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Abstract 

Background:  Osteoporosis is the major cause of bone weakness and fragility in more 
than 10 million people in the United States. This disease causes bone fractures in the 
hip or spine, which result in increasing the risk of disabilities or even death. The current 
gold standard in osteoporosis diagnostics, X-ray, although reliable, it uses ionizing 
radiations that makes it unfeasible for early and continuous monitoring applications. 
Recently, microwave tomography (MWT) has been emerging as a biomedical imaging 
modality that utilizes non-ionizing electromagnetic signals to screen bones’ electrical 
properties. These properties are highly correlated to bones’ density, which makes MWT 
to be an effective and safe alternative for frequent testing in osteoporosis diagnostics.

Results:  Both the conventional and wearable simulated systems were successful 
in localizing the tibia and fibula bones in the enhanced MWT images. Furthermore, 
structure extraction of the leg’s model from the blind MWT images had a minimal error 
compared to the original one (L2-norm: 15.60%). Under five sequentially incremental 
bone volume fraction (BVF) scenarios simulating bones’ treatment procedure, bones 
were detected successfully and their densities were found to be inversely proportional 
to the real part of the relative permittivity values.

Conclusions:  This study paves the way towards implementing a safe and user-friendly 
MWT system that can be wearable to monitor bone degradation or treatment for 
osteoporosis cases.

Methods:  An anatomically realistic finite-element (FE) model representing the human 
leg was initially generated and filled with corresponding tissues’ (skin, fat, muscles, and 
bones) dielectric properties. Then, numerically, the forward and inverse MWT prob-
lems were solved within the framework of the finite-element method-contrast source 
inversion algorithm (FEM-CSI). Furthermore, image reconstruction enhancements were 
investigated by utilizing prior information about different tissues as an inhomogeneous 
background as well as by adjusting the imaging domain and antennas locations based 
on the prior structural information. In addition, the utilization of a medically approved 
matching medium that can be used in wearable applications, namely an ultrasound 
gel, was suggested. Additionally, an approach based on k-means clustering was devel-
oped to extract the prior structural information from blind reconstructions. Finally, the 
enhanced images were used to monitor variations in BVF.
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Introduction
Microwave tomography (MWT) has been emerging as a promising imaging technology 
in various medical fields for the past 3 decades [1–3]. Some of the biomedical MWT 
applications include breast cancer diagnostics [4–6], brain stroke early detection [7–9], 
extremities imaging [10, 11], and lung cancer detection [12, 13]. In comparison to other 
medical imaging modalities, MWT offers several advantages such as its use of low-
power non-ionizing electromagnetic signals, its relatively lower cost in comparison to 
X-ray and magnetic resonant imaging (MRI) [2], and its ability to estimate two distinct 
electrical properties of an object-of-interest (OI), which are the OI’s relative permittivity 
(dielectric constant) and effective conductivity.

In biomedical microwave tomography, an antenna array surrounds a human organ 
(the object-of-interest (OI)) located in the middle of an imaging chamber filled with a 
matching medium. Each element in the antenna array acts as a transmitter and receiver 
interchangeably. During measurements, each antenna radiates the OI simultaneously 
with an electromagnetic signal. For each transmitting antenna, the other antennas oper-
ate as receivers and measure the fields scattered around the OI. The collected data are 
used as inputs for an optimization algorithm to produce two-dimensional (2D) tomo-
graphic images of the OI; the images depict the algorithm’s estimation for the location 
and electrical properties of the bulk tissues within the human organ. Since, mathemati-
cally, MWT involves solving a non-linear ill-posed inverse scattering problem, special-
ized optimization algorithms in conjunction with regularization techniques are utilized. 
Examples of such algorithms include the contrast source inversion [14], Gauss–Newton 
inversion [15], and level-set methods [16].

A potential application for MWT in medical diagnosis is the monitoring of bone 
health, which is crucial with the increase in bone diseases such as osteoporosis [17, 
18]. According to the National Osteoporosis Foundation (NOF), more than 10 million 
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people in the United States are affected by osteoporosis, with an additional 33.6 million 
suffering from low bone density of the hip [19]. One of the main causes of osteoporosis 
is Vitamin D deficiency [20, 21]; Vitamin D enables the body to absorb calcium, which 
is necessary for bones to maintain their health and strength. As reported by the Interna-
tional Osteoporosis Foundation (IOF), the United Arab Emirates (where the presented 
research is conducted) is one of the top counties with both degeneration cases: Osteopo-
rosis and Vitamin D deficiency. It is estimated that 78% of the UAE’s population suffers 
from Vitamin D deficiency [22]. This is due to several factors such as genetics, lifestyle, 
low activity, obesity, and cultural dress codes. Osteoporosis can affect both types of 
bones; the trabecular and cortical bones [23, 24]; however, cortical bones are more solid 
and stiff, which allow for further bone strength and density degradation investigations 
due to osteoporosis.

Currently, the golden standards considered for the clinical assessment of bone mass 
and strength are the dual-energy X-ray absorptiometry (DXA) and the quantitative com-
puted tomography (QCT). In these systems, examinations are done for the anatomical 
structures of the body such as the hip, the spine, and the wrist, where the denser cortical 
bones are more dominant than the spongy trabecular bones [17]. In current gold stand-
ard techniques, osteoporosis can be monitored from both trabecular and cortical bone 
types [24]. A major drawback of these systems is their excessive use of ionizing X-ray 
radiation emitted to human bodies, which may lead to health challenges for long-term 
monitoring. In addition, the overall cost of these machines is considered extremely high 
[17, 25]; with the use of MWT, the drawbacks of DXA and QCT can be resolved. Since 
MWT uses non-ionizing radiation, monitoring the bones’ health on regular basis can 
be performed safely, which is important in evaluating the efficacy of long-term treat-
ments of bone osteoporosis. It should be noted here that MWT images the bulk electri-
cal properties of an object, which is different than the thorough image reconstructions 
from X-ray imaging; this might be misperceived as a disadvantage in MWT.

To assess bone mass, the bone volume fraction (BVF) metric is commonly used to 
represent the strength and quality of bone in patients. The BVF parameter represents 
the volume of the mineralized bone per unit volume of the sample [26]. Moreover, BVF 
decreases as the bone density decreases, which represents deterioration in the bone 
health. Furthermore, it has been shown experimentally by [27, 28] that BVF is highly 
correlated with the electrical properties of the bones. More specifically, BVF is inversely 
proportional to the bones’ dielectric constant and effective conductivity. Therefore, using 
MWT to estimate the electrical properties of the bones, bone health can be monitored.

The current state-of-art in using MWT for bone imaging focuses on extracting the 
electrical properties of the calcaneus, which is also called the heel bone [11, 29–31]. 
In this paper, quantitative microwave imaging is performed across the lower midsec-
tion of the leg to estimate the electrical properties of the tibia and/or fibula bones; 
the tibia is the bigger bone located in the shaft of the lower leg, while the fibula is 
the smaller bone. This section of the leg is chosen, because here the bones consist 
mostly of cortical bones, unlike the proximal and distal parts of both bones that are 
comprised of mostly trabecular (spongy) tissues [32]. In studying the effect of bone 
degeneration and treatment processes, it is important to target the cortical bones as 
they are more denser and contains less fluids in comparison to the trabecular bones. 
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In addition, the midsection of the lower leg was selected due to its accessibility, with 
the ability to position the antenna array of an MWT system around it easily. Further-
more, the objectives of the quantitative MWT system herein would be to locate the 
bone(s) within the leg and estimate its (their) electrical properties. Although such 
system may require more computations, it provides extra information about the OI 
in terms of shape, location, as well as permittivity values compared to a qualitative 
system that determines only the shape and location [2]. By monitoring changes in the 
bone’s permittivity values using a quantitative MWT system, the efficacy of bone den-
sity degradation treatments can be assessed.

In this paper, a numerical feasibility study (Fig. 1) is conducted towards the design 
of a wearable microwave tomography system to monitor changes in bone density 
within a human leg as a result of treatment. Several research groups [33–35] have 
developed wearable systems for various biomedical applications. In this study, we 
propose, through numerical simulations, different approaches towards the design of 
a wearable system for bone imaging. The study was carried out using an anatomically 
realistic MRI-derived numerical model of human leg cross-section. Using the model, 
synthetic data are generated using an in-house 2D finite-element method (FEM) 
solver [36, 37] with the transverse magnetic (TM) approximation; due to the nature of 
the leg cylindrical structure, this approximation is valid. The synthetic data were then 
inverted using the finite-element contrast source inversion (FEM-CSI) algorithm with 
multiplicative regularization [38, 39]. The use of FEM with CSI offers several advan-
tages that are utilized to improve the quality of bone reconstructions. These advan-
tages include the flexibility of choosing an arbitrary shape imaging domain for the 

Fig. 1  The structure of the proposed numerical microwave tomography (MWT) approach for bone 
analysis: a numerical modeling of a cross-sectional MRI-derived image to generate an anatomically realistic 
finite-element (FE) model; b calculating the synthetic data (scattered electric field values) at the antennas; 
c an initial image of the object-of-interest (OI) reconstructed blindly; d several image enhancements 
techniques were used to better enhance bones reconstruction; e bone monitoring following an expert-eye 
approach to detect variations in bone volume fraction (BVF) as variations in the corresponding dielectric 
properties
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inversion algorithm, the ability of varying the antennas’ locations, and the capability 
of incorporating inhomogeneous backgrounds.

It should be noted that preliminary investigations related to this work have been pre-
sented in [40–43]. In our previous work, we have utilized the blind reconstructions to 
investigate the detection of bone density variation in MWT; blind reconstructions are 
those obtained from FEM-CSI algorithm without incorporating any prior information. 
Furthermore, we have discussed the consequences of utilizing various image enhance-
ment techniques in MWT. In the work presented herein, we extend these findings by 
applying image enhancement techniques directly on the blind reconstructions to bet-
ter visualize bones automatically without the need of any additional imaging modalities. 
These image enhancement techniques include incorporating prior information about 
the leg to improve the inversion algorithm output. This prior information is obtained 
from the blind reconstructions. The prior information includes the location of the leg’s 
outer contour and information about the bulk tissues within the leg. The prior informa-
tion can be easily incorporated because of the use of FEM-CSI.

In real-life scenarios, patients would perform a single imaging procedure, while the 
inversion algorithm will run multiple times. In the first run, blind reconstructions are 
obtained. Next, prior information is extracted from the blind reconstructions. This is 
followed by a second run for the inversion algorithm, where the obtained prior informa-
tion is used to enhance the inversion algorithm output.

In the first part of the study herein, the prior information are obtained using the MRI-
based leg models, to prove the concept of image enhancement. In the second part of the 
study, an algorithm based on k-means clustering is developed to extract the prior infor-
mation from the blind inversion results.

Results
Imaging the anatomically realistic leg model

We have performed the imaging procedure on the developed anatomically realistic leg 
model (discussed in Sect.  5.1.1) through solving the forward and inverse problems of 
MWT. In the forward problem, the relative complex permittivity values of each tissue 
layer within the leg model were specified and used to calculated the scattered field on 
every antenna (total of 24 antennas). This scattered field was used as an input to the 
optimization algorithm (FEM-CSI, detailed in Sect.  5.2) to estimate the relative com-
plex values of tissues. The iterative algorithm outputs a color map that represents the 
reconstruction of the relative complex permittivity values of the leg’s 2D model. This was 
known as a blind reconstruction, since no prior information was input to the inversion 
algorithm (Fig. 2a, f ). From these blind results, it can be observed that the overall struc-
ture of the leg has been estimated; nevertheless, the fibula has not been detected and the 
tibia bone was poorly reconstructed in the real part of the relative complex permittivity.

Thus, several image enhancement procedures were followed (detailed in Sect.  5.2) 
such as incorporating prior information about the tissues’ dielectric properties and leg’s 
structure (Fig.  2b, g), changing the imaging domain to fit the model area (Fig.  2c, h), 
relocating the antennas around the leg (Fig. 2d, i), and changing the matching medium 
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(AquaSonic 100 ultrasound gel) (Fig. 2e, j). These enhancements resulted in improved 
reconstruction results.

Furthermore, Fig.  9a shows the new locations of the imaging domain and antennas 
with respect to their old positions and the outermost contour of the leg.

In addition, to be able to use AquaSonic 100 as a matching medium, its electrical 
properties had to be known (details in Sect. 5.2.4). This was not found in the literature, 
so it was measured experimentally using Keysight’s N1501A Coaxial Dielectric Probe 
[44]; the results of the measurements between 0.5  GHz and 1.5  GHz are shown in 
Fig. 9b. Furthermore, the value of the gel’s relative complex permittivity at 0.8 GHz is 
ǫr = 71.4 − j10.3.

It is should be noted that the mid-values of the real part relative permittivity used for 
the prior information when using the glycerin/water solution as a matching medium 
versus using the ultrasound gel are 26 and 33, respectively. Both values are close to each 
other and in the range between the highest and lowest permittivity values of the tissues 
in the leg model. Thus, the successful reconstructions using both matching mediums as 
part of the prior information show the potential of utilizing ultrasound gels for MWT 
applications relative to the conventional glycerin/water.

From the reconstructions shown in Fig. 2, it can be seen that the estimation of tissue 
dielectric values was enhanced gradually with each enhancement scenario. Furthermore, 
the utilization of an ultrasound gel gave comparable results to the glycerin/water mix-
ture. Despite the latter being very effective for breast microwave imaging [45], it is a liq-
uid and will not be suitable for wearable MWT applications.

Prior information extraction

In the previous section, prior information about the structure of the model was deter-
mined from the same numerical MRI-based model used in the forward problem to 
prove the concept of image enhancement. However, in a real MWT system, the numeri-
cal model is not available. Such information can normally be obtained either by a trained 
eye experienced in medical imaging such as in [46], or using multiple imaging modalities 
like ultrasound imaging [47] and MRI [48]. Herein, we utilized the blindly reconstructed 

(a) Blind Reconstr. (b) Inhomogeneous Bkg. (c) Imaging Domain (d) Antennas Locations (e) Matching Medium

(f) Blind Reconstr. (g) Inhomogeneous Bkg. (h) Imaging Domain (i) Antennas Locations (j) Matching Medium

Fig. 2  The real (top row) and imaginary (bottom row) relative complex permittivity results for the leg model: 
a, f blind reconstructions; b, g incorporating inhomogeneous background; c, h changing the imaging 
domain; d, i relocating the antennas; e, j changing the matching medium. The red-dotted lines indicate the 
bones’ actual locations
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image to obtain information about the structure of different tissues. The complete pro-
cedure is briefly described in Sect. 5.3 using the k-mean clustering algorithm. This algo-
rithm clustered or grouped different tissue layers according to their relative permittivity 
and conductivity values. Thus, such clusters were used to determine tissue boundaries 
prior to using them within the inversion algorithm with the same enhancement steps 
mentioned in the previous section.

The results of the clustering algorithm are represented in Fig. 3. The figure shows the 
algorithm when applied on the real part of the relative complex permittivity blind recon-
struction (Fig. 3a), while using the ultrasound gel as the matching medium. The image 
goes initially into a pre-processing step to discard the matching medium values (Fig. 3b). 
Furthermore, the clustering algorithm is successfully divided the image into two regions, 
high permittivity and low permittivity. Furthermore, the low-permittivity region out-
lined the structure of the fat and the leg in general (Fig. 3c). Therefore, it was used for 
detecting the edges and the outermost boundary of the model (Fig.  3d, e). The figure 
shows successful reassignment of the pixels that are related to the outermost layer, but 
with the additional extraction of some pixels within the OI. This is considered acceptable 
as the main objective of the whole procedure is to estimate the boundaries of the layers 
regardless of the values within them.

The procedure for estimating the leg’s contour through k-mean algorithm and using it 
as prior information is shown in Fig. 4a, b. The procedure for estimating the leg’s contour 
through k-mean algorithm and using it as prior information is shown in Fig. 4. The cal-
culated L2−norm for the difference between the actual boundaries versus the estimated 
one was 15.6% ; this indicates that the procedure is successful in estimating the leg’s con-
tour with very low error (Fig. 4a). Furthermore, the location of the imaging domain and 
antennas relative to the estimated boundary are shown in Fig. 4b.

The extracted prior information is incorporated as inhomogeneous background is 
shown in Fig.  4c, d. Finally, the results of the inversion algorithm using the extracted 
prior information are shown in Fig. 4e, f with the actual bones’ locations depicted in red-
dotted lines. For the FEM-CSI results, it is clear that the various layers of the leg have 
been estimated by the algorithm. Furthermore, the two bones are detected as can be 
observed from the real-part reconstruction result.

Monitoring bone density variations

As discussed in the introduction, bones’ density is measured via the BVF parameter. 
Furthermore, changes in bones’ electrical properties are inversely proportional to BVF 

Fig. 3  Structural prior information extraction procedure from the real part of the blind reconstructions: 
a blind inversion reconstruction; b matching medium removal; c low-permittivity cluster extraction; d 
smoothed binary image; e boundary formation using edge detection



Page 8 of 22Alkhodari et al. BioMedical Engineering OnLine            (2022) 21:8 

variations. Here, we monitored these variations in MWT reconstructed images using 
five different BVF scenarios. In each scenario, the bones’ electrical properties were esti-
mated, as shown in Table 1.

These values were interpolated based on the study conducted in [27] on porcine 
trabecular bones tissues. We used this study as a base to our investigations on human 
cortical bones tissues (obtained from [49]). This study was used only to interpolate 
BVF values according to the relationship found between bone mass loss and relative 
permittivity values. Thus, bones with 0.5 BVF were selected as an example of healthy 
bone case. Moreover, bones with 0.1 BVF was a scenario with severe bone density 
loss. It is worth noting that in [27], authors have used a frequency of 0.9 GHz to 

Fig. 4  The use of the extracted prior information using the k-mean clustering algorithm applied to the 
blind MWT image: a comparison between the original and estimated leg contour; b imaging domain and 
antennas locations with respect to estimated outermost leg boundary; c, d real and imaginary components 
of the inhomogeneous background relative permittivity; e, f real and imaginary components of inversion 
algorithm relative permittivity reconstruction. The red-dotted lines indicate the bones’ actual locations
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image bones. The relationship found between bones and permittivity values was used 
to interpolate bone values changes on the 0.8 GHz frequency range used in the pro-
posed study.

The synthetic data set was initially inverted blindly with no prior information. The 
blind reconstruction results were used to extract prior information about the leg, as 
discussed in Sect. 2.2. This prior information was used to adjust the inversion algo-
rithm parameters as described in Sect. 2.1. After including the enhancements, FEM-
CSI is run again. The results of the reconstructions are shown in Fig.  5 with the 
red-dotted line indicating the bone locations. As expected, the estimated bones’ rela-
tive permittivities change with varying BVFs. More specifically as the BVF is decreas-
ing, the dielectric constant of the tibia bone is increasing, while the fibula bone is 
shrinking in size and eventually becoming undetected. Furthermore, it is worth to 
be mentioned that when bones are healthy, that is, 0.5 BVF, the algorithm tends to 
under-estimate the reconstruction of bones, whereas when bones are in severe condi-
tions (0.1 BVF), the algorithm over-estimates bones values closer to the surrounding 
muscle tissues.

To analyze changes in bones, an algorithm referred to as expert-eye was developed 
to extract their electrical properties from the inversion results (described in Sect. 5.4). 
The complete process for calculating the mean of reconstructed bones’ dielectric 

Table 1  The selected bone volume fraction (BVF) scenarios and the corresponding relative 
permittivity values

BVF scenarios Relative 
permittivity 
( ǫr)

0.50 13− j3.0

0.45 14− j3.05

0.35 16− j3.1

0.25 18− j3.2

0.10 23− j3.4

(a) Healthy Case (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Case (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Fig. 5  Enhanced relative complex permittivity reconstructions of the leg model with varying BVFs using prior 
information extracted from blind inversion (top row: real part; bottom row: imaginary part). The red-dotted 
lines indicate the bones’ actual locations
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constant is demonstrated in Fig. 6 for 0.5 BVF scenario. It should be noted that the 
permittivity values for the bigger tibia bone were always estimated as this bone was 
visible in all these reconstructions. On the other hand, the smaller fibula bone was 
not reconstructed always by the inversion algorithm, and thus, its permittivity value 
was not estimated in all scenarios. Nevertheless, since the tibia was always estimated, 
this bone can be used solely to detect variations in bones’ permittivities for different 
BVF.

The procedure to calculate the bones’ mean dielectric constant was applied to the leg 
model images, where values for each of the five BVF scenarios were obtained. The results 
are presented in Fig. 6d. The BVF versus the calculated mean for the bones’ real part of 
the relative complex permittivity is plotted. Furthermore, there are two lines represent-
ing the tibia bone and fibula bone. For each line, if the inversion algorithm is successful 
in reconstructing the bone, the marker is represented with a circle ( ◦ ); otherwise, failure 
is represented with a cross ( × ). The line plot of bone permittivity values shows clearly 
that as BVF increases, the dielectric constant decreases for the tibia bone; this means 
that MWT, with all the suggested enhancements, can be used to detect the degradation 
of bones’ health.

Fig. 6  The model with 0.5 BVF: The process for calculating the mean of the reconstructed bones’ dielectric 
constant using an expert-eye localization technique: a imaginary-part localization; b real-part masking; and 
c extracted segments; d line plot representation of the mean value of the real part relative permittivity of 
extracted bones
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Discussion
We developed an approach for a numerical MWT system that is capable of monitor-
ing bone density variations according to changes made to bones during degradation or 
treatment. The advantage of having such system lies in the ability of utilizing a safe and 
non-ionizing radiations to detect variations in the relative complex permittivity and 
illustrate it as a 2D image. This proposed idea paves the way towards implementing a 
user-friendly real-life MWT system that can be wearable. Furthermore, it allows for tak-
ing multiple imaging sessions within short periods without causing any harm to the tis-
sues being imaged. The evaluation of this proposed idea within a numerical study prior 
to any clinical testing sets the base to the realistic imaging scenario in terms of the feasi-
bility and expected outcomes. In addition, it is essential to test the robustness of imaging 
algorithms and enhancement techniques for the use in experimental and clinical trials.

The developed finite-element model closely simulates an actual cross-sectional slice 
of the lower leg, as a total of 254,044 triangles supported by 127,153 nodes were used 
to build the model. This allows for treating each tissue layer as a bulk object, especially 
when dealing with the incident electric field and its scattering effect. Although the blind 
reconstructions did not locate both bones accurately within the image, it was enhanced 
through several enhancement procedures that simulated closely a configuration of 
a wearable MWT system (prior structural information about tissues, closer imaging 
domain and antennas location, and an ultrasound gel). However, in a real-life system, 
it is considered difficult to exactly estimate these information about the structure and 
boundaries. This requires an expert to try to build the outermost boundary of the OI 
being imaged, which results in different levels of error between multiple experts, that 
is, radiologists. Furthermore, an MRI system can be used; however, this does not allow 
for frequent monitoring as these systems are not cheap and feasible when it comes to 
taking weekly sessions. Thus, we proposed an approach that estimates these structures 
from a previous image (most likely the blind image) of the same OI within similar MWT 
configuration. The decision on the clustering algorithm (k-means) was taken to ensure 
minimal complexity in the approach. Although this method is considered simple in cal-
culations, it provides efficient results for problems involving bulk regions within images. 
An MWT reconstructed image may contain random values within the bulk objects. 
Thus, as the main objective in this work was to extract the outermost structure, it had no 
issues as the lowest values usually lie in the fat region surrounding the leg contour. Such 
approach can be applicable for imaging other objects within the human body, that is, 
breast imaging, as the fat is localized in the surroundings of the OI.

Since the gold standards in evaluating bone density involve X-ray, which an an ion-
izing and harmful radiations, it is desired to have an imaging modality that is simple, yet 
effective, and does not cause any harm to tissues. The successful estimations of bones 
permittivity at different levels of BVF illustrates the feasibility of monitoring the density 
through the changes in dielectric properties of the bones. However, as BVF decreases, 
that is, reaching a severe case of osteoporosis, the smaller bone (fibula) starts to com-
pletely disappear from the reconstruction. This could be due to small nature in terms of 
bones tissue. Additionally, this can be correlated with the increase in the real part of the 
relative permittivity which makes it harder for the algorithm to successfully reconstruct 
its values.
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Limitations

Although three-dimensional (3D) microwave imaging provides richer information for 
analysis of tissues, the successful 2D MWT system structure proposed in the current 
study is considered less complex to model, time efficient in calculations, simpler in 
use, and less expensive when built as a wearable system for frequently usage by doc-
tors and patients. Furthermore, optimizations of inverse algorithm using 3D imaging 
systems require extensive calculations, especially when considered with a framework 
of a deep or machine learning model, which is a future aspect for the current work. 
After illustrating the feasibility of utilizing 2D MWT for bone variation monitoring, 
an experimental study that utilizes anatomical phantoms will be considered in future 
to encounter all real environment factors that may face the proposed approach, which 
was not possible in the current study (being as a numerical study). In addition, clini-
cal testing of a real-life case of osteoporosis monitoring can be considered while rely-
ing completely on the MWT system for reconstruction, enhancement, and observing 
variations in dielectric properties of bones during treatment. Finally, as the main 
future works for this study include the design of an actual MWT system that could 
be wearable, the size of antennas should be taken into consideration. The proposed 
24 antennas may be hard to place around the leg, so further studies require testing 
the optimal numbers of antennas taking into consideration the reconstruction perfor-
mance when antennas are reduced.

Conclusions
In this paper, a full numerical study is presented on the feasibility of designing a 
MWT system for bone health density monitoring. The study is conducted within the 
framework of the finite-element contrast source inversion method (FEM-CSI). First, 
enhancements to a conventional MWT system are applied to improve the inversion 
algorithm results as well as enable the system to be wearable. Next, to apply the sug-
gested enhancements, prior information about the leg is extracted using blind inver-
sions. During the preceding two investigations, commercial medical ultrasound gel 
is considered as matching medium. In the last section, a comprehensive procedure 
is followed to determine the efficacy of the proposed techniques to detect variations 
in bone density. The conclusion is that an MWT system can be designed and used to 
monitor changes in bones’ health by estimating their dielectric constant. The future 
work beyond this paper will focus on the implementation of such an MWT system.

Materials and methods
Numerical model and the forward problem

Generating anatomically realistic model

The initial step of the study was to create the anatomically realistic model of human 
leg cross-section using MRI image. This model will be used to generate synthetic 
numerical data using an FEM forward solver. In this paper, the cross-sectional MRI 
image representing the middle-part of a human lower leg was selected from [50], as 
shown in Fig.  7. Next, the MRI image was imported into MATLAB, and the points 
corresponding to the boundaries of each tissue layer are extracted; these include skin, 
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fat, muscle, tibia, and fibula boundary points. The bones considered for this work 
were from the cortical part of bones.

For generating the triangular mesh, the extracted boundary points were input to 
GMSH [51] and joined together to create the various tissues’ surfaces. Furthermore, the 
whole leg model was surrounded by a circle, which represents the boundary of the prob-
lem’s computational domain. When the geometrical model was ready, a 2D triangular 
mesh is generated, such that the characteristic length (which is the length of a mesh tri-
angle’s side) is smaller than �/10 , where � is the wavelength calculated as

Here, c = 3× 108 [m/s] is the speed of light in free space, f is the simulation frequency, 
and ǫr,max is the largest possible value of the dielectric constant within the model. The 
finite-element meshes for each model are shown in Fig. 7. It should be noted that the 
characteristic length needs to be small enough to capture the details of the structure, as 
well as to have sufficient triangular elements to represent the various tissues in the leg.

Solving the forward problem

The objective of the forward problem was to simulate an MWT system when given 
information about the OI’s electrical properties, as well as the problem domain param-
eters. The simulation results were used to calculate the electric field values at the receiv-
ing antennas’ locations.

As mentioned earlier, for this study, the forward problem was solved using an in-house 
2D FEM solver developed by Zakaria et al. [37]. The inputs for the solver are as follows:

•	 Model: The anatomically realistic 2D triangular mesh.
•	 Operating Frequency: 0.8 GHz.
•	 Transmitters’ (TX) and receivers’ (RX) configuration: 24 point-sources (TX) and 24 

point-sinks (RX) collocated and equally distributed on a circle of radius 15 cm sur-
rounding the model.

•	 Matching medium surrounding the OI: 80:20 glycerin/water solution with relative 
complex permittivity of ǫr = 26− j18 [52, 53].

(1)� = c/
(

f
√
ǫr,max

)

.

Fig. 7  The cross-sectional MRI image and the corresponding finite-element model and mesh: a MRI image 
[50], and b finite-element model
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•	 Relative complex permittivity of various human tissues in the model: Skin 
( 42− j18.8 ), fat ( 11− j2.3 ), muscles ( 55− j20.5 ), and healthy cortical bones 
( 13− j3.0 ) [25, 49].

It is worth noting that human cortical bones’ relative permittivity values were interpo-
lated based on [49] for the frequency selected in this study. As an example, the real and 
imaginary parts of the relative complex permittivity for various mesh regions are shown 
in Fig. 8; in each figure, the TX and RX locations are indicated by ( × ) and ( ◦ ) markers, 
respectively.

It should be noted that in literature, the simulation frequency for biomedical MWT 
applications ranges from 0.5 to 3 GHz [2]. In our work, the frequency of 0.8 GHz was 
selected to ensure enough penetration for electromagnetic signals occurred inside the 
leg (the larger the frequency, the smaller is the signal penetration and the higher are the 
propagation losses), while at the same time, taking into consideration that any antenna 
built for the MWT system should be reasonably size (the smaller the frequency, the 
larger the antenna).

As for number of transmitters and receivers, 24 antennas were chosen (acting as 
transceivers) as they will be enough to capture the scattering effect from different loca-
tions around the leg, while at the same time not providing redundant information to the 

Fig. 8  The real and imaginary parts of the relative complex permittivity at frequency of 0.8 GHz. The antenna 
locations are indicated by ( × ) and ( ◦ ) markers for transmitters and receivers, respectively; the transmitters and 
receivers are collocated. Tissues relative permittivity values were obtained from [25, 49]

Fig. 9  New locations of imaging domain and antennas with respect to the old positions and the contour of 
the leg
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inversion algorithm [54, 55]. Each antenna acts as a transmitter for the electromagnetic 
signals, while at the same time, it acts as a receiver for the scattered signals because of 
the existence of the OI.

Finally, for the matching medium, the 80:20 glycerin/water solution mixture proposed 
by Meaney et al. [45] for human microwave imaging was used as a starting point for the 
choice of an immersion medium. Later, in this paper, another matching medium readily 
available in the medical field is chosen.

Blind reconstructions and inversion enhancements

After collecting the synthetic data for developed model, these data were used as input 
for the inversion algorithm. The inversion algorithm considered in this work is the mul-
tiplicatively regularized contrast source inversion (CSI) method implemented within 
the framework of the finite-element method (FEM) [36, 38]. The details of the FEM-CSI 
algorithm as well as multiplicative regularization are outlined in [37].

To prevent inverse crime, the forward and inversion meshes were chosen to be dif-
ferent. In addition, 3% uniform noise was added to the scattered field synthetic data as 
done in [36, 56]; this is a common practice in numerical microwave imaging studies. 
Furthermore, the imaging domain, where the electrical properties of the OI are to be 
estimated, was chosen to be a circular domain with a 14 cm radius centered in middle 
of the problem domain. The inversion algorithm was allowed to run for 1000 iterations 
to compare the imaging performance consistently; by the 1000th iteration, the CSI algo-
rithm converges for all performed inversions. It should be noted that a recent study on 
the stopping criteria for algorithms used in microwave imaging can be found in [57].

To enhance the image reconstruction, prior information (inhomogeneous back-
ground) about the human leg was incorporated. This information includes the contour 
of the leg and/or information about the bulk tissues, such as skin, fat, and muscles. The 
prior information was retrieved initially from the forward problem MRI-based model to 
prove the concept of image enhancement. However, the upcoming sections discuss an 
algorithm that was developed to extract this information from the blind reconstructions 
automatically.

Utilizing inhomogeneous background

For the blind inversions, the electrical properties of the empty imaging domain were 
homogeneous with the relative complex permittivity set to that of the matching medium. 
Nevertheless, as shown in [36, 46, 58, 59], by having an inhomogeneous background dis-
tribution related to the OI, the reconstruction results can be improved. Since the FEM-
CSI algorithm is being utilized, incorporating prior information as inhomogeneous 
background can be readily done.

In this work, the incorporated inhomogeneous background is the outer boundary of 
the human leg, with the enclosed surface by the contour assigned a relative complex per-
mittivity value of

Here, ǫr,high and ǫr,low are, respectively, the highest and lowest values of expected bulk 
permittivity within the imaging domain. In the example herein, the highest value 

(2)ǫr,mid =
(

ǫr,high + ǫr,low
)

/2.
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corresponds to the muscle’s relative permittivity while the lowest value is the fat’s rela-
tive permittivity.

Unlike the work done by [46, 60], no information about the different tissues layers 
within the human leg was incorporated. The whole bulk of the leg was assigned the same 
relative complex permittivity of ǫr,mid . From a practical point view, this is advantageous 
as extracting the different tissue layers inside the leg, although achievable, is complex.

Changing the imaging domain

In the blind inversion, the imaging domain was circular with a radius of 14  cm. This 
results in having the surrounding matching medium electrical properties calculations 
within the inversion domain. Thus, changing the imaging domain to exactly fit the OI 
contour helps in reducing the number of unknowns within the reconstruction area and 
thus the computational complexity. As demonstrated by [12, 18], this type of conformal 
imaging domain improves the reconstruction results. Herein, the imaging domain is 
selected to span exactly the outer boundary of the human leg as obtained from the MRI-
based leg model.

Relocating antennas

By having the antennas at a close distance from the OI, the loss of the transmitted or 
received signals to the matching medium is reduced as more EM energy is directed 
towards the OI itself or captured by the receiving antennas. Theoretically, this should 
improve the reconstruction results in MWT. Changing the antennas’ locations was 
previously discussed by [47] for localizing tumors using an MWT system designed for 
breast cancer detection. The locations of the antennas were adjusted to surround the 
contour of a breast using a secondary ultrasound system. The results showed that by 
having the antennas located in a close distance from the OI, the tumor localization 
improves, in comparison to having the antennas’ on a circular surface.

In this study, the location of antennas was changed from being on a circle of 15 cm 
radius to antenna locations conforming with the OI’s outermost contour. This would 
simulate a wearable MWT system scenario. To prevent the inclusion of antennas within 
the imaging domain, the antennas’ measurement surface was extruded slightly beyond 
the OI model’s outermost contour. After changing the antenna positions, synthetic data 
are collected again.

Furthermore, Fig.  9 shows the new locations of imaging domain and antennas with 
respect to their old positions and the outermost contour of the leg.

Changing the matching medium

As mentioned earlier, the matching medium selected for the previous simulations was 
a mixture of glycerin and water. This matching medium was used as a starting point as 
it was very effective for breast microwave imaging [45] as it reduced the reflections at 
the matching medium/skin interface. However, a disadvantage of this mixture solution is 
that it is liquid and will not be suitable for wearable MWT applications.

An alternative matching medium that is considered in this work is the ultrasound gel, 
which is commonly used for medical imaging purposes. The ultrasound gel is aqueous, 
bacterio-static, non-sensitizing, and non-irritating. Furthermore, since it is of a gel form, 
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it can be easily applied and cleaned in a wearable MWT system. The world standard 
for ultrasound gels is the AquaSonic 100 [61]. To the best of the authors’ knowledge, 
there has been no previous research on the use of AquaSonic 100 ultrasound gels in 
microwave tomographic applications; thus, it is considered investigated as a matching 
medium in this section.

To be able to use AquaSonic 100 as a matching medium, its electrical properties need 
to be known. This was not found in the literature, so it was measured experimentally 
using Keysight’s N1501A Coaxial Dielectric Probe [44]; the results of the measurements 
between 0.5 GHz and 1.5 GHz are shown in Fig. 10. Furthermore, the value of the gel’s 
relative complex permittivity at 0.8 GHz is ǫr = 71.4 − j10.3.

With the new matching medium, noisy synthetic data were generated again. Next, the 
inversion algorithm was run using the leg’s prior information to incorporate an inho-
mogeneous background, change the imaging domain, and relocate the antennas as dis-
cussed in the previous sections. The results of the reconstructions are shown in Fig. 2e, 
j. It can observed that the two bones have been detected by the algorithm along with 
the different bulk regions of the leg. Therefore, using the ultrasound gel as a matching 
medium is applicable in biomedical MWT; thus, it will adopted for the remainder of the 
work in this study.

Prior information from k‑means algorithm

In the previous section, prior information was obtained from the MRI-based leg model; 
however, in a real MWT configuration, this model is not available. Therefore, we have 
used an image processing algorithm (k-means) [62] to extract structural information 
about the OI using the blind reconstructions. In this technique, the selected image is 
iteratively segmented into a certain number of clusters determined by the user. Each 
cluster includes all values within the image that are close to a calculated centroid [63].

Pre‑processing

The utilized k-means clustering algorithm applies on a uniform square grid; however, in 
FEM-CSI, the estimated electrical properties are calculated on the nodes of the triangu-
lar mesh. Thus, the first step in pre-processing was to interpolate the inversion algorithm 

Fig. 10  Relative complex permittivity value of AquaSonic 100 gel
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output onto a uniform square grid. In an actual MWT system, this step can be omit-
ted due to not having numerical models but rather a direct 2D image. After obtaining a 
square grid for the relative complex permittivity of the blind reconstructions, pixels with 
values close to the matching medium electrical properties were extracted and assigned 
a value of one for later further processing. The purpose of this step is to ensure that the 
k-means algorithm is applied only on pixels corresponding to the reconstructed OI.

Since the estimated values of the reconstructed images are non-uniform, and may be 
an over- or under-estimate of the actual matching medium relative complex permittiv-
ity, the extracted pixels are selected, such that the real part of the relative permittivity is 
within the following limit:

Here ǫ′r,match and ǫ′r,reconstr. are the real parts of the relative complex permittivity for the 
matching medium and reconstructed images, respectively. The selection of this limit was 
determined in an ad-hoc manner; nevertheless, the selected criteria worked for every 
tested matching medium (glycerin mixture or ultrasound gel). Several trial-and-error 
tests were performed to decide on the limit boundaries. The limit was successful in 
removing matching medium values within the range of ±4 . Using the ultrasound gel as 
a matching medium, the limit in Eq. 3 is 67.4 ≤ ǫ

′
r ≤ 75.4 . Again, after the background 

pixels are identified, they are assigned a value of one.

k‑means clustering algorithm

The pre-processing yielded primarily of two regions, which can be referred to as Low-
Permittivity and High-Permittivity regions. The Low-Permittivity region has relative 
permittivity values close to that of fat and bones, while the High-Permittivity region has 
values close to that of muscle and skin tissues. The k-means clustering algorithm was 
applied on this image to extract these two clusters. After applying the algorithm, two 
regions are extracted with their centroids calculated to be 46.10 and 67.55 for the Low-
Permittivity and High-Permittivity regions, respectively. From the two extracted regions, 
the Low-Permittivity cluster is retained, while the High-Permittivity region is omitted. 
This is done, since the Low-Permittivity region, representing the fat tissue, is enough to 
estimate the contour of the leg.

Outermost boundary extraction

To build the fat’s contour from the outermost boundaries of the Low-Permittivity clus-
ter segment, a binary image of the cluster was initially generated. The resultant binary 
image will include mostly a big connected portion that corresponds to the fat tissue, 
along with smaller clusters scattered around it; these smaller clusters are smoothed out 
and removed.

Next, an edge detection algorithm was applied on the remaining segments of the 
smoothed binary image to get the outermost boundaries of the fat cluster. In this algo-
rithm, the Canny technique was selected [64]. The output of this process is the (x, y) 
coordinates of the pixels representing the outermost edge of the fat cluster.

(3)
(

ǫ′r,match − 4
)

≤ ǫ′r,reconstr. ≤
(

ǫ′r,match + 4
)

.
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Structural model formation

Using the (x, y) coordinates extracted in the previous step, an estimated model of the 
OI was built. Since the extracted points represent the boundary of fat tissues, the 
skin contour (which represents the actual contour of the leg) was formed by slightly 
extruding the points 4.5 mm outwards, which is a rough estimate of the skin thick-
ness in human [65].

Next, the extruded points were exported to GMSH to build the prior information 
leg model, and then generate the triangular mesh used in the inversion process. The 
prior information was incorporated as inhomogeneous background in FEM-CSI and 
was used to change the imaging domain shape and relocate the antennas.

Expert‑eye bone localization

The main goal of the expert-eye localization was to extract bones dielectric properties 
from the reconstructed MWT images. Thus, monitor the variations in bone density 
as reflected by the relative complex permittivity. The first step of the algorithm is to 
manually locate bones’ regions-of-interest (ROIs) in the imaginary-part reconstructed 
image. These are regions where the imaginary part of the relative permittivity is low 
and where the bones are expected to be. This is referred to as expert-eye localization, 
as a radiologist looking at the MWT reconstructed image can distinguish the bones 
from the surrounding tissues with ease. Next, the masks of these ROIs are applied on 
the real part of the reconstruction to extract the dielectric constant values within the 
regions. Since these masks may contain muscle tissues surrounding the bones, values 
within the regions that are more than the first quartile of the ROIs’ mean dielectric 
constant are discarded. Finally, the mean of the remaining values is calculated and 
presented as an estimation of the bones’ real relative permittivity.
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