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Introduction
Stroke is the second leading cause of death, accounting for 11% of all deaths world-
wide in 2015, and the main cause of disabilities [1, 2]. Two common causes of stroke 
are intracranial aneurysms, and carotid stenosis, both commonly harbored in the 
internal carotid artery (ICA), a tortuous vessel supplying blood to the brain [3, 4]. 
Specific morphological characteristics have been linked with vascular pathologies, 
leading to the concept of geometric risk factors, as introduced by Friedman et al. [5]. 
Consequently, correlating geometric features and pathologies in the carotid artery 
has been sought extensively [6–12]. However, the current analyses are often manual, 
and therefore operator-dependent and labor-intensive. Besides, studies are often 
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conducted by non-experts within neuroradiology, which could cause differences in 
classification, and potentially influence the results [13–17]. Hence, a topic of inter-
est is the development of a computationally inexpensive tool for automated and 
objective characterization of the ICA, referred to as landmarking. Previous methods 
have been presented by Piccinelli et al. [12] and Bogunović et al. [18], which rely on 
numerical approximations of the curvature and torsion, used to subdivide the vessel 
into separate bends, and are allegedly applicable to arbitrary tubular structures.

However, to the authors’ knowledge, there are no open source-implementations 
of the algorithms, and information about the input parameters for estimation of the 
geometric properties are unknown, limiting their applicability. Furthermore, the 
algorithms capability of capturing the underlying morphology irrespective of seg-
mentation variability remains unknown. Therefore, our goal is to investigate the 
existing methods for automated characterization of the ICA, which will allow for 
objective, consistent, and operator-independent medical image-based morphomet-
ric analysis.

We will revisit automated landmarking, and organize the remainder of this paper 
as follows: we devote Sect.  to the results, consists of three separate subsections. 
More precisely, in Sect. , we investigate the sensitivity of the algorithms to input 
parameters for estimation of geometric properties, in the pursuit of a set of param-
eters that produce consistent landmarking results. In Sect. , we perform verification 
of our implementations, and compare the results of the two algorithms. In Sect. , we 
test robustness of the algorithms. We present a discussion for the three subsections 
in Sect. , followed by limitations and implications. Concluding remarks are pre-
sented in Sect. , followed by our methodology in Sect. , including computation of the 
centerline, the relevant geometric properties, and a presentation of the two existing 
landmarking algorithms.

Results
Sensitivity analysis

Piccinelli’s algorithm

Qualitative results using Piccinelli’s algorithm are shown in Fig. 1. Firstly, results of vary-
ing the resampling length r are shown in Fig. 1a, where we observe how the number of 
bends is increased from 5 to 15 as r decreases. Secondly, results of varying the smooth-
ing factor � are shown in Fig. 1b, where the two leftmost models have 8 and 7 bends, 
respectively, in contrast to 5 for the rightmost model. Finally, results of varying the num-
ber of iterations N are shown in Fig. 1c, where an additional 6th bend is detected for 
N = 50 , whereas an increase of iterations show no noticeable difference.

Quantitative results are presented in Fig.  2a, where we observe that the number 
of detected bends behaves inversely proportional to r, with a mean of 33 bends 
detected for r = 0.02 , in contrast to 3 bends for r = 0.2 . The results of varying � 
are shown in Fig. 2b, where we observe a slight increase, followed by a decrease in 
the number of bends as the magnitude increases, varying around 6 bends. Finally, 
the results of varying N are shown in Fig. 2c, showing a steady decrease in detected 
bends as N increases, transitioning from a mean of 7 to 6 bends.
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Fig. 1  Results using the algorithm by Piccinelli et al., where we have varied the three main input parameters. 
For row a,b, and c we have varied r, � , and N, respectively, for a representative model

Fig. 2  Plot of the mean number of detected bends and standard deviation, and their respective CV, versus 
the variable parameter, computed from 10 models using Piccinelli’s algorithm. Values are homogenized 
across all subplots
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Bogunović’s algorithm

Qualitative results using Bogunović’s algorithm are shown in Fig.  3. Firstly, results 
of varying r are presented in Fig. 3a, where the leftmost model harbors an evidently 
short (red) bend, while the remaining models show no noticeable differences. Sec-
ondly, results of varying � are shown in Fig. 3b, where the left- and rightmost model 
contain particularly short bends, in contrast to the default model in the middle. 
Lastly, results of varying N are presented in Fig. 3c, where there are no noticeable dif-
ferences, and the bends are adequately detected, regardless of N.

Quantitative results are presented in Fig. 4. The results of varying r are presented 
in Fig. 4a, where we observe a steady growth in bend length towards r = 0.08 , while 
further increase contributes little to no value. The plot also shows how the lowest 
deviation appears for r = 0.1 , reflected by the CV, followed by a rapid increase as r 
increases. Low ( � = 0.2 ) and high ( � = 2.0 ) smoothing factors result in a shorter por-
tion of the ICA being landmarked, shown in Fig. 4b. In contrast, around � = 1.1 , the 
length averages at 60 mm, and harbors a minimum CV. When varying N, we observe 
a steady increase in deviation and decrease in length as N > 100 , shown in Fig. 4c. 
In contrast, for N ≤ 100 , the bends deviate much less and average around 60 mm in 
length. The lowest CV is attained at N = 20 , although for N = 60 and N = 100 the 
CV is similar.

Fig. 3  Results using the algorithm by Bogunović et al., where we have varied the three main input 
parameters. For row a,b, and c we have varied r, � , and N, respectively, for a representative model
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Verification and comparison of the landmarking algorithms

Verification

In Fig. 5a and b, we have applied our implementation to reproduce the original results 
by Piccinelli et al., specifically Fig. 4 in [12]. Similarly, in Fig. 5c, we reproduce the first 
landmarking result by Bogunović et  al., shown in Fig. 5 in [19]. Albeit using only one 
model1, the correspondence between our and the original results suggests a successful 
implementation of the algorithm.

Fig. 4  Plot of the mean total bend length and standard deviation, and the respective CV, versus the variable 
parameter, computed from 10 models using Bogunović’s algorithm. Values are homogenized across all 
subplots

Fig. 5  In a, the torsion and curvature profiles corresponding to surface model b are shown, including the 
seven interfaces. These define seven bends, shown on the model in b, and labeled in a proximal to distal 
direction. In c, the subdivision of the ICA as proposed by Bogunović et al. Here, the ICA is subdivided into four 
bends, and white areas denote the region outside of interest

1  We present an approximation of the surface model, with only the centerline available for this particular model. How-
ever, because the algorithm only relies on the centerline, we successfully landmarked the model.
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Comparison

Qualitative results are presented in Fig. 6, where Fig. 6a and 6b are Aneurisk models, and 
models provided by H. Bogunović are landmarked, respectively. The results of applying 
Piccinelli’s and Bogunović’s algorithm are shown in the top and bottom row, respectively.

Comparing the upper and lower row of Fig. 6a, the number of bends is arguably the 
biggest difference, inherently so by the algorithm design. Firstly, Piccinelli’s algorithm 
detects between six and eight bends, while Bogunović’s algorithm consistently cap-
tures four. Secondly, the first (blue) bend using Bogunović’s algorithm is detected as two 
bends in cases C0001, C0006, and C0013 with Piccinelli’s algorithm. Thirdly, for cases 
C0006 and C0007 the fourth (yellow) bend for Bogunović’s algorithm is captured as 
two bends (green and red) in the upper row. Additional results were presented for and 
acknowledged by Dr. Bogunović.2 In addition to the landmarking results presented in 
the second row of Fig. 6a, we performed an additional landmarking of 7 models from 
Aneurisk not shown here. The results were presented for Dr. Bogunović for verification, 
and he acknowledged that 10 out of 12 models were well landmarked. Two models had 

Fig. 6  Application of the landmarking algorithms by Piccinelli et al. and Bogunović et al., applied to 
the Aneurisk cohort in a, and to the models provided by H. Bogunović in b. For both cohorts, we have 
landmarked the first and second rows using the algorithms by Piccinelli et al. and Bogunović et al., 
respectively. For the Aneurisk cohort, we have included the case name, and for the models provided by H. 
Bogunović, we have denoted each model their corresponding figure label in [19], e.g., F7D corresponds to 
Figure 7d

2  In retrospect of the landmarking results presented in the second row of Figure 6a, we performed an additional land-
marking of 7 models from Aneurisk not shown here. The results were presented for Hrvoje Bogunović for validation, 
and he acknowledged that 10 out of 12 models were landmarked adequately. Two models had sub-optimal detection of 
the inferior bend. However, the 2D projection of the models may have influenced the interpretation of the results.
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sub-optimal detection of the inferior (yellow) bend. However, the 2D projection of the 
models may have influenced the interpretation of the results.

In Fig. 6b, the models in the lower row can be qualitatively compared against results in 
[19], including the incorrect detection of the posterior (red) and inferior (yellow) bend 
in model F14D, as originally pointed out by Bogunović et al. Comparing the upper row 
models with the lower row, the largest differences are harbored in the middle three mod-
els. The superior (blue) bend is captured as two bends with Piccinelli’s algorithm, and 
captures the inferior (yellow) bend as two short bends for case F14C. In contrast, F14D 
is detected as five bends with Piccinelli’s algorithm and provides a better landmarking.

Quantitative results are presented in Fig. 7, but omitting the incorrectly landmarked 
model. The mean bend length and standard deviation is presented in Fig.  7a, which 
shows largest differences between the algorithms for the superior and inferior bend, 
respectively. The two bends are close to twice the length using Bogunović’s algorithm. 
In Fig. 7b, we show the CV for the respective bends, as defined in Equation 7. The results 
emphasizes the large relative deviance for the superior bend, where Piccinelli’s algorithm 
produces a high variability with a CV of 58%. In contrast, Bogunović’s algorithm has the 
highest variability for the posterior bend at 33%, although the overall variability is low.

Robustness of the landmarking algorithms

Qualitative results are shown in Fig. 8, where the alphanumerical characters are reflec-
tive of the respective participating teams of the former challenge. First, in the upper 
row of Fig.  8b, we have applied Piccinelli’s algorithm. Overall, the algorithm detects 
anywhere from three to six bends. Starting at the first (blue) bend and comparing hor-
izontally, there is slight variability to how far upstream the next interface is detected. 
Consequently, the second (green) bend has large variability in location and length. The 

Fig. 7  In a, a plot of mean length and standard deviation of the first four bends starting at the most proximal 
bend, traversing distally, for the models in Figure 6. In b, we have plotted the CV, per bend. We have excluded 
case F14D due to the incorrect landmarking with Bogunović’s algorithm
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third (red) bend is located either as the anterior or posterior bend. Six of eight models 
detect a fourth (yellow) bend, detected as the posterior bend for all but one model (seg-
mentation 19A). The only bend with a slight resemblance across all cases is the posterior 
bend, although it is captured as either the third (red) or fourth (yellow) bend. Therefore, 
allowing some leeway, there is a slight correspondence between bends in the cohort.

Second, in the lower row of Fig. 8b, we have applied Bogunović’s algorithm. Firstly, the 
superior (blue) bend is detected at indistinguishable location across all segmentations. 
Secondly, location and length of the anterior (green) bend is similar, with a tiny discrep-
ancy in segmentations 24, 33, and 42, harboring a hardly noticeable, but slightly shorter 
bend. Thirdly, all cases appear to capture the same interface between the superior (blue) 
and anterior (red) bend. Finally, for seven of the eight cases, the posterior-inferior (red-
yellow) interface coincides, with case 16 being the exception, which is influenced by the 
flow extension at the model inlet. In addition, the inferior (yellow) bend of segmentation 
38 is arguably too long, harboring two curvature peaks.

Quantitative results are shown in Fig. 9. The mean length and standard deviation for 
the three bends are presented in Fig. 9a, which highlights the particularly small devia-
tion for the superior bend with Bogunović’s algorithm. For the remaining two bends, 
both algorithms perform well at capturing consistently sized bends. Overall, the bends 
detected with Piccinelli’s algorithms vary considerably more in mean length, compared 
to Bogunović’s algorithm. In Fig. 9b, we present the CV for the three bends. The results 
further support the variability observed in the qualitative results, with large differences 
in CV between the algorithms. Piccinelli’s algorithm shows high variability with a CV of 
47% for the first bend. However, both the second and third bend lengths are consistent 
with a CV < 20% . For Bogunović’s algorithm, the CV is generally low for all three bends, 
with a minimum of CV < 5% for the superior bend.

Discussion

Sensitivity analysis

The two previous studies by Piccinelli et al. and Bogunović et al. have specified using 
Laplacian smoothing, but dedicated little attention to the centerline resolution, 
which is here shown to have the largest impact on the landmarking results. There-
fore, to isolate and investigate the effects of centerline resolution on the geometric 

Fig. 8  In a, the contour of case 5 of the 2015 CFD challenge, and in b, eight different segmentations based 
on the medical image. The model has been subdivided into separate bends using the two landmarking 
algorithms. The codes correspond to the team number in the 2015 CFD challenge, whereas team 19 
submitted two different segmentations, marked as A and B, respectively
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properties, and consequently on the landmarking results, we will be varying r for the 
representative model shown in Fig.  10a, keeping the remaining parameters fixed at 
� = 1.2 and N = 150 . The effects of varying r on the model’s curvature and torsion 
profile are shown in Figs.  10b, c, respectively, where values of r < 0.1 result in an 

Fig. 9  In a, a plot of mean length and standard deviation of the three first anatomical bends from Figure 8b. 
In b, we have plotted the CV for both algorithms

Fig. 10  For the model in a, we show the effects of adjusting the resampling length (r) on the curvature b 
and torsion c profile. We have placed five manual landmarks in a between the major bends used as reference 
points in b and c. In d, the number of torsion and curvature peaks are plotted versus r in a log–log plot using 
the natural logarithm
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increase in the number of saddle-like points located in the vicinity of the main peaks. 
Between r = 0.1 and r = 0.25 , we observe a reduced number of extremum; whereas 
the peaks have completely diminished for r = 0.5 , represented by the orange curve. 
Figure 10d shows the overall impact r has on the number of peaks, which is consid-
erably decreased as r is increased. Thus, values of r > 0.1 is shown to produce over-
smoothed geometric profiles, following the centerline smoothing. In contrast, when 
r < 0.1 the geometric profiles are considerably noisy, creating an undesired amount 
of short bends regardless of the landmarking algorithm. Note that this analysis was 
performed for only one set of smoothing parameters. We therefore theorize that an 
adequate result might be obtained for different sets of centerline resolutions, using 
other smoothing parameters. Nonetheless, for centerlines representing models simi-
lar to the cohort used in this study, r = 0.1 is a reasonable choice.

Considering parameters retrospectively suggested by Dr. Piccinelli3, and judging by the 
sensitivity analysis, values of � ∈ [1.2, 1.5] appear to provide adequate results. Note that 
for � > 2.0 Bogunović’s algorithm often fails to identify any bends.

Choices of N have shown consistent results for N ∈ [20, 100] , while much higher val-
ues will contribute to further smooth out the centerline, and consequently reduce the 
number of curvature and torsion peaks.

For parameters within these suggested ranges, Piccinelli’s algorithm is shown to 
produce an average of 6 to 7 bends. Furthermore, Bogunović’s algorithm consistently 
produces the four bends, at a total length ranging from 60 to 70 mm. This is in good 
correspondence with the clinical measurements by Vijaywargiya et al., who reported an 
average length of 68.9 mm for the ICA siphon [20].

Verification and comparison of the landmarking algorithms

With the chosen set of parameters, we have verified our implementation of the land-
marking algorithms. It should be noted that the verification was performed solely 
through qualitative analysis, and a more rigorous approach could include quantitative 
reference data if made available. Generally, software is verified through empirical analy-
sis, and our implementation has shown to produce plausible results.

The comparison showed distinct differences between the algorithms, where Piccinelli’s 
algorithm repeatedly produced several bends, whereas Bogunović’s algorithm was less 
variable, consistently resulting in models with four bends, inherent in the algorithm 
design. As a result, we theorize that the two algorithms are not comparable in a meta-
analysis. However, both work well for their purpose—capturing either geometrically 
defined bends or anatomical segments.

Robustness of the landmarking algorithms

Piccinelli’s algorithm detects the ICA’s major bends at comparable locations, but without 
correspondence between bends due to large variability for the first (blue) bend. In con-
trast, Bogunović’s algorithm captures the first three bends at indistinguishable location 
and length, with an overall low variability.

3  Dr. Piccinelli provided suggested values for the relevant parameters, including � equal to 1.5 and 1.2 for computing 
curvature and torsion, respectively.
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The comparison shows that Piccinelli’s algorithm produces acceptable results, with 
similarly subdivided models, but is not robust enough to overcome the real-world inter-
laboratory differences. In contrast, Bogunović’s algorithm is able to capture the underly-
ing morphology irrespective of segmentation variability, although certain parameters are 
fitted to landmarking the ICA, thus at the cost of applicability to other vascular struc-
tures. Thus, for general tubular structures, we theorize that Piccinelli’s algorithm is suf-
ficient at capturing bends, although it is prone to slight variability as shown here, while 
Bogunović’s algorithms is superior for carotid artery models.

Limitations

Despite drawing authoritative conclusions in the previous sections, this work has some 
limitations. Firstly, the set of parameters determined through the sensitivity analyses 
produced adequate and robust results in our study, which can plausibly also be used in 
future applications. That being said, these parameter choices are not unique, and there 
may exist other parameter combinations that produce equally plausible or better results.

Secondly, the verification was based on a qualitative comparison that arguably is sub-
optimal from a software engineering point of view. However, the software implemen-
tation of the previous studies was unavailable, and our open-source code produced 
adequate results.

Finally, the models used to study robustness were collected from a study with focus 
on aneurysm modeling pipeline consistency, and not accuracy of parent artery segmen-
tation. Thus, the variability in segmentation may potentially be exaggerated, although 
these surface models were qualitatively similar to other studies [17].

Implications and future considerations

Setting the limitations aside, this study has shown how the two algorithms perform 
adequately in isolation and fulfill the respective authors’ original purpose. It seems that 
Piccinelli’s algorithm is conceptually independent of application, and can be applied to 
any arbitrary tubular structure, but is somewhat vulnerable to model smoothness and 
noise. In contrast, Bogunović’s algorithm is robust and consistent, but with limited gen-
eral applicability, as the threshold of the angles that separates each bend is specific to the 
ICA.

Having provided sufficient knowledge about the capabilities and limitations of both 
algorithms, combined with an open-source implementation, we would argue that the 
tools are readily available for others to use. The latter can potentially have a larger impact 
as many medical image-based studies are currently often limited by being operator-
dependent, and labor-intensive. Combined, these factors are the bottlenecks that hin-
der large cohort studies that are needed to cover the vast variability in human anatomy 
needed for clinical impact [21].

The current results also highlight how input parameters can affect morphometric 
analysis results of the ICA. Like in many other scientific communities, it is actually fair 
to question “[...] whether we know what we think we know.” [22]. Therefore, it may cur-
rently not be excluded that meta-analyses of the ICA are confounded by the previously 
mentioned bottlenecks and subjectively chosen parameters. Finally, and maybe most 
importantly, there is absolutely no guarantee that any of the algorithms actually reflect 
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anatomical landmarks commonly used in radiology. Addressing the latter is however 
beyond the scope of this paper, and would require development of new and more sophis-
ticated algorithms in collaboration with neuroradiologists.

Conclusion
This study provides an open-source implementation of the two existing algorithms for 
landmarking the ICA, and suggested parameters for models of similar morphology to 
the cohorts used in this study. Our investigation has also provided a comprehensive 
comparison of the algorithms, and shown their capability of capturing the vascular 
anatomy in the medical image irrespective of operator-dependent variability. Having 
provided in-depth knowledge about the capabilities and limitations of both algorithms 
combined with an open-source implementation, the tools are ready for others to use, 
although application to other vascular regions should be performed with caution.

Methods
Computation of the centerline

Landmarking the ICA was performed following the general workflow shown in Fig. 11. 
The starting point was a 3D model of the ICA, shown in Fig. 11a, from which the center-
line was computed; see Fig. 11b. Following the methodology of previous work [12, 18], 
the centerline was here a proxy for computing geometric properties of the model and 
was parametrized as follows:

where t is the arc length parameter.

Centerline resampling using a cardinal spline filter

The surface mesh resolution determines the density of the Voronoi diagram from which 
the centerline points are computed, resulting in non-uniform spacing [23]. For a fair 
comparison between the models, we resampled the centerline using a cardinal spline fil-
ter to achieve a consistent spacing r between the neighboring points, as shown in Fig. 12.

(1)r(t) = (x(t), y(t), z(t)) t ∈ [0, 1],

Fig. 11  The general workflow for automated detection of bends in a tubular structure here applied to 
the ICA. We start with a 3D surface model (a), from which we compute the associated centerlines (b). A 
resampled and smoothed version of this line (c) is then used as input to the landmarking algorithms resulting 
in a set of interfaces (d), defining the anatomical bends (e) 
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Centerline smoothing using a Laplacian filter

Computation of geometric properties relies on numerical approximations of higher-
order derivatives, which are sensitive to noise from the discrete centerline. As a rem-
edy, we could either smooth the discrete curve, or the resulting geometric profile, 
where we chose the former approach, as shown in Fig. 11c. We applied a Laplacian 
filter to the centerline, which performed the following iteration N times:

where L(·) is the discrete Laplace operator, and � is the smoothing factor.
To define a set of stable input parameters, we conducted a sensitivity analysis by 

varying r, N, and � , as we were unaware of any specified values from previous studies.

Computation of curvature and torsion

The curvature of the parametrized centerline from Equation  1, was computed as 
follows:

where the primes denote the derivatives with respect to t. Curvature is commonly inter-
preted to measure the deviation from a straight line. Geometrically, it is defined as the 
inverse of the radius of the osculating circle. Furthermore, following [24], torsion was 
computed as follows:

Torsion can be interpreted to measure how sharply the curve is twisting out of the oscu-
lating circle. Of notice, is that the highest derivative is of second and third order for cur-
vature and torsion, respectively.

Alternatively, we may represent the curvature as a vector through the use of two 
frames: the Frenet–Serret frame and the parallel transport frame [25, 26]. In differ-
ential geometry, the Frenet–Serret formulas describe a particle’s kinematic proper-
ties moving along a curve in three dimensions. Generally, the formulas defining the 
Frenet–Serret frame are as follows:

(2)r(t) ← r(t)+ �L(r(t)),

(3)κ =
�r ′(t)× r

′′(t)�

�r ′(t)�3
,

(4)τ =
r
′′′(t) · [r ′(t)× r

′′(t)]

�r ′(t)× r(t)�2
.

Fig. 12  To the left, a portion of the centerline points computed directly from the Voronoi diagram. To the 
right, we have performed resampling of the centerline to achieve consistent spacing, here exemplified with 
r = 0.1 and r = 0.05
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where T  , N  , B are the tangent, normal, and binormal vector, respectively. Of note is that 
N  points towards the center of the osculating circle, meaning we could define the cur-
vature vector as T ′(t) = κN (t) , where κ is the scalar curvature. Furthermore, the curva-
ture vector could be expressed in the parallel transport frame, in combination with any 
orthonormal basis {E1,E2} , as follows:

Here, k1 and k2 are the components of T ′(t) in the orthonormal basis. This representa-
tion of the curvature allowed for studying the torsion of a curve, but only computing the 
second derivative.

The landmarking algorithms

The two landmarking algorithms are conceptually similar, both following the outlined 
workflow in Fig. 11. However, there are differences between step c and d in Fig. 11.

Piccinelli et al. identified locations of curvature and torsion extrema, and proceeded 
by defining a bend for each curvature peak enclosed by a proximal and a distal torsion 
peak. Bogunović et al. identified a set of anatomically inspired landmarks, and divided 
the vessel into a sequence of maximum four bends irrespective of the vessel length. By 
adopting the clinical nomenclature of Bogunović et  al., the ICA was divided into the 
superior, anterior, posterior and inferior bend, colored blue, green, red, and yellow in 
Fig. 11e, respectively. Bogunović et al. defined bends as the curved parts of the centerline 
separated at a local curvature minimum. In contrast to Piccinelli et al., they expressed 
the curvature as a vector in the parallel transport frame, as defined in Equation 6. Hence, 
they detected bends by considering the trajectory of the curvature vector. As the cur-
vature vector changes orientation, the basis vectors E1 and E2 remain stable along the 
curve, allowing for the measurement of the angle α between vectors. Using the curve 
representation in the (k1, k2)-space, four interfaces were detected from a proximal to dis-
tal direction with threshold angles of α = 45◦, 60◦, 45◦, and 110◦ , respectively.

Data acquisition and software

We have used three separate datasets to test various aspects of the algorithms, that have 
previously been described by Piccinelli et al. [12], Bogunović et al. [18], and Valen-Send-
stad et al. [16].

Piccinelli et al. used a subset of 34 models from the open-source Aneurisk database, 
where surface models are segmented from 3D rotational angiography images [27]. Simi-
larly, we selected the first five consecutive cases where the ICA exceeded 70 mm to 
include the entire ICA siphon. Thus, we restricted our selection to models hosting at 
least four major bends, to improve consistency of comparison by reducing the variability 
within the cohort. Details of the data acquisition and processing are explained further in 
[28].

(5)
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(6)T
′(t) = k1(t)E1(t)+ k2(t)E2(t).
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Bogunović et al. performed segmentation of vascular models from 3D rotational angi-
ographic images following the approach in [19], that was made available to the authors 
upon request. The models corresponded to the geometries shown in Figs. 5, 7, and 14 of 
[19], which allowed us to replicate the previously reported results for verification of the 
implementation. Hence, we applied the algorithms to six of the provided models, one for 
verification and the remaining five for comparison.

In consistency with the previous section, we chose the models that extended beyond 
the carotid siphon from the 2015 International Aneurysm Computational Fluid Dynam-
ics (CFD) Challenge, where 26 teams were provided medical images to study variability 
in segmentation and aneurysm hemodynamics [16, 29]. This resulted in 8 of 28 submit-
ted models for assessing robustness.

We have included our implementation of the two landmarking algorithms in the open-
source Python framework morphMan [30], which allows for manipulating morphologi-
cal features in vascular geometries [31]. The morphMan framework is an extension of 
the vascular modeling toolkit (VMTK) [32], and inherits functionality such as computa-
tion of centerlines, curvature and torsion.

Input parameter sensitivity analysis

To investigate the algorithms’ sensitivity to the three input parameters used to estimate 
curvature and torsion, we performed a qualitative analysis on a representative model 
from [27], followed by a quantitative analysis performed on a cohort of 10 ICA models. 
The 10 models were collected from [27] and [19] as described in Sect. .

For the qualitative results we varied r = 0.10± 0.05 , � = 1.2± 0.8 , and N = 150± 100 
consecutively, while keeping the others fixed. Piccinelli’s algorithm found an arbitrary 
number of bends, while Bogunović’s algorithm detected a maximum of four bends. 
Therefore, we computed the coefficient of variation for the number of bends, and bend 
length, respectively, defined as:

where µ is the mean and σ is the standard deviation. The CV was used as a metric to 
measure the algorithm’s success, as we assumed there was a naturally low morphological 
variability in the ICA’s bends, supported by previous clinical morphometric studies [20, 
33–35].

Verification and comparison of the landmarking algorithms

We performed verification by comparing our results qualitatively against published 
results. Specifically, we reproduced Figure 4 in [12] and Figure 5 in [19], as they are the 
only visualizations of the respective algorithms.

Then, to see how the algorithms compared to each other, we performed a qualitative 
and quantitative comparison of the two algorithms using the same cohort of 10 mod-
els as in Sect. . Qualitatively, we considered the number of bends and their location. 
Quantitatively, we only included the four most proximal bends in our analysis to provide 
a fair comparison between the algorithms, and have presented the mean bend length 
with standard deviation, and their respective CV. For both verification and comparison, 

(7)CV =
σ

µ
,
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we set the input parameters to r = 0.1 , � = 1.2 , and N = 100 , based on the sensitivity 
analyses.

Assessing robustness of the landmarking algorithms

To assess robustness, i.e., the ability to capture the underlying morphology irrespec-
tive of operator-dependent segmentation variability of medical images, we performed 
a case study where we applied both algorithms to eight different segmentations of the 
same medical image, collected from the 2015 CFD challenge. The landmarking results 
were compared qualitatively and quantitatively, similarly to our procedure in Sect. , with 
input parameters set to r = 0.1 , � = 1.2 , and N = 100 . For the quantitative comparison, 
we compared the anatomical bends between the two algorithms. Thus, with Piccinelli’s 
algorithm, the comparison against the anterior bend would vary, being detected as either 
the second or third bend. Similarly, the posterior bend was detected as either the third 
or forth anatomical bend. Provided identical medical images, and therefore zero physi-
ological variability in the cohort, we considered low deviation in bend length as a meas-
ure of the algorithm’s robustness.

Abbreviations
ICA:: Internal carotid artery; CV:: Coefficient of variation; CFD:: Computational fluid dynamics.
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