Skip to main content

Table 2 Modeling Results for Constant and Temperature-Dependent conductivity without Tissue Perfusion

From: Finite Element Analysis of Hepatic Radiofrequency Ablation Probes using Temperature-Dependent Electrical Conductivity

Volts (V) E(C) (V/m) J(C) (A/m3) T(C) (°C) HF(C) (W/m3) σ (C) (S/m) SAR(C) (W/kg) E(D) (V/m) J(D) (A/m3) T(D) (°C) HF(D) (W/m3) σ (D) (S/m) SAR(D) (W/kg)
0.0 0 0 37 0 0.143 0.0 0 0 37 0 0.143 0
2.5 2646 378 38 122 0.143 9.4 × 102 2644 384 38 123 0.145 9.6 × 102
5.0 5291 757 41 489 0.143 3.8 × 103 5280 801 41 493 0.152 4.0 × 103
7.5 7937 1135 45 1100 0.143 8.5 × 103 7900 1288 45 1118 0.163 9.6 × 103
10.0 10583 1513 51 1956 0.143 1.5 × 104 10495 1886 52 2011 0.180 1.9 × 104
12.5 13228 1892 59 3056 0.143 2.4 × 104 13059 2648 60 3186 0.203 3.3 × 104
15.0 15874 2270 69 4401 0.143 3.4 × 104 15583 3638 71 4667 0.233 5.3 × 104
17.5 18519 2640 80 5990 0.143 4.6 × 104 18062 4941 84 6482 0.274 8.4 × 104
20.0 21165 3027 94 7824 0.143 6.0 × 104 20487 6666 99 8663 0.325 1.3 × 105
  1. Modeling results using constant (C) and temperature-dependent (D) conductivity at the point of maximum electrical field (E), current density (J), temperature(T), and heat flux (HF), electrical conductivity (σ) and the specific absorption rate (SAR). This model assumes that the perfusion coefficient ω = 0.