Skip to main content

Table 2 Modeling Results for Constant and Temperature-Dependent conductivity without Tissue Perfusion

From: Finite Element Analysis of Hepatic Radiofrequency Ablation Probes using Temperature-Dependent Electrical Conductivity

Volts (V)

E(C) (V/m)

J(C) (A/m3)

T(C) (°C)

HF(C) (W/m3)

σ (C) (S/m)

SAR(C) (W/kg)

E(D) (V/m)

J(D) (A/m3)

T(D) (°C)

HF(D) (W/m3)

σ (D) (S/m)

SAR(D) (W/kg)

0.0

0

0

37

0

0.143

0.0

0

0

37

0

0.143

0

2.5

2646

378

38

122

0.143

9.4 × 102

2644

384

38

123

0.145

9.6 × 102

5.0

5291

757

41

489

0.143

3.8 × 103

5280

801

41

493

0.152

4.0 × 103

7.5

7937

1135

45

1100

0.143

8.5 × 103

7900

1288

45

1118

0.163

9.6 × 103

10.0

10583

1513

51

1956

0.143

1.5 × 104

10495

1886

52

2011

0.180

1.9 × 104

12.5

13228

1892

59

3056

0.143

2.4 × 104

13059

2648

60

3186

0.203

3.3 × 104

15.0

15874

2270

69

4401

0.143

3.4 × 104

15583

3638

71

4667

0.233

5.3 × 104

17.5

18519

2640

80

5990

0.143

4.6 × 104

18062

4941

84

6482

0.274

8.4 × 104

20.0

21165

3027

94

7824

0.143

6.0 × 104

20487

6666

99

8663

0.325

1.3 × 105

  1. Modeling results using constant (C) and temperature-dependent (D) conductivity at the point of maximum electrical field (E), current density (J), temperature(T), and heat flux (HF), electrical conductivity (σ) and the specific absorption rate (SAR). This model assumes that the perfusion coefficient ω = 0.