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Abstract 

Background:  Patient-specific lung mechanics during mechanical ventilation (MV) can 
be identified from measured waveforms of fully ventilated, sedated patients. However, 
asynchrony due to spontaneous breathing (SB) effort can be common, altering these 
waveforms and reducing the accuracy of identified, model-based, and patient-specific 
lung mechanics.

Methods:  Changes in patient-specific lung elastance over a pressure–volume (PV) 
loop, identified using hysteresis loop analysis (HLA), are used to detect the occurrence 
of asynchrony and identify its type and pattern. The identified HLA parameters are then 
combined with a nonlinear mechanics hysteresis loop model (HLM) to extract and 
reconstruct ventilated waveforms unaffected by asynchronous breaths. Asynchrony 
magnitude can then be quantified using an energy-dissipation metric, Easyn, compar-
ing PV loop area between model-reconstructed and original, altered asynchronous 
breathing cycles. Performance is evaluated using both test-lung experimental data 
with a known ground truth and clinical data from four patients with varying levels of 
asynchrony.

Results:  Root mean square errors for reconstructed PV loops are within 5% for test-
lung experimental data, and 10% for over 90% of clinical data. Easyn clearly matches 
known asynchrony magnitude for experimental data with RMS errors < 4.1%. Clinical 
data performance shows 57% breaths having Easyn > 50% for Patient 1 and 13% for 
Patient 2. Patient 3 only presents 20% breaths with Easyn > 10%. Patient 4 has Easyn = 0 for 
96% breaths showing accuracy in a case without asynchrony.

Conclusions:  Experimental test-lung validation demonstrates the method’s recon-
struction accuracy and generality in controlled scenarios. Clinical validation matches 
direct observations of asynchrony in incidence and quantifies magnitude, including 
cases without asynchrony, validating its robustness and potential efficacy as a clinical 
real-time asynchrony monitoring tool.

Keywords:  Asynchrony, Mechanical ventilation, Hysteretic lung mechanics, Hysteresis 
loop model, Virtual patient, Lung mechanics
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Background
Mechanical ventilation (MV) is a core therapy for respiratory failure patients in the 
intensive care unit (ICU) [1], and is particularly important for managing Covid-19 
patients [2, 3]. Model-based methods have proven potential and accuracy [4–8] in 
predicting patient-specific response to care, and thus for guiding and optimizing MV 
care. In particular, to avoid ventilator induced lung injury (VILI) and thus reduce 
length of stay, mortality, and cost [9]. However, significant inter- and intra-patient 
variabilities in lung mechanics and condition can make model identification difficult 
reducing the accuracy of lung mechanics identified [8]. This issue is compounded 
when patients exhibit spontaneous breathing (SB) efforts, or any mismatch with the 
ventilator delivery, more generally referred to asynchrony [10–13].

Patient SB effort is common as completed paralysis and heavy sedation of MV sup-
port may lead to ventilator induced diaphragmatic dysfunction [14]. Thus, patient–
ventilator interaction is frequent in long-term MV treatment with respiratory work 
done by both the ventilator and patient. Patient-ventilator asynchrony is commonly 
seen when patient effort exists while the patient–ventilator interaction is not opti-
mal. Therefore, patient–ventilator asynchrony is defined as a mismatch between the 
patient, regarding time, flow, volume, or pressure demands of the patient respiratory 
system, and the ventilator, which supplies such demands during MV [15]. In contrast, 
patient–ventilator synchrony is ventilator setting gas delivery matched patient respir-
atory demand. Clinical data demonstrate patient SB effort can cause up to 85% asyn-
chrony rate [15], associated with failure of MV weaning and longer length of stay [16]. 
Therefore, it is important to extract the true underlying ventilated lung mechanics 
response from asynchronous measured pressure and flow waveforms to best estimate 
the incidence and magnitude of asynchrony, and optimize MV settings to mitigate 
this effect and optimize care.

Clinically, visual inspection of ventilator waveform (pressure and/or flow) has been 
a major approach for bedside detection of patient asynchrony, while less than 25% of 
health professionals in ICU were able to identify asynchronies with good accuracy [17, 
18]. Computer algorithms have been considered a useful tool to overcome the profes-
sional bias. However, current researches are largely focused on the detection of asyn-
chrony occurrence and identification of asynchrony types [16, 19–23], while few of them 
are able to identify the magnitude of asynchrony or reconstruct the distorted ventilated 
waveforms.

In particular, reconstruction of asynchronous breath is a challenging task as the 
patient- and breath-specific responses to MV are changing over time. Thus, it is an iden-
tification of an unknown, unpredictable, and unmodeled input to model-based methods 
altering their accuracy. Reconstruction of unaltered waveforms in asynchrony has been 
studied using a well-validated single compartment linear lung model [24–28]. However, 
these methods require a multistep analysis or iteration of the pressure waveform with 
accuracy and robustness depending on the convergence of the algorithm. Moreover, 
reconstruction using only one-dimension pressure waveforms might lead to unidentifi-
ability issue due to incomplete information of the couple effect. Therefore, it is needed 
to develop a more robust algorithm to consider the coupled effect of both pressure and 
volume without suffering convergence issues.
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There are a range of asynchrony types, influenced by neural inspiratory time and 
ventilator settings among other factors [11, 16, 26, 29, 30]. It is noted that the factors 
affecting asynchrony are substantial [31], while synchronization requires reconstruc-
tion to obtain the magnitude of asynchrony and the patient-specific lung mechan-
ics to optimize the MV setting. Machine-learning methods and other algorithms 
have been applied to identifying, but not reconstructing, asynchronous breaths from 
measured waveforms [16, 21, 32, 33]. In particular, automated classification methods 
or machine-learning methods have been developed to detect ineffective triggering, 
commonly caused by auto-PEEP or airflow obstruction [19, 20], or double triggering 
due to longer inspiratory time [23]. However, these methods require pre-annotation 
of the training sets, which is not practical and did not generalize well when a number 
of different types of asynchrony types were presented.

In addition, label training data for classification may be conducted via visual inspec-
tion of clinicians, while labels of continuous physical parameters for reconstruction 
are problematic and inaccurate via human input as the parameter value is not directly 
available from the reading of waveforms. Thus, these methods mainly focus on the 
detection of asynchrony, rather than the quantification of asynchrony magnitude and 
reconstruction. More importantly, these identification methods and the fewer num-
ber of automated modeling reconstruction methods [24–28] do not yet provide real-
istic or consistent reconstruction beyond identifying asynchrony incidence, which is 
critical to optimizing and personalizing MV care to the broadest number of patients 
[34–37]. Finally, they are black-box methods, which are unable to provide estimates 
of lung mechanics critical for clinical interpretation of MV settings, where the main 
advantage of model-based methods is their enabling of automated monitoring and 
analysis of MV and lung mechanics [7, 24–28].

In contrast, a recently developed virtual patient model based on hysteretic pres-
sure–volume (PV) loop analysis and hysteresis loop model (HLM) offers more com-
plete respiratory information from measured pressure and volume/flow waveforms. 
Improved and more robust identification of model-based lung mechanics with a non-
linear mechanics model provides a foundation to identify asynchrony as an unmod-
eled deviation from expected synchronized breathing response in MV [7]. Its detailed 
nonlinear mechanics offers the opportunity to thus identify the incidence, type, and 
magnitude, of asynchrony via identification of each part of the PV loop and subse-
quent model-based reconstruction.

In addition, hysteresis loop analysis (HLA) has been developed to specifically iden-
tify the shape and fundamental mechanics of hysteresis loop for engineering dynam-
ics systems, while the PV loop observed in lung mechanics has found to be equivalent 
to hysteresis loop [7]. Thus, the change of shape in PV loop caused by patient asyn-
chrony is considered to be equivalent to the change of hysteresis loop due to dam-
age in engineering structures, indicating the feasibility of modeling and predicting 
lung mechanics using HLA and hysteretic mechanics model. Therefore, the HLA is 
employed to investigate the underlying mechanics of PV loop for the detection and 
reconstruction of asynchronous breaths based on its validated capability of identify-
ing hysteretic systems in the prior work [38].
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This paper develops a model-based method to identify the incidence and type of asyn-
chrony, as well as their magnitude, using the validated HLM model. The major goal is 
to provide a direct breath-to-breath estimation of asynchrony incidence and magnitude 
using only ventilated breath waveform data and a proven virtual patient model frame-
work for real-time bedside monitoring. A unique validation including test-lung experi-
mental data, where asynchronous inputs are known, as well as clinical data are used to 
validate the method and quantify its performance.

Results
Experimental test‑lung results and validation

Figure 1 shows a reverse-triggering example result with comparison of the reconstruc-
tion to an unaltered breath in the experimental setup. The reconstructed loop and pres-
sure waveform match the designed non-asynchronous breath very well with root mean 
squared (RMS) error of 3.0%, indicating successful reconstruction for this example using 
the proposed method. Calculated Easyn, quantifying asynchrony magnitude, is 10.6%, 
indicating a significant asynchrony magnitude of 10.6% of the total ventilator supplied 
work of breathing for an unaltered breath, matching qualitative observation of Fig. 1a.

Table 1 summarizes the reconstruction accuracy for 10 asynchronous breaths under 
each of the three simulated scenarios. The maximum RMS errors of identification for 
each scenarios are 3.5–4.1% and the average errors for each scenario are within 3.0–
3.2%, a very small range with a tight standard deviation between 0.3 and 0.4%, indicating 
good robustness and accurate identification over all simulated scenarios.

Figure 2 shows these results graphically. Reverse triggering led to a range of Easyn 
values from the smallest SB effort of 1.9% (BC10) to the strongest SB effort 11.8% 
(BC7), matching the observed difference of enclosed area between the asynchronous 
and reconstructed PV loop. Similarly, Easyn values are small for the premature cycling 

Fig. 1  Reconstruction of asynchronous PV loop using HLM (left, a) to compare with the true ventilated PV 
loop (right, b)
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in Fig. 2b when the SB effort is smaller than the trigger threshold, while the Easyn val-
ues are much higher (> 88%) for the double-triggering breaths seen in Fig. 2c as the 
SB created negative pressure exceeds the trigger threshold leading to a second breath. 

Table 1  RMS errors of reconstruction for experimentally simulated asynchrony for N = 10 breaths 
and each type of asynchrony

Scenario RMS error (%)

1 2 3 4 5 6 7 8 9 10 Mean SD

1 Reverse triggering 3.0 3.1 3.2 3.0 3.1 3.0 4.1 2.8 3.0 3.2 3.2 0.3

2 Premature cycling 3.4 3.9 3.0 3.6 3.5 3.1 3.3 3.7 3.3 3.4 3.4 0.3

3 Double triggering 3.5 2.6 2.7 2.6 3.3 2.6 2.8 3.5 3.0 3.3 3.0 0.4

Fig. 2  Evaluation of asynchrony effect using Easyn for types of a reverse triggering, b premature cycling, and c 
double triggering
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The overall results show the ability of the method to reconstruct and evaluate SB dur-
ing both early (inspiration) and late (expiration) asynchrony using complete informa-
tion of a breath in a nonlinear, clinically validated model. Hence, it is generalizable to 
different types of asynchronies, as shown in this test-lung validation.

Finally, the estimation of Easyn can be readily conducted breath-to-breath automati-
cally for a real-time assessment of asynchrony effect, and there is no need beyond val-
idation to compare to ventilated/paralyzed breaths, as in Fig. 1. It should be noted the 
HLM virtual patient model and methods are a fully automated process [7]. Finally, the 
test-lung experimental data enable a simulation of fully ventilated response, thus pro-
viding a ground truth for validation, while the availability of a fully paralyzed breath 
may not be guaranteed for clinical data depending on the patient condition.

Clinical data results and proof of concept

Figure 3 shows the cumulative distribution function (CDF) plot for the RMS recon-
struction errors of all breathing cycles for all four patients. Reconstruction errors for 
each patient are within 10% for 90% of breaths, indicating a good and robust recon-
struction accuracy using the proposed method in the presence of noise, comparison 
across breaths, and real clinical variability.

The distribution of Easyn is also quantified in the pie plots of Fig. 4, where 0% error 
is a normal unaffected breath with no asynchrony. Clearly, Patient 1 has significant 
asynchrony with 57% breaths having Easyn > 50%, matching direct manual observa-
tions of strong reverse triggering over these breathing cycles. Patient 2 shows 13% 
of breaths with Easyn > 50% mainly due to double-triggering effect, where premature 
cycling was more likely to lead to smaller values (0–10%) of Easyn for 22% of breaths 
similarly seen in the simulated data. In contrast, Patient 3 only presents minor reverse 
triggering, having 80% breaths with Easyn (0–10%). Finally, no significant asynchrony 
is identified for Patient 4 with Easyn = 0 for 96% breaths. There is thus a clear and wide 
level of inter-patient variability.

Fig. 3  Empirical cumulative distribution (CDF) of reconstruction error for clinical data. F(x) in the y-axis is the 
CDF of X = RMS error (%) in the x-axis



Page 7 of 20Zhou et al. BioMedical Engineering OnLine           (2022) 21:16 	

Discussion
A validated virtual patient model for modeling fully sedated MV patient response is 
extended for the identification, reconstruction, and quantification of asynchronous 
breathing cycles. Direct tests using clinical data can lack evidence of accuracy, as there 
are no known exact answers, where the test-lung experimental data provide a compara-
ble, known ground truth for proof-of-concept validation. Thus, the typical asynchrony 
patterns observed in the clinical data were replicated and simulated based on test-lung 
experiments. Figures 10 and 12 show very similar asynchronous PV loops between the 
clinical and simulated data, validating the experimental setup. Therefore, a successful 
reconstruction of the simulated test-lung data as shown in Table  1, in comparison to 
unaffected experimental breaths would demonstrate and quantify the method’s ability to 
reconstruct the ground truth from waveform data obtained in asynchronous breaths and 
provide confidence in the results using clinical data.

Using clinical data, 90% breaths were reconstructed with less than 10% RMS error. 
Larger errors are mainly due to the lack of necessary information for segment recon-
struction as shown by example in Fig. 5, where turning point Vm1 is missing in the clini-
cal data (circles) due to asynchrony beginning before the breathing cycle begin from the 
ventilator and this event having very large magnitude. This issue leads to estimation fail-
ure in finding k1 and k2 for the reconstruction. However, such heavily altered breaths are 
extremely rare in this clinical data set. Equally, the latter half of inspiration could poten-
tially be used to estimate these values [39].

However, the occurrence of measurably inaccurate reconstruction is lower than 10%, 
thus only affecting the trend analysis of patient asynchrony. Clinically, the magnitude or 

Fig. 4  Identified distribution of Easyn for the 4 patients
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impact of asynchrony might vary for each single breath, where, in contrast, patient con-
dition may not vary for a short-period, such as 30 s or 60 s, equivalent to 10–20 breath-
ing cycles. Thus, a moving average of reconstruction could be implemented across every 
10–20 breaths (~ 1 min on average at typical breathing rates for ventilated ICU patients 
of 15–20 breaths per minute), enabling a steady and accurate reconstruction of venti-
lated response or fundamental mechanics, as well as the estimation of asynchrony sever-
ity in more clinically relevant periods, as the main treatment is to adjust MV settings in 
response to persistent asynchrony [40].

As seen in Fig. 5, the reconstruction errors mainly include HLA errors for parameter 
identification and HLM modeling error for reconstruction. Both errors affect the per-
formance of reconstruction, while the HLM modeling errors are the cumulation of both 
HLA errors and model deficiency errors. Thus, reducing errors during HLA parame-
ter identification would decrease both errors in the final reconstruction. However, the 
ability to reduce HLA errors is highly reliant on the magnitude of asynchrony shown 
in Fig. 5. Therefore, future work to improve the HLA and HLM reconstruction for sig-
nificant asynchrony cases could reduce some errors, although very large asynchronies, 
while rare, may remove too much information from measured pressure, flow waveforms 
to allow meaningful reconstruction.

Clinically, the errors are also an upper case estimate. Specifically, the clinical recon-
struction is compared to unaltered breaths when the patient is fully paralyzed at the 
commencement of a RM. Breath to breath variability would thus increase errors. The 
overall errors in Figs. 3 and 4 are still quite low and should be suitable for clinical studies 
to validate their clinical impact.

In addition, the proposed method provides a breath-to-breath real-time reconstruc-
tion of asynchrony as HLA and HLM identification and simulation are direct calcula-
tions suffering no convergence issues or high complexity. Therefore, steady and accurate 
reconstruction can be readily available in real-time via moving average of the current 
breath and previous setting breaths. These outcomes would be critical for practical clini-
cal use.

Clinically, controlling energy dissipation is considered as an efficient tool to adjust 
MV settings to minimize ventilator induced lung injury [41]. Thus, the metric Easyn used 

Fig. 5  Example of inaccurate reconstruction due to missing Vm1 during a very large asynchrony event 
beginning before the start of inspiration and severely altering waveforms and the PV loop
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for comparison of the energy dissipation of the reconstructed and measured breathing 
cycles is proposed to estimate and quantify asynchrony magnitude. As shown in Fig. 4, 
there is a clear difference of Easyn between major asynchrony (Patient 1 and Patient 2) 
and minor asynchrony (Patient 3 and Patient 4). Although the detailed relation of Eaysn 
to clinical diagnosis and choice of ventilator setting remains to be investigated based on 
a larger cohort of patients, the identification of asynchrony occurrence alone provides a 
clinically useful alarm of poor MV setting or low sedation if, for example, Eaysn is greater 
than 10% for an extended clinically defined period. Finally, detection of large Eaysn also 
suggests a significant SB effort, which might assist a clinical decision to switch invasive 
MV to non-invasive MV.

Finally, research employing both simulated and clinical data for a proof-of-concept 
validation of asynchrony identification is quite limited. As the observed patterns of asyn-
chrony from clinical data were successfully replicated using the test-lung experiment 
developed for this study, this study is able to provide a unique comparison and validation 
of the proposed method in both controlled and real scenarios, thus offering a relative 
more complete evaluation of the method. It is worth noting that numerical data gen-
erated from a mechanics-based computational model considering the coupled effect of 
passive response and patient effort would also offer a controlled scenario for validation 
equivalent to the test-lung data as they both provide known ground truth. Thus, the per-
formance of the method against numerical data should be expected to be similar to the 
experimental validation in this study. Therefore, numerical data would be a good option 
for validation particularly if test-lung data are not available.

The overall results show the potential of the virtual patient model and its feasibility for 
different asynchrony types from practical clinical monitoring perspective. However, its 
robustness and full generalizability requires a larger cohort of clinical data with different 
patient conditions and lung mechanics. In addition, a further improvement for clinical 
use might be achieved by pre-defining a wider range of typical asynchrony patterns for 
different MV modes, thus enabling more efficient and accurate reconstruction, and clas-
sification, with additional constraints.

Conclusions
This study extends a clinically validated virtual patient model from fully ventilated res-
piratory response to asynchronous breathing cycles without undermining its ability to 
be automated or its calculation efficiency. Identification and reconstruction are vali-
dated against both test-lung experimental data with known ground truth and real clini-
cal data. Results show the accuracy and robustness of the method for the reconstruction 
of unaltered PV loops capturing the true underlying mechanics. More importantly, the 
modeling and reconstruction can be implemented breath-to-breath in real-time, which 
is critical for practical clinical use. In addition, an energy-dissipation metric Easyn is pro-
posed and validated to evaluate asynchrony magnitude, from which larger cohorts could 
be used to devise thresholds for clinical decisions based on asynchrony magnitude. 
Finally, the versatility of the proposed virtual patient model for several typical MV cases 
is also validated, where its ability to be automated breath-to-breath enables realistic use 
for bedside monitoring and guiding MV care.
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Methods
Hysteretic modeling of ventilated PV loop

The HLM lung mechanics model is described as follows [7]:

where V is the volume of air delivered to the lungs widely used in respiratory mechanics 
models [6], and Ke represents the alveolar recruitment elastance. Vh1 and Vh2 are hys-
teretic volume response during inspiration and expiration, respectively, representing the 
key characteristics of nonlinear stress–strain or force–deformation relation, thus critical 
for determining the two nonlinear hysteretic springs, Kh1 and Kh2, for alveolar hysteresis 
elastance during inspiration and expiration, respectively. R is the airway resistance, PEEP 
is the positive end-expiratory pressure, and fV (t) is a steady-state input force.

For each breathing cycle, a hysteretic PV loop can be constructed using measured 
clinical pressure and volume (or flow) data from a ventilator. Figure 1 shows a typical 
constructed hysteresis loop without patient SB effort. To model the clinical PV loop 
using in Eq.  (1), hysteresis loop analysis (HLA) is implemented as a first key step to 
identify the stiffness (k1-k4) and breakpoints (Vm1, Vm2, Vmax) of each nonlinear phase 
for a complete breath, yielding the dashed lines in Fig. 1 [38, 42]. Specifically, Vm1 is 
the lower inflection point controlling the sudden increase of lung compliance during 
inspiration, Vm2 is the upper inflection point defined for the sudden drop of compli-
ance during expiration, and Vmax is normally equal to the setting tidal volume. The 
stiffness parameters (k1-k4) are related to the alveolar recruitment elastance Ke, alveo-
lar hysteresis elastance during inspiration Kh1 and expiration Kh2, which are calcu-
lated as follows:

HLM model parameters can then be derived and identified to replicate the PV loop 
using Eq. (1), as seen by the solid red line in Fig. 6. A detailed derivation of the model 
parameters based on HLA segmentation in the HLM lung mechanics model can be 
found in [7], which is based in part on the prior basis function methods and models 
of [5, 8, 43].

Asynchrony type and HLA identification of asynchronous PV loops

Patient SB effort changes airway pressure and flow curves at any point in a breath, 
resulting different types of asynchrony. Reverse triggering is a common type of asyn-
chrony due to a reflexive neural response triggered by the ventilator applied pressure 
and flow [26, 44], yielding the “M”-shaped pressure curve in Fig.  7a, where patient 
effort is triggered by ventilator-driven inspiration. In contrast, premature cycling 
occurs at the beginning of the expiratory half-cycle when the patient inspiratory time 

(1)V̈ + RV̇ + KeV + Kh1Vh1 + Kh2Vh2 = fV (t)+ PEEP,

(2)Ke = k2,

(3)Kh1 = k1 − k2,

(4)Kh2 = k3 − k4.
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is longer than ventilator-defined inspiration, leading to a premature valve opening as 
seen in Fig. 7d. Premature cycling can also result in double triggering if patient effort 
exceeds the ventilator trigger threshold, activating a second breath and resulting vol-
ume stacking, as in Fig. 7g.

Therefore, patient asynchrony can occur during both inspiration and expiration, while 
the single compartment model is more focused on the modeling of inspiration, thus 
might be less effectively useful for premature cycling and double triggering [39]. Con-
sidering the measured PV loops in Fig. 7c, f, i, the HLA method would find more than 

Fig. 6  Example of HLM modeling of a fully controlled clinical PV loop

Fig. 7  Three types of asynchronous breathing observed in both inspiration and expiration phase of clinical 
breathing cycles, with reverse triggering for the first column, premature cycling for the second column and 
double triggering for the third column. The first row shows the measured pressure, the second the measured 
flow, and the third the measured PV loop
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the 2 lines for each of inspiration and expiration seen in Fig. 6, thus identifying the pres-
ence of asynchrony. Hence, in this study, HLA is employed to identify the presence, and 
thus incidence, of asynchrony. The identified parameters from HLA can then be used 
to calculate the model parameters for HLM, enabling reconstruction of an unmodified 
breath without asynchrony, which in turn enables calculation of the magnitude of any 
given identified asynchrony.

The overall method to identify and quantify asynchrony includes 3 major steps as 
follows:

Step 1: Identify and classify the asynchrony

The reconstructed PV loop is divided into two phases using the turning points where the 
volume is maximum, as shown in Fig. 8 for the asynchronous PV loops of Fig. 7c, f, i. For 
each phase, the optimal number of segments is identified using HLA with the change 
of stiffness and breakpoints obtained for each segment. Thus, a 2-segment half-cycle 
indicates ventilated breathing response without SB effort, while anything more than 2 
segments identifies and asynchrony and can uniquely classify the type of asynchrony. 
Specifically,

(1)	 A 4-segment half-cycle during inspiration with stiffness changing from positive to 
negative and reversing to positive near the turning point indicates a reverse trig-
gered asynchrony in the PV loop (Figs. 7c and 8a).

Fig. 8  HLA segmentation of asynchronous PV loops showing the same PV loops as Fig. 2c, f, i in the first row, 
and the segments for inspiration in the second row up to the turning point (red dot) at peak volume before 
expiration segments in the third row
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(2)	 A premature cycling PV loop includes 3 segments in the flow waveform during 
expiration with the middle segment generated by the longer patient-driven inspira-
tion, but a relatively unmodified pressure trajectory (Figs. 7f and 8d).

(3)	 Double triggering induces a second breath half-cycle in the first phase of the PV 
loop, thus creating an extra 2 to 3 segments during inspiration, yielding 5 to 6 seg-
ments depending on the location of the double triggering during expiration (Figs. 7i 
and 8g).

Step 2: Identify the stiffness and breakpoints for the ventilated PV loop

With the identified type of asynchrony from Step 1, the stiffness and breakpoints for the 
ventilated PV loop can be obtained using the HLA parameters, as shown in Fig. 9.

(1)	 Reverse Triggering Stiffness values ka1–ka6 and breakpoints Vm1–Vm2 are identified 
for reverse triggering. The breakpoint Vmax for fixing the tidal volume in the recon-
structed breath can be calculated based on the intersection point of the ka2 and ka5 
segments, while the stiffness parameters, k1, k2, k3 and k4, for the unaffected venti-
lated response are readily obtained from the identified ka1, ka2, ka5 and ka6 values, 
respectively.

(2)	 Premature Cycling Stiffness ka1–ka5 and breakpoints Vm1 and Vmax are identified for 
premature cycling. The stiffness parameters k1, k2, k3 and k4 correspond to ka1, ka2, 
ka3 and ka5, respectively. The breakpoint Vm2 can be calculated using the intersec-
tion point of ka3 and ka5 segments.

(3)	 Double Triggering Stiffness ka1–ka8 and breakpoints Vm1–Vm2 and Vmax are identi-
fied for double triggering. The stiffness parameters k1, k2, k3 and k4 correspond to 
ka1, ka2, ka7 and ka8, respectively. The breakpoint Vm2 can be calculated using the 
intersection point of ka3 and ka5 segments. Note the breakpoint Vm2 is calculated 
via Vmax2.

Step 3: Calculate the HLM parameters for forward simulation of ventilated response

The HLM includes ten (10) parameters for modeling the lung hysteresis mechanics, which 
can be directly calculated using the HLA identification results (k1–k4, Vm1, Vm2, Vmax), as 
detailed in [7]. Therefore, given the identified HLM model, the reconstructed and unmodi-
fied ventilated response and PV loop can be replicated using forward simulation, as 
shown in Fig. 10 for the same PV loops as in Figs. 7, 8, and 9. The entire process is directly 

Fig. 9  HLA identification of HLM stiffness and breakpoints
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identifiable by solving a convex problem, thus suffering no convergence or identifiability 
issues [45–49]. Hence, it provides a fast and robust reconstruction for the ventilated PV 
loops compared to other complex FEM and iteration methods.

Estimation of asynchrony effect

Energy dissipation refers to the work done by the ventilator in the airway for a ven-
tilated patient, and can be directly calculated from the enclosed area of a measured 
PV loop. It is a critical measure of energy required for ventilating a patient and thus 
represents the essential patient recruitability [41], where a high energy or work of 
breathing would indicate a stiff lung and a less recruitable patient. Patient asyn-
chrony produces negative work against the work of breathing done by ventilator, 
reducing its total value. Hence, the difference of area between the asynchronous PV 
loop and the reconstructed PV loop indicates the magnitude of asynchrony relative 
to the ventilated energy required to support breathing, yielding a proposed metric 
defined as follows:

where Easyn is the quantified measure of the asynchrony effect in a breathing cycle, Aven-

tilated is the area of reconstructed ventilated PV loop without asynchrony, and Aasyn is the 
area of the asynchronous PV loop, where these differences are evident in Fig. 10.

Therefore, Easyn shows the difference of areas, and thus the work done, between the 
fully controlled breath and contaminated breath with SB effort. A larger Easyn would 
indicate a more significant SB effort or asynchronous waveform superposition to the 
observed breathing cycles, as shown in Fig.  11. More importantly, both differences of 
pressure and volume are accounted for in calculating Easyn to offer better insight into the 
change of work done based on physical definitions, where prior works used only changes 
in airway pressure for quantifying asynchrony magnitude [24], potentially misestimating 
the magnitude (Fig. 11). Therefore, the proposed metric Easyn provides a different and 
more significant contrast of changes of SB effort based on energy dissipation.

Finally, Fig. 12 shows a flow chat for the implementation of the asynchrony recon-
struction and estimation algorithm based on the proposed method.

(5)Easyn =
Aventilated − Aasyn

Aventilated
× 100%,

Fig. 10  Model reconstructed PV loops from Fig. 4 using the identified HLM and segments related only to the 
underlying lung mechanics



Page 15 of 20Zhou et al. BioMedical Engineering OnLine           (2022) 21:16 	

Laboratory test‑lung data

The laboratory study first provides a proof-of-concept validation for asynchrony iden-
tification using experimental data generated from mechanical test lungs. In this case, 
the occurrence and type of asynchrony, as well as its true magnitude are known to 

Fig. 11  Schematic of Easyn comparison for the estimation of asynchrony effect using the reverse triggered 
example of Fig. 2c

Fig. 12  Flow chart for asynchrony reconstruction and estimation
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enable accurate performance assessment. Asynchrony is simulated using two Quick-
Lung test lungs (INGMAR Medical, USA) connected to a Mindray SV800 ventilator 
(Mindray, China). Reverse triggering is simulated in VC (volume control) and PC 
(pressure control) ventilation modes, and double triggering and premature cycling for 
PC mode only to match the observations from the clinical data used in this study.

Table 2 provides the details of description for the 3 simulated scenarios. Each scenario 
includes 10 ventilated breathing cycles and 10 asynchronous breathing cycles to com-
pare and validate the accuracy of the reconstruction. The test-lung experiment setup 
thus also provides a known ground truth for a fully sedated and paralyzed breath, simu-
lated without any asynchronous alteration of the breathing cycle. Figure 13 shows typical 
experimental normal and asynchronous PV loops for each scenario, which shows a simi-
lar pattern of asynchrony to the clinical PV loops in Figs. 7, 8, 9, and 10.

Clinical data

Clinical data from 4 MV patients from a clinical pilot trial for the CURE trial [50] 
conducted in the Christchurch Hospital ICU are used for proof-of-concept validation 
of the proposed reconstruction method based on the HLM virtual patient model [51, 
52]. Airway pressure and flow data were collected with a sampling rate of 50 Hz from 
a Puritan Bennett 840 ventilator (Covidien Boulder, CO, USA) [52]. The New Zealand 
Southern Regional Ethics Committee granted ethics approval for this pilot trial [51]. 
Patient demographics are given in Table 3. Asynchrony types with reverse triggering, 

Table 2  Description of 3 simulated asynchrony scenario

Scenario MV mode Asynchrony type Definition Experimental protocol

1 VC Reverse triggering Mechanical inflation leads to a 
reflexive neural response, known 
as entrainment

Lifting the top panel of test lung 
to create a negative pressure 
during the inflation of test-lung 
bellow

2 PC Premature cycling Patient inspiration time is longer 
than mechanical inspiration

Hold the top panel of test lung 
to create a negative pressure and 
positive flow during the deflation 
of test-lung bellow

3 PC Double triggering Patient inspiration is longer 
than mechanical inspiration 
and patient effort exceeds the 
ventilator trigger threshold

Lift the top panel of test lung 
to create a negative pressure 
exceeding the trigger threshold 
during the deflation of test lung 
bellow

Fig. 13  Typical experimentally simulated asynchronous breathing for each asynchrony type
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premature cycling and double triggering were observed using manual inspection for 
each patient in Table 3, thus matching the simulated asynchrony scenarios using the 
test lungs.

In addition, each patient was given muscle relaxants to suppress SB effort before a 
stepwise recruitment maneuver (RM) given as part of the CURE trial [50]. Therefore, 
fully ventilated and controlled breathing cycles with SB effort eliminated by sedation and 
paralysis were observed at the same positive end-expiratory pressure during the first step 
of these RMs, enabling a comparison to reconstructed waveforms for further clinical val-
idation. The reconstruction is finally applied to 20 min breath cycles collected before the 
RM. Specifically, reconstruction accuracy is quantified by comparing the pressure wave-
form to the observed breathing cycles using root mean squared error, defined as follows:

where Pi is the clinical pressure data, P̂i is the reconstructed pressure data, and n is the 
number of points for a breathing cycle. A low RMS error indicates an accurate recon-
struction, ensuring an accurate estimation of the asynchrony using the metric Easyn in 
Eq. (5).
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Table 3  CURE patient demographics
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4 Male 88 Pneumonia PC None
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