KT, Karanasiou IS, Uzunoglu NK: Contactless passive diagnosis for brain intracranial applications: A study using dielectric matching materials. Bioelectromagnetics 2010, 31: 335–349. 10.1002/bem.20572
Article
Google Scholar
Zastrow E, Hagness SC, VanVeen BD, Medow JE: Time-Multiplexed Beamforming for Noninvasive Microwave Hyperthermia treatment. IEEE Trans Biomed Eng 2011, 58: 1574–1584.
Article
Google Scholar
Gabriel S, Lau RW, Gabriel C: The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996, 41: 2251–2269. 10.1088/0031-9155/41/11/002
Article
Google Scholar
Lee A, Choi H, Yoo D, Lee H, Pack J: Numerical simulation of EM absorption for a patient with brain cancer. Proceedings of URSI GA; 2002:1631.
Google Scholar
Yoo DS: The dielectric properties of cancerous tissues in a nude mouse xenograft model. Bioelectromagnetics 2004, 25: 492–497. 10.1002/bem.20021
Article
Google Scholar
Paulsen K, Meany P, Poplack S, The dartmouth experience: Imaging the breast with microwaves. Chicago: URSI General Assembly; 2008.
Google Scholar
Sukstanskii AL, Yablonskiy DA: Theoretical limits on brain cooling by external head cooling devices. Eur J appl Physiol 2007, 101: 41–49. 10.1007/s00421-007-0452-5
Article
Google Scholar
Durney CH, Iskandar MF Theory, Applications, and Design. In Antennas for medical applications In Antenna Hand Book. Edited by Lo YT, Lee SW, New York: Van Nostrand; 1988:24.
Google Scholar
Rodrigues AO, Viana JJ, Rodrigues LC, Ramirez JA: Calculation of temperature rise induced by cellular phones in the human head. J Microwaves and Optoelectronics 2007, 6: 310–322.
Google Scholar
Chadwick P: Assessment of electromagnetic fields around magnetic resonance imaging (MRI) equipment: Report RR570. London: Health and Safety Executive; 2007.
Google Scholar
Balanis CA: Antenna theory: Analysis and design. 2nd edition. New York: Wiley; 1997.
Google Scholar
Hirata A, Morita M, Shiozawa T: Temperature increase in the human head due to a dipole antenna at microwave frequencies. IEEE Trans Electromag Compat 2003, 45: 109–116. 10.1109/TEMC.2002.808045
Article
Google Scholar
Hirata A, Shirai K, Fujiwara O: On averaging mass of SAR correlating with temperature elevation to a dipole antenna. PIER 2008, 84: 221–237.
Article
Google Scholar
Al-Mously SI, Abousetta MM: A definition of thermophysiological parameters of SAM materials for temperature rise calculation in the head of cellular handset user. PIERS Proceedings 2009, : 170–174.
Google Scholar
Gandhi OP, Lazzi G, Furse CM: Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz. IEEE Trans Microwave Theory and Tech 1996, 44: 1884–1897. 10.1109/22.539947
Article
Google Scholar
Watanabe SI, Taki H, Nojima T, Fujiwara O: Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio. IEEE Trans Microwave Theory and Tech 1996, 44: 1874–1883. 10.1109/22.539946
Article
Google Scholar
Wessapan T, Siramate S, Rattanadecho P: Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies. Int J Heat Mass Transfer 2012, 55: 347–359. 10.1016/j.ijheatmasstransfer.2011.09.027
Article
MATH
Google Scholar
Kandel ER, Schwartz JH, Jessell TM: Principles of Neural Science. 4rth edition. New York: McGraw Hill; 2000.
Google Scholar
Lazebnik M, Popovic D, McCartney L, Watkins CB, Lindstrom MJ, Harter J, Sewall S, Ogilvie T, Magliocco A, Breslin TM, Temple W, Mew D, Booske JH, Okoniewski M, Hagness SC: A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol 2007, 52: 6093–6115. 10.1088/0031-9155/52/20/002
Article
Google Scholar
O’Rourke AP, Lazebnik M, Bertram JM, Converse MC, Hagness SC, Webster JG, Mahvi DM: Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 2007, 52: 4707–4719. 10.1088/0031-9155/52/15/022
Article
Google Scholar
Foster KR, Schepps JL: Dielectric properties of tumor and normal tissue at radio through microwave frequency. J Microwave Power 1981, 16: 107–120.
Google Scholar