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Background
Autonomic imbalance, characterized by a hyperactive sympathetic system and a hypo-
active parasympathetic system, is associated with various pathological conditions [1]. 
Conventionally, the relationships between autonomic imbalances and cardiovascu-
lar diseases are widely implemented by analyzing the heart rate variability (HRV) in 
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frequency domain. The low-frequency (LF) spectral power of a heart rate signal within 
the spectra between 0.04 Hz and 0.15 Hz reflects both the sympathetic and parasympa-
thetic activities. On the other hand, the high-frequency (HF) spectral power between 
0.15 Hz and 0.4 Hz is considered a reflection of solely parasympathetic activity. The cor-
responding LF/HF ratio is often used to indicate the autonomic balance [1–4]. Conse-
quently, the autonomic imbalance measured by HRV has been shown to be associated 
with a wide range of pathological conditions, including congestive heart failure (CHF), 
diabetes, osteoporosis, arthritis, Alzheimer’s disease, periodontal disease, and hyperten-
sion (HTN) [1–5].

In practice, the HRV analysis has been attempted to assess the effectiveness of per-
cutaneous renal denervation (RDN), an effective and safe treatment to reduce blood 
pressure (BP) by disrupting renal sympathetic nerves for the autonomic balance [6, 7]. 
Applying the short-term HRV after RDN or renal nerve stimulation seems to provide 
a way to assess the state of the autonomic nervous system [8, 9]. However, the relative 
changes of HRV after RDN were not always consistent with BP reduction and were not 
predictive of response to RDN [10–12]. The mechanisms of non-responder after RDN 
was uncertain, and the possible cause was the preexisting activity of the sympathetic 
nervous system before RDN [13]. Furthermore, the indices of conventional HRV could 
be influenced by different backgrounds, exercise, or unplanned medication changes and 
had a broad baseline value [14–16]. Another limitation of conventional HRV indices is 
that both LF and LF/HF reflect the mix of sympathetic and parasympathetic activities. 
Thus, it is difficult to discern the underlying meaning [14, 15].

Later, some conditional-entropy-based methods provided another way to detect auto-
nomic dysfunction by analyzing the irregularity of heart rhythm. For example, approxi-
mate entropy (ApEn) and sample entropy (SampEn) measure the irregularity of a heart 
rate time series by evaluating the appearance of repetitive patterns in the series [17, 18]. 
However, the ApEn might underestimate the actual irregularity due to the self-counting 
of unique patterns. In addition, SampEn would blur the local statistical features while 
computing over a global estimate of conditional probability. To overcome the disad-
vantages of ApEn and SampEn, corrected conditional entropy (CCE) and local SampEn 
(LSampEn) were proposed [19, 20]. The CCE of heart rate series has been shown to 
decrease as a function of the tilt table inclination and thus can be helpful to monitor 
sympathovagal balance [19, 21]. LSampEn of heart period variability has been shown to 
decrease during bicycle exercise, thus being a likely hallmark of sympathetic activation 
[20].

Although the conventional HRV indices and the conditional-entropy-based irregu-
larities quantify autonomic dysfunction from different viewpoints, there are various 
drawbacks. For example, the frequency-domain HRV measures the spectral power of a 
time series, which reflects the amplitude of the series without considering the sequen-
tial irregularity of the series. On the other hand, the conditional-entropy-based irregu-
larities neglect the amplitude of the series, since the standard deviation of the series is 
always normalized to 1 in their algorithms.

Recently, the disorder of heart rhythm measured using average entropy (AE) seems 
superior to the irregularity in terms of the accuracy in differentiating the healthy 
from the pathological. Average entropy (AE) measures the disorder of a time series 
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by reflecting both the amplitude and randomness of the series [22]. AE is the average 
of local instabilities of a series measured using multi-scale Shannon entropy instead 
of evaluating the appearance of repetitive patterns of the series. AE has been shown 
reliable in quantifying the disorders of simulated series with different amplitudes and 
numbers of shuffled data points [22] and those of colored noises [23]. In the heart 
rate signal analysis, AE has been used to differentiate the healthy, the congestive heart 
failure (CHF), and the atrial fibrillation (AF) subjects with an accuracy of 94%, higher 
than those obtained using Shannon entropy and SampEn.

In addition, the complexity of heart rhythm measured using entropy of entropy 
(EoE) reflects the degree of healthiness [24]. The EoE vs. AE plot of a group of heart 
rate series exhibits a distinct inverted U relation. The corresponding data points from 
the CHF, the healthy, and the AF subjects can be well-separated in the lower left, mid-
dle top, and lower right regions. Specifically, the healthy subjects were found highly 
converged in the area of 1.0 ≤ AE ≤ 1.8 and EoE ≥ 3.8 [22].

Since it has been well-recognized that CHF and AF are associated with autonomic 
dysfunction, the sympathetic activities and autonomic balance changes are likely to be 
reflected in the AE and EoE analysis. This might provide an alternative way to detect 
autonomic dysfunction. Therefore, this study aimed to investigate the role of RDN in 
restoring autonomic balance via AE and EoE analysis.

Results
Change of blood pressure and HRV after RDN

A total of five patients, four males and one female, with resistant HTN were enrolled 
in this pilot study. Their mean age was 48.6 ± 11.3 years. Table 1 shows the statistical 
features of their ambulatory BP monitoring (ABPM) data at baseline (before RDN) 
and 3  months after RDN. At baseline, the means of the 24-h systolic BP (SBP) and 
diastolic BP (DBP) of the 5 subjects were 144.0 mmHg and 90.2 mmHg. Three months 
after RDN, all the SBPs and the DBPs were both reduced, including daytime and 
nighttime periods.

Figure  1 illustrates the average daytime heart rate, AE, EoE, LF/HF, HF, and LF 
of all 1-h RR interval series before and after RDN of all subjects. The heart rates of 
all subjects decreased after RDN. Only the AE and HF values of all subjects con-
sistently increased after RDN. The LF/HF ratio as an index of autonomic balance 
did not have a consistent change after RDN. The post-RDN values of AE and EoE 

Table 1  Changes in ABPM in patients treated RDN after 3 months

Before (t1) After (t2) Difference (t2−t1)

24-h SBP (mmHg) 144.0 (121 ~ 173) 124.8 (109 ~ 155) −19.2 (−40 to −12)

daytime SBP (mmHg) 147.8 (135 ~ 170) 125.6 (114 ~ 128) −22.2 (−45 to −7)

night SBP (mmHg) 136.0 (104 ~ 147) 121.0 (98 ~ 153) −15 (−38 to −6)

24-h DBP (mmHg) 90.2 (76 ~ 105) 77.6 (65 ~ 85) −12.6 (−29 to −3)

daytime DBP (mmHg) 92.0 (87 ~ 107) 78.6 (72 ~ 86) −13.4 (−28 to 2)

night DBP (mmHg) 84.6 (59–95) 71.4 (50–84) −10.8 (−25 to −6)



Page 4 of 12Lin et al. BioMedical Engineering OnLine           (2022) 21:32 

were distributed within a relatively small range compared with other HRV indices. 
According to previous analysis [22], the post-RDN values of AE and EoE were all 
within the threshold of being healthy status (1.0 ≤ AE ≤ 1.8 and EoE ≥ 3.8).

The post-RDN values of AE and EoE had a lower coefficient of variation (CV) than 
other HRV indices (Table 2). Lower CV values of AE and EoE resulted in narrow dis-
tribution after RDN, as shown in Fig. 1.

Correlation between HRV indices

Table 3 illustrates the Spearman rank-order correlation (ρ) coefficients between any 
two HRV indices. The AE and EoE were strongly correlated with the HF and LF, 
respectively. Figure 2 shows (a) the AE vs. HF and (b) the EoE vs. LF of 48 1-h RR 
daytime interval series, including before and after RDN. The spearman rank-order 
correlation (ρ) coefficient of (a) the AE vs. HF and (b) the EoE vs. LF are 0.86 and 
0.77, respectively.

Fig. 1  Daytime average values of the six HRV indices: before (blue diamond) and after (green circle) RDN. The 
health threshold was defined according to previous analysis [15]

Table 2  Coefficient of variation (CV) of six HRV indices from the 5 subjects (N = 5): before and after 
RDN

Before RDN (N = 5) After RDN (N = 5) p

Mean ± SD CV Mean ± SD CV

Heart rate (min−1) 77.31 ± 14.026 0.18 68.11 ± 14.67 0.22  < 0.05

LF (ms2) 407.18 ± 352.67 0.87 615.87 ± 301.17 0.49 0.35

HF(ms2) 169.98 ± 186.48 1.10 361.52 ± 197.03 0.55  < 0.05

LF/HF 4.23 ± 2.38 0.56 2.23 ± 1.54 0.67 0.08

AE 0.96 ± 0.34 0.36 1.26 ± 0.17 0.13  < 0.05

EoE 3.57 ± 0.53 0.15 4.02 ± 0.09 0.02 0.23
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EoE vs. AE of the heart rate signals before and after RDN

Figure 3a illustrates the inverted U shape of the EoE vs. AE plot from the previous study 
[22], in which the dashed curve is a quadratic fitting to the data as a reference in Fig. 3b. 
The data is from 75 CHF, 90 healthy, and 53 AF sets of heart rate series with 10,000 
data points. The data points from the healthy set are highly concentrated in the region 
of 1.0 ≤ AE ≤ 1.8 and EoE ≥ 3.8. Figure 3b illustrates the EoE vs. AE plot of all 48 1-h RR 
interval series before (blue diamonds) and after (green circles) RDN from the 5 subjects 

Table 3   Spearman rank-order correlation (ρ) coefficients between any two HRV indices

HF LF/HF AE EoE

LF 0.78 −0.30 0.79 0.77

HF −0.76 0.86 0.60

LF/HF −0.56 −0.28

AE 0.73

Fig. 2  Corresponding Spearman rank-order correlation (ρ) coefficients of a. AE vs. HF and b EoE vs. LF of all 
48 RR daytime interval series, including before and after RDN

Fig. 3  a Inverted U shape of the EoE vs. AE plot from the previous study [22]. The diamond, circle, and 
triangle symbols are from 15 CHF, 18 healthy, and 53 AF subjects, respectively. The dashed curve is a quadratic 
fitting in each plot. b EoE vs. AE of all 48 1-h RR interval series before (blue diamonds) and after (green circles) 
RDN from the five subjects in this study
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in this study. It can be seen that the data shifted from the lower-left region before RDN 
to the middle-top region after RDN, corresponding to the CHF and health regions, as 
shown in Fig. 3a.

Discussion
As shown in Fig. 3b, the EoE and AE data shift after RDN toward the health zone pro-
vides an interpretation of EoE and AE on the autonomic balance of heart rhythm com-
plexity after renal artery denervation. First, a review of the nature of the disorder and 
complexity of the RR interval series, measured using AE and EoE [22, 24], is beneficial 
to understanding the inverted U relation in the EoE vs. AE plot of heart rhythm. The RR 
series from CHF patients exhibit relatively stable behavior, while those from AF patients 
show highly erratic fluctuations with statistical properties resembling uncorrelated white 
noise. Thus, the AE values of AF, healthy, and CHF groups are high, medium, and low, 
respectively. Furthermore, AE has been shown to have higher accuracy in differentiating 
the three groups than Shannon entropy and sample entropy [22].

On the other hand, the complexity measured using EoE has been illustrated as rela-
tively high for a complex system intermediate between extreme order and disorder 
[22–27]. In other words, complexity is considered different from disorder or random-
ness. The complexity of RR interval series is regarded as a reflection of the degree of the 
healthiness of heart rhythm [28]. Thus, the EoE value is significantly higher in a healthy 
group than in CHF and AF groups. Furthermore, EoE has been shown to have higher 
accuracy in differentiating the healthy from the pathologic groups than the multi-scale 
entropy [24].

Thus, the EoE vs. AE plot of the RR series displays an inverted U relation. The corre-
sponding data from CHF, healthy, and AF subjects lie in the lower-left, middle-top, and 
lower-right regions, respectively, as mentioned in the introduction section. The feature 
is consistent with the hypothesis in the previous studies [28–32]. Thus, the combination 
of EoE and AE, such as the inverted U relation, could be an alternative method to evalu-
ate autonomic balance instead of the traditional LF/HF ratio.

Second, recall that CHF and hypertension (HTN) are related to an autonomic imbal-
ance with increased sympathetic output and decreased parasympathetic tone [1, 33]. 
In this study, the (EoE, AE) data of HTN patients were found to shift from the lower-
left region to the middle-top region after RDN, corresponding to the CHF and health 
regions in the previous study [22]. Therefore, this result suggests that the healthy and 
pathologic status zones created by the EoE vs. AE plot could be applied to diagnose the 
clinical diseases due to autonomic dysfunction.

From another point of view, as shown in Fig. 2a, the large Spearman rank-order cor-
relation coefficient of AE vs. HF, 0.86, also suggests that AE might be an effective indi-
cator of evaluating parasympathetic nerve activity as HF. After RDN, the mean AE was 
increasing from 0.96 ± 0.34 to 1.26 ± 0.17 (p < 0.05). The change of AE is consistent with 
the previous studies in which the entropy values increase as the antinomic balance is 
increased [19–21]. The changes of AE might reflect an increasing parasympathetic tone, 
while RDN suppressed the over-activated sympathetic tone. In conventional HRV analy-
sis, LF was an index of sympathetic cardiac control.
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Similarly, as shown in Fig.  2a, the large Spearman rank-order correlation coefficient 
of EoE vs. LF, 0.77, also implies that EoE might be an effective index of autonomic bal-
ance as LF. After RDN, the mean EoE was increased from 3.57 ± 0.53 to 4.02 ± 0.09. The 
changes in EoE might reflect a decreasing sympathetic tone after RDN. The post-RDN 
(EoE, AE) data points were shifted toward the relative health region, the middle-top 
of the inverted U plot. Although the LF/HF ratio was an index of autonomic balance, 
the post-RDN LF/HF ratio did not show a consistent decreasing change in individual 
patients. The mean LF/HF ratio decreased from 4.23 ± 2.38 to 2.23 ± 1.54, but its coef-
ficient of variation (CV) was higher than AE and EoE. In our study, the post–RDN 
data of AE and EoE were all within the relative health region: (1) 1.0 ≤ AE ≤ 1.8 and (2) 
EoE ≥ 3.8. Consequently, the top of the inverted U shape established by AE and EoE 
could better evaluate autonomic balance.

Conclusions
The autonomic imbalance of excessive sympathetic activity and reduced parasympa-
thetic activity represents a significant risk for cardiovascular mortality. Compared with 
the conventional HRV, the complexity and disorder of heart rhythm, measured using 
EoE and AE, provide an alternative method of interpreting sympathetic and parasympa-
thetic status. After disrupting renal sympathetic nerves by RDN, AE and EoE converged 
into an area (1.0 ≤ AE ≤ 1.8 and EoE ≥ 3.8), the health zone [22]. This result implies that 
the healthy and pathologic status zones created by the EoE vs. AE plot could be applied 
to diagnose the clinical diseases due to autonomic dysfunction.

Besides, the relative change of autonomic tone, especially an increasing parasympa-
thetic activity, could restore autonomic balance after RDN. Since there is a high cor-
relation between AE and HF, AE might also be an effective indicator of parasympathetic 
activity.

Materials and methods
Patients

This analysis is based on five patients who participated in the Global SYMPLICITY Reg-
istry (GSR), who underwent RDN from March 11, 2020, to February 18, 2021 [34]. The 
GSR is an ongoing, multicenter, international single-arm trial with a planned enrollment 
of 3000 patients with uncontrolled HTN and/or conditions associated with sympathetic 
nervous system activation. Uncontrolled HTN was defined as BP above-recommended 
levels (regardless of therapy) according to published local guidelines. Sympathetic nerv-
ous system activation was defined as conditions associated with increased sympathetic 
nervous system activity, including diabetes, CHF, chronic kidney disease, obstructive 
sleep apnea, or arrhythmias.

Eligible patients were older than 18  years and fulfilled one of the criteria: (1) office 
systolic BP ≥ 150  mmHg and diastolic BP ≥ 90  mmHg (2) ambulatory systolic 
BP ≥ 140 mmHg and diastolic BP ≥ 80 mmHg type 2 diabetics, despite treatment with 
≥ 3 antihypertensive drugs with glomerular filtration rate ≥ 45 mL/min/1.73 m2 and suit-
able renal artery anatomy for RDN. The Institutional Review Board of Mackay Memorial 
Hospital approved the study protocol (number 19CT035Ae).
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Ambulatory blood pressure monitoring (ABPM) and sample preparation

The ABPM readings of the 5 subjects were obtained at baseline and 3 months after 
RDN, separately. The ABPM was performed using the WatchBP Home device (Micro-
life Inc., Widnau, Switzerland) with readings taken every 30 min at daytime and every 
60  min at nighttime (daytime: 08:00 to 18:00, nighttime: 22:00 to 04:00 [35, 36]). 
Further examinations included complete history, assessment of office BP and 24-h 
ABPM, review of medication, and blood chemistry. Bilateral RDN was analyzed using 
the Symplicity Spyral catheter (Medtronic, Mountain View, California). All proce-
dures were performed by interventionists smoothly without any complications.

Electrocardiography (ECG) monitoring and sample preparation

The 24-h Holter monitoring for the ECG data of the 5 subjects was performed before 
and immediately after RDN procedures. The ECG data collected from the 5 subjects 
were prepared for HRV analysis as follows. First, each of the 5 sets of ECG data was 
converted into a heart rate (RR interval) time series. Second, the daytime data seg-
ments of the RR interval series during the daytime periods were extracted (08:00 to 
18:00). Third, each of the daytime data segments was truncated into several sets of 
1-h-long time series. This was to examine the variations of the 5 HRV indices with 
time for each of the 5 subjects.

Regarding the daytime samples after RDN for analysis, there was an average of approx-
imately 5 1-h-long RR interval time series from each of the 5 subjects from 13:00 to 
18:00, since all the 5 RDN procedures were ended around 12:00 in the afternoon. In 
total, there were 24 sets of 1-h-long RR interval time series after RDN. Accordingly, 24 
sets of daytime 1-h-long RR time series before RDN were thus prepared for analysis.

HRV analyses

The conventional HRV indices LF, HF, and LF/HF, and the entropy-based EoE and AE 
of each 1-h-long RR interval time series were evaluated. Here, the LF is the spectral 
power of a RR interval time series in the low-frequency band between 0.04 to 0.15 Hz. 
The HF is the spectral power of the RR interval time series in the high-frequency 
band from 0.15 to 0.4 Hz.

Entropy of entropy (EoE) and average entropy (AE) methods

EoE characterizes the complexity of a biological system from the viewpoint of the 
"variation of information" hidden in a physiologic time-series signal on multiple time 
scales [24]. AE reflects the disorder of a time series in terms of both amplitude and 
randomness of the series on multiple time scales [22].

The algorithms of both EoE and AE methods consist of three steps in analyzing a 
time series {xi} = {x1, …, xN} of length N. The first and the second steps of the two 
methods are the same for the construction of a Shannon entropy sequence to repre-
sent the time series {xi}. First, the time series is divided into many consecutive non-
overlapping windows of equal lengthτ. Each window is in the form of wj

(τ) = {x(j−1)τ+1, 
…, x(j−1)τ+τ}, where j is the window index ranging from 1 to N/τ and τ corresponds to 
the scale factor of EoE and AE.
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Second, the Shannon entropy value of each window wj
(τ) is derived as follows. Sup-

pose that xmax and xmin are the maximum and minimum of all data collected in this 
study, respectively. The range from xmax to xmin is divided into s1 slices of equal width 
Δs1 = (xmax − xmin)/s1. The probability pjk for a certain data point xi over window wj

(τ) 
to occur in slice k is thus obtained in the form of

where k is the slice index ranging from 1 to s1. Subsequently, the Shannon entropy value 
yj

(τ) of each window wj
(τ) is given by

In this respect, the Shannon entropy value yj(τ) is considered the representative of 
window wj

(τ). Repeating the same process for every window results in a representative 
Shannon entropy sequence {yj{τ }} of length N/τ for the original time series {xi}.

Third, the AE value of {xi} is defined as the average of the Shannon entropy sequence 
{yj(τ)} in the form of

On the other hand, the EoE value of {xi} is derived as follows. It can be imagined 
that all elements of {yj{τ}} distribute over some finite levels and the maximum num-
ber of all possible levels s2 (τ) depends upon the time scale τ. For example, s2 (1) = 1, 
s2 (2) = 2, s2 (3) = 3, s2 (4) = 5, s2 (5) = 7, and s2 (6) = 11. Then, the probability pl for a 
certain representative yj{τ} over the sequence {yj(τ)} to occur in level l is obtained in the 
form of

where l is the level index ranging from 1 to s2. Thus, the EoE value of the original time 
series {xi} is defined as the Shannon entropy value of the Shannon entropy sequence 
{yj(τ)} and is given by.

In this study, xmax = 1.6, xmin = 0.3, τ = 14, and s1 = 55 are used for the RR interval 
series analysis, as suggested in the previous study [22].

In this paper, the entropy-based AE and EoE analysis is proposed to test the hypoth-
esis of whether RDN is effective in restoring the balance of the autonomic system. The 
criteria for AE and/or EoE to be the valid indicators of sympatho-vagal balance are 
as follows: (1) the values of the indicators after RDN should separately range within 

(1)pjk =

total number of xiover w
(τ )
j in slice k

τ

(2)y
(τ )
j = −

s1
∑

k=1

pjk
(

Inpjk
)

(3)AE(τ ) =

∑N/τ
j=1

y
(τ )
j

N/τ

(4)pl =
totalnumberofy

(τ )
j over

{

y
(τ )
j

}

inlevell

N/τ

(5)EoE(τ ) = −

s2
∑

l=1

pl(lnpl).
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a health region for all test subjects, and (2) the values of the indicators after RDN 
should demonstrate the lowest variabilities among the subjects [37]. In this study, the 
two criteria were tested for AE, EoE, and the conventional HRV indices LF, HF, and 
LF/HF, separately, for comparison by analyzing the BP and the ECG data of 5 resistant 
HTN patients enrolled. Among the five indices, the ones that best satisfy the criteria 
would be the ideal indicators.

Examples of the AE and the EoE analyses of heart rate signals and the inverted U relation

Figure 4 illustrates the three steps of the AE and EoE methods for three representative 
CHF, healthy, and AF time series of consecutive heartbeat intervals. Figure 4a shows the 
three RR interval series {xi} with the same length N of 70 data points. In this example 
case, all series were analyzed at τ = 5. It can be seen that the 70 data points of each noise 
were equally divided into 16 (= N/τ) windows, with each of 5 data points in a red frame. 
Then, the Shannon entropy value of every window in red was calculated individually. 
Figure  4b shows the representative Shannon entropy sequences {yj(5)} of the three RR 
series. Each sequence {yj(5)} consists of 16 elements, separately. According to Eqs. (5) and 
(3), the (EoE, AE) values of the three noises were obtained to be (0.41, 0.07), (1.40, 1.24), 
and (0.41, 1.57), individually. It can be seen that EoE is maximum for healthy subjects 
with intermediate AE, and thus the EoE vs. AE plot exhibits an inverted U shape.

Statistical analysis

The BP data were presented as mean (min.–max.). The HRV data were presented as 
mean ± standard deviation (SD). The variability of each HRV index among a specific 
set of samples was expressed as the coefficient of variation of the values of the HRV 
index. The correlation between any two different HRV indices among a specific set of 
samples was evaluated using the Spearman rank-order correlation method. The degree 
of difference between the before RDN and the after RDN samples for each HRV index 
was performed using the paired Wilcoxon signed-rank test (which is suitable for small 

Fig. 4  a Three RR interval series {xi} with the same length of 70 data points. b Shannon entropy sequences 
{yj

(5)} of the three heart rate series for EoE and AE analyses at τ = 5 as an example of short data analysis
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sample comparison based on nonparametric statistics). The statistical significance was 
set at p < 0.05. All data analyses were performed using IBM SPSS 22.0 for windows (IBM 
Corp., Chicago, IL, USA).
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