Nonlinear Heart Rate Variability features for reallife stress detection. Case study: students under stress due to university examination
 Paolo Melillo^{1}Email author,
 Marcello Bracale^{1} and
 Leandro Pecchia^{1}
https://doi.org/10.1186/1475925X1096
© Melillo et al; licensee BioMed Central Ltd. 2011
Received: 20 July 2011
Accepted: 7 November 2011
Published: 7 November 2011
Abstract
Background
This study investigates the variations of Heart Rate Variability (HRV) due to a reallife stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection.
Methods
42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an ongoing university examination, assumed as a reallife stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA).
Results
Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively.
Conclusions
The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting reallife stress condition, such as a university examination.
Keywords
Heart Rate Variability reallife stress automatic classification linear discriminant analysisBackground
Stress has been investigated as a risk factor for cardiovascular disease [1] and for reduced human performances, which in some situation, such as dangerous works or driving a car, may results in negative consequences. Stress influences the balance of Autonomous Nervous System (ANS)[2].
HRV is a noninvasive measure reflecting the variation over time of the period between consecutive heartbeats (RR intervals) [3] and has been proved to be a reliable marker of ANS activity [3].
For this reason, several studies investigated cardiovascular reaction induced by stress using Heart Rate Variability (HRV) focussing on acute, laboratory stressors: cognitive (e.g., mental arithmetic) [4–6], psychomotor (e.g., mirror tracing) [4] challenges and physical stressors[7–9]. Moreover, as standard laboratory stressors do not always engage subjects' affective response, real life stressors (e.g. precompetitive anxiety [10] or social interaction stressors such as public speaking tasks[11]) are often applied to provide a more appropriate social context in which negative emotions might be elicited[12]. Some studies [13–16] investigated HRV variations in the case of university exams as it is a reallife stressor. These studies included only linear HRV measurement, except for the study by Anishchenko which considered nonlinear measures such as Approximate Entropy[13]. In the current study, we investigated how the most common nonlinear HRV measures vary in subject under stress due to university examination. Furthermore, we proposed a classifier for automatic detection of stress based on nonlinear HRV features.
Methods
We performed a prospective analysis, examining 5minute HRV extracted from ECG records of volunteer students in two different conditions: the first record was performed during an ongoing verbal examination (stress session); the second one was performed after holidays (control session).
Sample of data
The data were acquired from 42 students of the School of Biomedical Engineering of the University Federico II, who volunteered to take part in the study. This study was performed in compliance with the Human Study Committee regulations of the University of Naples "Federico II". After obtaining written consent, a 3lead electrocardiogram (ECG) was recorded on 2 different days: the first recording was performed during an ongoing university verbal examination (stress session), while the second one was taken in controlled resting condition (rest session) after a holiday period, far away from stress induced from study routines.
There are many factors that may influence the HRV, such as circadian rhythm, body position, activity level prior to recording, medication, verbalization and breathing condition. For that reason, we took special precautions to maintain similar condition, such performing both recordings at similar time of day and in a sitting body position after an adaptation time of at least 15 minutes. Furthermore, we asked about consumptions of drugs, and none of the students declared consumption of drugs. Finally, we induced participants to speak also in the control session.
Shortterm nonlinear HRV measures
We performed a shortterm 5minute HRV analysis according to International Guidelines [3]. The RR interval time series were extracted from ECG records using an automatic QRS detector, WQRS available in the PhysioNet's library [17], based on nonlinearly scaled ECG curve length feature [18]. Two scientists independently reviewed and corrected the QRS detection and manually labelled the normal beats obtaining the so called series of normal to normal (NN) beat intervals. QRS review and correction was performed using PhysioNet's WAVE [17]. The fraction of total RR intervals labelled as normaltonormal (NN) intervals was computed as NN/RR ratio. This ratio has been used as a measure of data reliability [17, 19], with the purpose to exclude records with a ratio less than a 90% threshold. None of the records were excluded as NN/RR is higher than 90%.
Nonlinear properties of HRV were analyzed by the following methods: Poincaré Plot [19, 20], Approximate Entropy[21], Correlation Dimension[22], Detrended Fluctuation Analysis[23, 24], and Recurrence Plot [25–27]. We focussed on these methods as they were implemented in a software freely distributed and widely used for research activities.
Poincaré Plot
The Poincaré Plot (PP) is a common graphical representation of the correlation between successive RR intervals, for instance the plot of RR _{ j+1 } versus RR _{ j } . A widely used approach to analyze the Poincaré plot of RR series consists in fitting an ellipse oriented according to the lineofidentity and computing the standard deviation of the points perpendicular to and along the lineofidentity referred as SD1 and SD2, respectively[20].
Approximate entropy
Approximate entropy measures the complexity or irregularity of the RR series[21]. The algorithm for the computation of Approximate Entropy was briefly described here.
Given a series of N RR intervals, such as RR _{ 1 } , RR _{ 2 } ,..., RR _{ N } , a series of vector of length m X _{ 1 } , X _{ 2 } ,..., X _{ Nm+1 } is constructed from the RR intervals as follows: X _{ i } , =[RR _{ i } , RR _{ i+1 } ... RR _{ i+m1 } ].
In this study, we computed the ApEn with m = 2 and with three different value of the threshold r:
r = 0.2*SDNN (standard deviation of the NN series);
r = r _{ max } that is, the value of r in the interval (0.1 * SDNN, 0.9 * SDNN) which maximizes the ApEn;
where N denotes the length of the NN sequence, and SDDS and SDNN, respectively, are the measure of the shortterm and longterm variability of the RR sequence. Formally, SDDS is the Standard Deviation of the Difference Sequence of the series RR, that is, [RR _{ i+1 }  RR _{ i } , RR _{ i+2 }  RR _{ i+1 } ,..., RR _{ N }  RR _{ N1 } ], and SDNN is the Standard Deviation of the series NN.
The value of the parameters r and m were chosen according to the recommendation for slow dynamic time series, such as heart rate variability, (m = 2 and r = 0.2*SDNN)[29, 30] and to the findings of recent studies [28, 31] which suggested choosing the value of r which maximizes the entropy (r = r _{ max } ) and proposed a formula for automatic selection of the value r (r = r _{ chon } ).
Further in the paper, we will indicate the Approximate Entropy computed with the different values of r with the following notation En(0.2), En(r _{ max } ) and En(r _{ chon } ).
Correlation dimension
The correlation dimension D _{ 2 } is another methods to measure the complexity used for the HRV time series[22].
where X _{ i } (k) and X _{ j } (k) refer to the kth element of the series X _{ i } and X _{ j } , respectively.
In practice this limit value is approximated by the slope of the regression curve (logr,logC^{ m } (r)). In the current study a value of m = 10[30] was adopted.
Detrended Fluctuation Analysis
Detrended Fluctuation Analysis measures the correlation within the signal [23, 24] and consists into the steps described here.
The integrated series is divided into nonoverlapping segments of equal length n. A least square line is fitted within each segment, representing the local trends with a broken line. This broken line is referred as y _{ n } (k), where n denotes the length of each segment.
The steps from 2 to 4 are repeated for n from 4 to 64.
Representing the function F(n) in a loglog diagram, two parameters are defined: shortterm fluctuations (α1) as the slope of the regression line relating log(F(n)) to log(n) with n within 416; longterm fluctuations (α2) as the slope of the regression line relating log(F(n)) to log(n) with n within 1664.
Recurrence Plot
Recurrence Plot (RP) is another approach performed for measurement of the complexity of the timeseries[25–27]. RP was designed according to the following steps.
Vectors X _{ i } = (RR _{ i } , RR _{ i+τ } ,..., RR _{ i+(m1) τ } ), with i = 1,..., K, with K=[N(m1)* τ)], where m is the embedding dimension and τ is the embedding lag, are defined.
A symmetrical Kdimensional square matrix M _{ 1 } is calculated computing the Euclidean distances of each vector X _{ i } from all the others.
The RP is the representation of the matrix M _{ 2 } as a black (for ones) and white (for zeros) image.
In this study, according to [30, 32], the following values of the parameters introduced above were chosen: $m=10;\phantom{\rule{2.77695pt}{0ex}}\tau =1;\phantom{\rule{2.77695pt}{0ex}}r=\sqrt{m}*SDNN$, with SDNN defined as the standard deviation of the NN series.
In the RP, lines are defined as series of diagonally adjacent black points with no white space. The length l of a line is the number of points which the line consists of.
Nonlinear Heart Rate Variability measures selected in the current study
Measure  Unit  Description 

SD1  ms  The standard deviation of the PP perpendicular to the line of identity 
SD2  ms  The standard deviation of the PP along to the line of identity 
En(0.2)  Approximate Entropy computed with the threshold r set to 0.2*SDNN  
En(r _{ max } )  Approximate Entropy computed with the threshold r set to value which maximizes entropy  
En(r _{ chon } )  Approximate Entropy computed with the threshold r set to value computed with the formula proposed by Chon[28]  
D _{ 2 }  Correlation Dimension  
α _{ 1 }  Short term fluctuation slope in Detrended Fluctuation Analysis  
α _{ 2 }  Longterm fluctuation slope in Detrended Fluctuation Analysis  
l _{ mean }  Beats  Mean line length in RP 
l _{ max }  Beats  Maximum line length in RP 
REC  %  Recurrence rate 
DET  %  Determinism 
ShEn  Shannon Entropy 
Statistical analysis
We calculated mean, standard deviation, median and 25^{th} and 75^{th} percentiles to describe distribution of HRV features during stress and rest conditions. Moreover, we calculated mean, standard deviation, median and 25^{th} and 75^{th} percentiles of the individual differences between stress session and rest session, and we used the Wilcoxon signed rank test to investigate the statistical significance of features' variation within each subject. The statistical analysis was performed by inhouse software developed in MATLAB version R2009b (The MathWorks Inc., Natick, MA).
Classification and performance measurement
We adopted Linear Discriminant Analysis (LDA) as classification method. LDA aims to find linear combinations of the input features that can provide an adequate separation between two classes, in the current study, stress and rest session. LDA uses an empirical approach to define linear decision plans in the feature space. The discriminant functions used by LDA are built up as a linear combination of the variables that seek to maximize the differences between the classes. Further details about LDA can be found in Krzanowski[33].
Binary Classification Performance Measures
Measure  Abbreviation  Formulae 

Total classification accuracy  ACC  $\frac{TP+TN}{TP+TN+FP+FN}$ 
Sensitivity  SEN  $\frac{TP}{TP+FN}$ 
Specificity  SPE  $\frac{TN}{FP+TN}$ 
Positive Predictive Value  PPV  $\frac{TP}{TP+FP}$ 
Negative Predictive Value  NPV  $\frac{TN}{TN+FN}$ 
To estimate the performance measures we adopted a 10fold crossvalidation scheme[35]. This technique consists in developing 10 classifiers as following: (1) dividing randomly the dataset into 10 subsamples; (2) excluding a subsample (testing subset) in turn; (3) developing a classifier with the remaining 9 subsamples (training subset); (4) testing each classifier with the excluded subsample (which is used as an independent testing dataset), computing the performance measures using the formulae in Table 2. The 10fold crossvalidation estimates of the performance measure are computed as the averages over the 10 classifiers. We divided the dataset in 10 folds by subject and not by record in order to obtain a personindependent testing [36].
Feature selection
It would be possible to use all the 13 selected HRV features reported in Table 1 for the LDA, however this may decrease the performance of the classifier, particularly because of curse of dimensionality. Therefore, we tried to find the subset of features which could discriminate the two classes with the highest total classification accuracy: we adopted the socalled exhaustive search method[35], investigating all the possible variations with repetition of k out of N features (with k from 1 to N). Since the number of features N is 13, we investigated 2^{13} = 8192 subsets of features, training and testing the same number of classifier, as discussed in the previous subsection.
For all the single features and for the best subset of features, that is, which achieved the highest total classification accuracy, the discrimination function was computed against all the dataset in order to provide classification rules.
All the analysis was performed by inhouse software developed in MATLAB version R2009b (The MathWorks Inc., Natick, MA).
Results
Descriptive statistics of nonlinear HRV features during holidays and during university examination
Meas.  Rest session  Stress session  

Mean  SD  Med.  25 ^{ th }  75 ^{ th }  Mean  SD  Med.  25 ^{ th }  75 ^{ th }  
SD1  0.024  0.01  0.023  0.016  0.03  0.024  0.011  0.024  0.012  0.033 
SD2  0.078  0.024  0.079  0.061  0.094  0.048  0.022  0.046  0.031  0.057 
D _{ 2 }  2.828  1.09  3.179  2.244  3.544  1.649  1.282  1.494  0.468  2.574 
En(0.2)  1.095  0.125  1.102  1.02  1.192  0.99  0.24  0.932  0.841  1.177 
En(r _{ max } )  1.122  0.101  1.113  1.057  1.217  1.086  0.171  1.017  0.952  1.217 
En(r _{ chon } )  1.112  0.111  1.106  1.052  1.217  0.983  0.243  0.951  0.842  1.177 
α _{ 1 }  1.413  0.16  1.438  1.283  1.51  1.054  0.446  1.043  0.69  1.447 
α _{ 2 }  0.781  0.182  0.715  0.644  0.953  0.759  0.135  0.766  0.678  0.851 
l _{ max }  286.7  111.2  282  178  384  213.4  136.5  179  86  282 
l _{ mean }  11.09  2.478  10.43  9.518  12.68  14.88  6.771  13.32  11.10  16.92 
REC  33.46  6.27  32.57  29.55  37.59  42.24  12.05  43.25  36.11  49.02 
DET  98.61  0.86  98.78  98.31  99.19  98.75  1.28  99.25  98.14  99.63 
ShEn  3.171  0.233  3.139  3.043  3.362  3.421  0.397  3.417  3.21  3.642 
Comparison of nonlinear HRV features during holidays and during university examination
Meas.  Mean  SD  Med.  25^{th}  75^{th}  pvalue 

SD1  0.0001  0.0148  0.0016  0.0088  0.0116  0.79 
SD2  0.0298  0.0269  0.0272  0.0493  0.0162  <0.01 
D _{ 2 }  1.1791  1.4455  0.9694  2.7376  0.1371  <0.01 
En(0.2)  0.1056  0.2321  0.1272  0.2517  0.0448  <0.01 
En(r _{ max } )  0.0360  0.1629  0.0758  0.1441  0.0865  0.11 
En(r _{ chon } )  0.1294  0.2315  0.1385  0.2623  0.0069  <0.01 
α _{ 1 }  0.3594  0.4525  0.3774  0.7115  0.0431  <0.01 
α _{ 2 }  0.0220  0.2250  0.0224  0.1828  0.0999  0.49 
l _{ max }  73.3  168.5  93.5  171.0  39.0  <0.01 
l _{ mean }  3.7916  7.6832  3.0725  0.7296  5.7562  <0.01 
REC  8.78  14.30  8.93  1.26  17.28  <0.01 
DET  0.14  1.50  0.47  0.73  0.84  0.29 
ShEn  0.2505  0.4907  0.3008  0.0737  0.4896  <0.01 
Performance of the classification rules based on single features and on the best subset of features
Features  ACC  SEN  SPE  PPV  NPV  Classified as stress if 

SD2  73%  79%  67%  70%  76%  SD2<0.0646 
D _{ 2 }  73%  69%  76%  74%  71%  D _{ 2 }<2.2533 
REC  71%  67%  76%  74%  70%  REC>0.3791 
En(r _{ chon } )  71%  64%  79%  75%  69%  En(r _{ chon } )<1.0530 
α _{ 1 }  71%  57%  86%  80%  67%  α _{ 1 }<1.2479 
ShEn  68%  64%  71%  69%  67%  ShEn>3.3060 
l _{ mean }  67%  57%  76%  71%  64%  l _{ mean }>13.2302 
En(0.2)  64%  62%  67%  65%  64%  En(0.2)<1.0517 
l _{ max }  60%  62%  57%  59%  60%  l _{ max }<250.6263 
En(r _{ max } )  58%  64%  52%  57%  59%  En(r _{ max } )<1.1099 
DET  56%  69%  43%  55%  58%  DET>0.9870 
α _{ 2 }  40%  50%  31%  42%  38%  α _{ 2 }<0.7711 
SD1  39%  33%  45%  38%  40%  SD1>0.0243 
SD1,SD2, En(0.2)  90%  86%  95%  95%  87%  See formula 15 
The classifier achieving the highest accuracy is based on the subset of features SD1, SD2 and En(0.2), obtaining a total classification accuracy rate of 90%. All the performance measures are reported in the last row of Table 5. The classification rule can be express as follows:
Among the classifier based on couple of features for comparison with other studies it is interesting to report the performance of the classifier based on SD1 and SD2 which achieved a total classification accuracy, a sensitivity and a specificity rate of 82%, 79% and 86%.
Discussion
In this study, we compared withinsubject variations of shortterm nonlinear HRV measures in healthy subjects during condition of mental stress due to an ongoing university examination.
Almost all the features measuring complexity of the time series statistically decreased during the stress session, like D _{ 2 } , En(0.2), En(r _{ chon } ), which have been widely used complexity measures for HRV[37].
Almost all the features measuring complexity of the time series statistically decreased during the stress session. These findings confirms the results obtained by Anishchenko[13], which showed that Approximate Entropy decreased significantly during stress condition due to university examination. Among the approximate entropy measures considered in this study, the one based on threshold value r _{ chon } achieved the highest total classification accuracy. These results support previous findings regarding r _{ chon } capability to detect different physiological conditions [38].
Furthermore, our finding of decreased complexity measures, in particular D _{ 2 } , are in line with studies about the relationship between Heart Rate complexity and acute physical stress[7–9] or shortterm mental stress[1].
The decreased value of complexity measures reflects a change towards more stable and periodic behaviour of the heart rate under stress which may be associated with stronger regularity, decoupling of multimodal integrated networks and deactivation of controlloops within the cardiovascular system[39–41]. As interpreted by Schubert [1], this reduction in heart rate complexity during a high stress condition may reflect a lower adaptability and fitness of the cardiac pacemaker.
The results of the classification for automatic detection of highstress reinforce the findings of the statistical analysis: the D _{ 2 } and the En(r _{ chon } ) enables detecting the stress condition with a total classification accuracy rate higher than 70%. Furthermore, also the SD2, which is a measure of longterm variability, and α_{1,} which provided information about shortterm fluctuations, achieved comparable performances.
The combination of features achieving the best results consists of the two parameters of PP (SD1 and SD2) and a measure of complexity (En(0.2)) and enables detecting the stress condition with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86% and 95%, respectively. The SD1 was chosen in the best combination of features, although the classifier based only on SD1 achieved the lowest performance among the one based on single features, because it provided information different from the other features, particularly SD2 and En(0.2).
We underlined that, even if not shown in best combination, the classifier based on the two parameters of the PP (SD1 and SD2) achieved a total classification accuracy higher than 80%, confirming the usefulness of PP as a valid marker for mental stress[10, 42].
The performance achieved by the selected subset of nonlinear features is higher than that achieved by selected linear feature on the same dataset reported in our unpublished observations. Furthermore, comparing with the study of Kim [2], who adopted a logistic regression on linear HRV features for distinguishing high stressed subject from low stressed ones, achieving a total classification accuracy of 70%, the performance of the current study are better. These comparisons confirms the usefulness of nonlinear HRV features for automatic classification[43].
Controlled breathing was not asked in order not to affect student performance during the university exam. However, the effect of breathing pattern on HRV is a debated question. Some studies [44, 45] showed that different breathing conditions may have an impact on the reproducibility of HRV. In contrast, other studies [46–48] found that such factors did not have a significant impact on HRV reliability and their findings seem to suggest that HRV is reliable and consistent over time, whether or not respiration is controlled.
In the current study, we focussed only on a few nonlinear methods, those which were implemented in Kubios, a free software for HRV analysis. Although this choice is a limit of the current study, it could be useful in order to increase the reproducibility of the experiment by other investigators.
As regards the classification methods, LDA succeeded partially in separating the two classes, providing an intelligible model. The intelligibility of features and classification rule is strongly appreciated in medical domain datamining[49]. However, the adoption of a linear classifier may represent another limit of the current study, which did not enable us to consider nonlinear structures in classification. In future work we will use nonlinear methods such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) with adequate kernel, in order to achieve a possible improvement in the performance measurement. However, we underlined that the computational cost of the LDA is lower than the ANN or SVM, saving time in the operation.
Finally, the results of this paper could extend the use of portable sensing devices, usually adopted in cardiac applications [50, 51], to stress detection.
Conclusions
In conclusion, the results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting reallife stress condition, such as a university examination. The proposed classifier based on the Poincaré Plot measures and on the Approximate Entropy enables detecting the condition of stress due to university examination with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86, and 95%, respectively.
Further research on a large sample size and on different stressful conditions will help to further elucidate the findings of this study and effectiveness of HRV analyses for differentiation between low and high stress condition.
List of Abbreviations
Abbreviation
 ACC:

Total classification accuracy
 ANS:

Autonomous Nervous System
 ECG:

Electrocardiogram
 HRV:

Heart Rate Variability
 LDA:

Linear Discriminant Analysis
 NPV:

Negative Predictive Value
 PP:

Poincaré Plot
 PPV:

Positive Predictive Value
 RP:

Recurrence Plot
 SEN:

Sensitivity
 SPE:

Specificity.
Declarations
Acknowledgements
This work was supported by the project "HRV and Stress" financed by the Department of Biomedical, Electronic and Telecommunication Engineering of the University Federico II of Naples. All the authors thank the technician of the group, Mr Cosmo Furno and the librarians, Carmen Manna and Alessandra Scippa, of the Department for their support in finding very well hidden publications. All the authors thank the volunteers who entered the study and the professors Umberto Bracale, Elio Chiodo, Luciano Mirarchi, and Giuseppe Riccio, who enabled the realization of the study.
Authors’ Affiliations
References
 Schubert C, Lambertz M, Nelesen RA, Bardwell W, Choi JB, Dimsdale JE: Effects of stress on heart rate complexitya comparison between shortterm and chronic stress. Biol Psychol 2009, 80: 325–332. 10.1016/j.biopsycho.2008.11.005View ArticleGoogle Scholar
 Kim D, Seo Y, Jaegeol C, ChulHo C: Detection of subjects with higher selfreporting stress scores using heart rate variability patterns during the day. Engineering in Medicine and Biology Society, 2008 EMBS 2008 30th Annual International Conference of the IEEE; 20–25 Aug, 2008 2008, 682–685.Google Scholar
 Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996, 17: 354–381.View ArticleGoogle Scholar
 Sato N, Miyake S: Cardiovascular reactivity to mental stress: relationship with menstrual cycle and gender. J Physiol Anthropol Appl Human Sci 2004, 23: 215–223. 10.2114/jpa.23.215View ArticleGoogle Scholar
 Yashima K, Sasaki T, Kageyama Y, Odagaki M, Hosaka H: Application of wavelet analysis to the plethysmogram for the evaluation of mental stress. Conf Proc IEEE Eng Med Biol Soc 2005, 3: 2781–2784.Google Scholar
 Shinba T, Kariya N, Matsui Y, Ozawa N, Matsuda Y, Yamamoto K: Decrease in heart rate variability response to task is related to anxiety and depressiveness in normal subjects. Psychiatry Clin Neurosci 2008, 62: 603–609. 10.1111/j.14401819.2008.01855.xView ArticleGoogle Scholar
 Nakamura Y, Yamamoto Y, Muraoka I: Autonomic Control of HeartRate during Physical Exercise and Fractal Dimension of HeartRateVariability. Journal of Applied Physiology 1993, 74: 875–881.Google Scholar
 Butler GC, Yamamoto Y, Hughson RL: Fractal Nature of ShortTerm Systolic Bp and Hr Variability during LowerBody NegativePressure. American Journal of Physiology 1994, 267: R26R33.Google Scholar
 Hagerman I, Berglund M, Lorin M, Nowak J, Sylven C: Chaosrelated deterministic regulation of heart rate variability in time and frequency domains: Effects of autonomic blockade and exercise. Cardiovascular Research 1996, 31: 410–418.View ArticleGoogle Scholar
 Cervantes Blasquez JC, Rodas Font G, Capdevila Ortis L: Heartrate variability and precompetitive anxiety in swimmers. Psicothema 2009, 21: 531–536.Google Scholar
 Filaire E, Portier H, Massart A, Ramat L, Teixeira A: Effect of lecturing to 200 students on heart rate variability and alphaamylase activity. Eur J Appl Physiol 2010, 108: 1035–1043. 10.1007/s0042100913104View ArticleGoogle Scholar
 Waldstein SR, Neumann SA, Burns HO, Maier KJ: Roleplayed interpersonal interaction: ecological validity and cardiovascular reactivity. Ann Behav Med 1998, 20: 302–309. 10.1007/BF02886379View ArticleGoogle Scholar
 Anishchenko VS, Igosheva NB, Pavlov AN, Khovanov IA, Yakusheva TA: Comparative analysis of methods for classifying the cardiovascular system's states under stress. Critical Reviews in Biomedical Engineering 2001, 29: 462–481.View ArticleGoogle Scholar
 Lucini D, Norbiato G, Clerici M, Pagani M: Hemodynamic and Autonomic Adjustments to Real Life Stress Conditions in Humans. Hypertension 2002, 39: 184–188. 10.1161/hy0102.100784View ArticleGoogle Scholar
 Dimitriev D, Dimitriev A, Karpenko Y, Saperova E: Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students. Human Physiology 2008, 34: 617–624. 10.1134/S0362119708050101View ArticleGoogle Scholar
 Tharion E, Parthasarathy S, Neelakantan N: Shortterm heart rate variability measures in students during examinations. Natl Med J India 2009, 22: 63–66.Google Scholar
 Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101: e215–220.View ArticleGoogle Scholar
 Zong W, Moody GB, Jiang D: A robust opensource algorithm to detect onset and duration of QRS complexes. Computers in Cardiology, 2003; 21–24 Sept 2003, 2003: 737–740.View ArticleGoogle Scholar
 Melillo P, Fusco R, Sansone M, Bracale M, Pecchia L: Discrimination power of longterm heart rate variability measures for chronic heart failure detection. Medical and Biological Engineering and Computing 2011, 49: 67–74. 10.1007/s1151701007285View ArticleGoogle Scholar
 Brennan M, Palaniswami M, Kamen P: Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? Ieee Transactions on Biomedical Engineering 2001, 48: 1342–1347. 10.1109/10.959330View ArticleGoogle Scholar
 Richman JS, Moorman JR: Physiological timeseries analysis using approximate entropy and sample entropy. American Journal of PhysiologyHeart and Circulatory Physiology 2000, 278: H2039H2049.Google Scholar
 Carvajal R, Wessel N, Vallverdú M, Caminal P, Voss A: Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Computer Methods and Programs in Biomedicine 2005, 78: 133–140. 10.1016/j.cmpb.2005.01.004View ArticleGoogle Scholar
 Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. Ieee Transactions on Biomedical Engineering 2003, 50: 1143–1151. 10.1109/TBME.2003.817636View ArticleGoogle Scholar
 Peng CK, Havlin S, Stanley HE, Goldberger AL: Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat TimeSeries. Chaos 1995, 5: 82–87. 10.1063/1.166141View ArticleGoogle Scholar
 Trulla LL, Giuliani A, Zbilut JP, Webber CL: Recurrence quantification analysis of the logistic equation with transients. Physics Letters A 1996, 223: 255–260. 10.1016/S03759601(96)007414MathSciNetView ArticleGoogle Scholar
 Webber CL, Zbilut JP: Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies. Journal of Applied Physiology 1994, 76: 965–973.Google Scholar
 Zbilut JP, Thomasson N, Webber CL: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Medical Engineering & Physics 2002, 24: 53–60. 10.1016/S13504533(01)001126View ArticleGoogle Scholar
 Chon KH, Scully CG, Lu S: Approximate Entropy for all Signals Is the Recommended Threshold Value r Appropriate? Ieee Engineering in Medicine and Biology Magazine 2009, 28: 18–23.View ArticleGoogle Scholar
 Pincus SM: Approximate Entropy as a Measure of SystemComplexity. Proceedings of the National Academy of Sciences of the United States of America 1991, 88: 2297–2301. 10.1073/pnas.88.6.2297MathSciNetView ArticleGoogle Scholar
 Niskanen JP, Tarvainen MP, Rantaaho PO, Karjalainen PA: Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine 2004, 76: 73–81. 10.1016/j.cmpb.2004.03.004View ArticleGoogle Scholar
 Lu S, Chen XN, Kanters JK, Solomon IC, Chon KH: Automatic selection of the threshold value r for approximate entropy. Ieee Transactions on Biomedical Engineering 2008, 55: 1966–1972.View ArticleGoogle Scholar
 Dabire H, Mestivier D, Jarnet J, Safar ME, Chau NP: Quantification of sympathetic and parasympathetic tones by nonlinear indexes in normotensive rats. American Journal of PhysiologyHeart and Circulatory Physiology 1998, 275: H1290H1297.Google Scholar
 Krzanowski WJ: Principles of multivariate analysis: a user's perspective. Rev edition. Oxford Oxfordshire; New York: Oxford University Press; 2000.Google Scholar
 Sokolova M, Lapalme G: A systematic analysis of performance measures for classification tasks. Inf Process Manage 2009, 45: 427–437. 10.1016/j.ipm.2009.03.002View ArticleGoogle Scholar
 Jain AK, Duin RPW, Jianchang M: Statistical pattern recognition: a review. Ieee Transactions on Pattern Analysis and Machine Intelligence 2000, 22: 4–37. 10.1109/34.824819View ArticleGoogle Scholar
 Pecchia L, Melillo P, Sansone M, Bracale M: Discrimination power of shortterm heart rate variability measures for CHF assessment. IEEE Trans Inf Technol Biomed 2011, 15: 40–46.View ArticleGoogle Scholar
 Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS: Heart rate variability: a review. Med Biol Eng Comput 2006, 44: 1031–1051. 10.1007/s1151700601190View ArticleGoogle Scholar
 Liu CY, Liu CC, Shao P, Li LP, Sun X, Wang XP, Liu F: Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiological Measurement 2011, 32: 167–180. 10.1088/09673334/32/2/002View ArticleGoogle Scholar
 Pincus SM: Greater Signal Regularity May Indicate Increased System Isolation. Mathematical Biosciences 1994, 122: 161–181. 10.1016/00255564(94)900566View ArticleGoogle Scholar
 Nahshoni E, Adler E, Laniado S, Keren G: Fractal organization of the pointwise correlation dimension of the heart rate. Medical Hypotheses 1998, 51: 367–376. 10.1016/S03069877(98)900305View ArticleGoogle Scholar
 Nahshoni E, Aizenberg D, Sigler M, Strasberg B, Zalsman G, Imbar S, Adler E, Weizman A: Heart rate variability increases in elderly depressed patients who respond to electroconvulsive therapy. Journal of Psychosomatic Research 2004, 56: 89–94. 10.1016/S00223999(03)000370View ArticleGoogle Scholar
 Mukherjee S, Yadav R, Yung I, Zajdel DP, Oken BS: Sensitivity to mental effort and testretest reliability of heart rate variability measures in healthy seniors. Clinical Neurophysiology Corrected Proof, in press.Google Scholar
 Khandoker AH, Jelinek HF, Palaniswami M: Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. Biomedical Engineering Online 2009., 8: Google Scholar
 Pitzalis MV, Mastropasqua F, Massari F, Forleo C, DiMaggio M, Passantino A, Colombo R, DiBiase M, Rizzon P: Short and longterm reproducibility of time and frequency domain heart rate variability measurements in normal subjects. Cardiovascular Research 1996, 32: 226–233. 10.1016/00086363(96)000867View ArticleGoogle Scholar
 Pinna GD, Maestri R, Torunski A, DanilowiczSzymanowicz L, Szwoch M, La Rovere MT, Raczak G: Heart rate variability measures: a fresh look at reliability. Clinical Science 2007, 113: 131–140. 10.1042/CS20070055View ArticleGoogle Scholar
 Toyry J, Mantysaari M, Hartikainen J, Lansimies E: DaytoDay Variability of Cardiac Autonomic Regulation Parameters in Normal Subjects. Clinical Physiology 1995, 15: 39–46.View ArticleGoogle Scholar
 Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH: Five minute recordings of heart rate variability for population studies: repeatability and agesex characteristics. Heart 1998, 80: 156–162.View ArticleGoogle Scholar
 Maestri R, Raczak G, DanilowiczSzymanowicz L, Torunski A, Sukiennik A, Kubica J, La Rovere MT, Pinna GD: Reliability of heart rate variability measurements in patients with a history of myocardial infarction. Clinical Science 2010, 118: 195–201. 10.1042/CS20090183View ArticleGoogle Scholar
 Cios KJ, Moore GW: Uniqueness of medical data mining. Artif Intell Med 2002, 26: 1–24. 10.1016/S09333657(02)000490View ArticleGoogle Scholar
 Mougiakakou SG, Kyriacou E, Perakis K, Papadopoulos H, Androulidakis A, Konnis G, Tranfaglia R, Pecchia L, Bracale U, Pattichis C, Koutsouris D: A feasibility study for the provision of electronic healthcare tools and services in areas of Greece, Cyprus and Italy. Biomedical Engineering Online 2011., 10: Google Scholar
 Pecchia L, Melillo P, Bracale M: Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans Biomed Eng 2011, 58: 800–804.View ArticleGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.