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Abstract 

Background:  Accurate segmentation of lung lobe on routine computed tomography 
(CT) images of locally advanced stage lung cancer patients undergoing radiotherapy 
can help radiation oncologists to implement lobar-level treatment planning, dose 
assessment and efficacy prediction. We aim to establish a novel 2D–3D hybrid convolu-
tional neural network (CNN) to provide reliable lung lobe auto-segmentation results in 
the clinical setting.

Methods:  We retrospectively collected and evaluated thorax CT scans of 105 locally 
advanced non-small-cell lung cancer (NSCLC) patients treated at our institution from 
June 2019 to August 2020. The CT images were acquired with 5 mm slice thickness. 
Two CNNs were used for lung lobe segmentation, a 3D CNN for extracting 3D contex-
tual information and a 2D CNN for extracting texture information. Contouring quality 
was evaluated using six quantitative metrics and visual evaluation was performed to 
assess the clinical acceptability.

Results:  For the 35 cases in the test group, Dice Similarity Coefficient (DSC) of all lung 
lobes contours exceeded 0.75, which met the pass criteria of the segmentation result. 
Our model achieved high performances with DSC as high as 0.9579, 0.9479, 0.9507, 
0.9484, and 0.9003 for left upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), 
right lower lobe (RLL), and right middle lobe (RML), respectively. The proposed model 
resulted in accuracy, sensitivity, and specificity of 99.57, 98.23, 99.65 for LUL; 99.6, 96.14, 
99.76 for LLL; 99.67, 96.13, 99.81 for RUL; 99.72, 92.38, 99.83 for RML; 99.58, 96.03, 99.78 
for RLL, respectively. Clinician’s visual assessment showed that 164/175 lobe contours 
met the requirements for clinical use, only 11 contours need manual correction.

Conclusions:  Our 2D–3D hybrid CNN model achieved accurate automatic segmenta-
tion of lung lobes on conventional slice-thickness CT of locally advanced lung cancer 
patients, and has good clinical practicability.
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Background
Lung cancer  is one of  the most devastating tumors with a high  incidence and mortal-
ity worldwide [1]. Radiotherapy is considered the main option for locally advanced lung 
cancer patients. Although radiotherapy improves locoregional control and survival in 
patients with lung cancer, radiation-induced lung injury (RILI) is common treatment-
related toxicity, which can be fatal in severe cases. Due to the large tumor volume and 
extensive lymph node involvement, patients at locally advanced stage would risk inad-
equate dose delivery to the target because of dose limitations arising from adjacent criti-
cal organs. Some of them may even lose the opportunity to receive curative treatment. 
Intensity-modulated radiotherapy produces accurate dose homogeneity around targets 
and less toxicity to normal organs by optimizing 3D dose distributions based on dose 
constraints prescribed for the target and normal tissues. In previous studies, most of the 
dosimetric constraints used standardly refer to both lungs as a single functional unit [2–
6]. Some recent studies [7–9] suggest that lobar level treatment planning and radiation 
dose assessment may be an accessible way to improve treatment planning and reduce 
the incidence of radiation-induced lung injury. Radiation oncologists often need to man-
ually delineate the tumor and normal tissues slice-by-slice on CT images acquired for 
radiotherapy planning. Manual segmentation of the lung lobe is time-consuming and 
has poor replicability among different observers. Therefore, there is the prerequisite to 
develop a fully automatic methodology that produces reliable segmentation of the lung 
lobe in the clinical setting.

For locally advanced lung cancer patients undergoing radiotherapy, the treatment 
planning CT is usually acquired with 5  mm slice thickness, this adds to the difficulty 
of lung lobe auto-contouring, since slice thickness will generally affect the tissue con-
tours in the images. The lungs have five different partitions called lobes. The left lung 
is divided into upper and lower lobes, and the right lung is divided into upper, middle, 
and lower lobes [10]. The boundaries of each lobe are fissures. The thin-section CT was 
beneficial for recognizing the fissures. As shown in Fig. 1, it was clear that the interlo-
bar fissures often appear as a cavity without the intersection of the vascular tree or the 
bronchial tree on a standard CT, while they are displayed as lines on thin-section CT 
[11]. Most of the existing technologies rely on pulmonary blood vessel/airway segmenta-
tion or semi-automated methods [12]. However, the segmentation of lung airways and 
blood vessels is relatively complicated and not always reliable, especially in the presence 
of disease.

In recent years, in the field of image segmentation, various deep learning-based seg-
mentation algorithms based on 2D or 3D convolutional neural network (CNN) have 
been proposed. Some studies [13–16] reported the use of deep learning in lung lobe seg-
mentation. George et al. [14] employ a 2D fully convolutional network combined with a 
3D random walker refinement. This approach achieves high accuracy without reliance 
on prior segmentation of the airway or vessel. However, it relied on prior segmentation 
of the lobar boundaries, and the 3D random walker algorithm needs the initialization of 
seeds and weights. Harrison et al. [13] adapt the holistically nested network (HNN) with 
a progressive constraint on multi-scale pathways to overcome issues with HNN output 
ambiguity and the coarsening resolution of fully convolutional networks. Imran et  al. 
[15] introduced a fast and fully automated lung lobe segmentation method based on a 
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Progressive Dense V-Network. This method can segment lung lobes in one forward pass 
of the network. Park et al. [16] used a lung lobe segmentation method with 3D U-Net 
architecture and achieved high accuracy of lobe segmentation on the chest CT scans of 
mild-to-moderate COPD patients. These studies provide a very important base for fur-
ther researches. Training a deep neural network that can generalize well to new data is 
a challenging problem. These reported automatic segmentation algorithms are usually 
developed and tested on carefully selected high-resolution public data sets, slice thick-
ness ranged from 0.50 to 1.50 mm. However, experiments on conventional imaging data 
show that algorithms that perform well on public data sets cannot produce accurate and 
reliable segmentation in clinical CT images of patients with severe diseases [17].

Unlike CT images for diagnostic purposes, radiotherapy planning CT, as the basis for 
treatment planning, needs to consider the efficiency of treatment and the accuracy of 
target delineation. There are usually standard slice thicknesses of CT scans for tumors of 
different volumes at different sites. When patients with locally advanced non-small-cell 
lung cancer are treated with radiation therapy, a 5-mm slice thickness is generally used 
to obtain CT images for radiation therapy planning. The increased  slice  thickness  of 
clinical standard CT affects the image quality, which results in segmentation accuracy 
reduction. To the best of our knowledge, lung lobe auto-contouring by deep learning 
method in 5 mm slice CT of lung cancer patients has not been previously investigated.

When it comes to these conventional but not perfect clinical data, it is necessary to 
make modifications to the learning model network architecture such that improves the 
model’s performance on these data. The 2D network is inefficient and cannot capture 
inter-slice correlations. To learn volumetric information in CT images, the convolution 
kernels is to extend from 2 to 3D. In this way, the networks can take full advantage of the 
3D context for better performance. But 3D CNN has more parameters than 2D CNN, 
and the training of 3D CNN is computationally expensive, which limits the construction 
of very deep networks. In 5 mm slice CT images, the voxel scale in the Z-axis is much 
larger than that in the XY plane. Directly performing 3D convolutions with isotropic 
kernels on these anisotropic volumetric images could be problematic.

Fig. 1  Axial view of right lung for one patient. Blue arrows point to the fissures in right lung. a 1 mm slice CT, 
b 5 mm slice CT
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In this study, we propose a 2D–3D hybrid segmentation network based on a convo-
lutional neural network to automatically segment lung lobes from 5 mm slice-thickness 
computed tomography (CT) images. The proposed network combines the advantages of 
both 2D and 3D CNN, improving the model accuracy, and achieved high performances 
in this challenging data set. Its purpose is to assist clinicians in their decision-making 
with lobar level treatment planning, radiation dose assessment, and efficacy prediction, 
which may help to improve treatment outcomes and reduce toxicity for locally advanced 
lung cancer patients undergoing radiotherapy.

Results
The tumors of 70 patients in the training & validation set and 35 patients in the test 
set were distributed in 5 lobes. The tumor location information of all cases is shown in 
Table 1.

For the 35 patients in the test group, the DSC of the auto-contour of all lobes was over 
0.75, which met the pass standard of segmentation result.

All the automatic segmentation profiles were divided into five groups according to the 
left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe. 
Six different quantitative indexes, HD95, MSD, DSC, Sensitivity, Specificity, and Accu-
racy were used for evaluation. Figure 2 shows that DSC results of all the other lobes were 
around 0.95 except for the mean DSC of the right middle lobe of 0.9003 ± 0.0331. Quan-
titative parameters for lung lobe contouring are shown in Table 2.

Figure 3 shows an example of lung lobe contours from our 2D–3D hybrid auto-seg-
mentation network. A radiation oncologist performed quality evaluation (accepted as is/
need manual correction/failed) on the segmentation results of our lung lobe segmenta-
tion model on 35 cases in the test group in slice (axial, coronal, sagittal) and 3Dviews. 
Among the 175 lung lobe contours from 35 cases, 164 (93.7%) were accepted as is; only 
11 (6.2%) of the lung lobes, distributed in a total of 28 slices, need manual correction 
before clinical use; 0(0%) failed.

Fig. 2  Boxplot of HD95, MSD, DSC, accuracy, sensitivity and specificity
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Figure 4 shows an example case in which there are differences between the automati-
cal segmentation and the manual contour of RUL. Figure  4a–d shows four consecu-
tive slices in the same CT sequence. Due to the sudden occurrence of fissures, the right 
upper lobe contours vary greatly between consecutive slices, and the automatic segmen-
tation network failed to accurately identify these changes until the contour of the right 
middle lobe appears in slice (d).

Discussion
In this study, we proposed a 2D–3D hybrid CNN model for lung lobes segmentation on 
the conventional 5 mm slice-thickness CT images of locally advanced NSCLC patients. 
The segmentation results were assessed using quantitative indexes, all contours passed 
the criteria with DSC >  = 0.75. Our segmentation results have been visually evaluated by 
the clinician. Most of the segmentation results can be clinically acceptable as is except 
for a few (11 / 175 contours) which need minor manual correction. Our model greatly 
alleviates the workload of the clinician in manually contouring the lung lobes and pro-
vides help for lobar-level contouring, treatment planning, dose distribution prediction, 

Fig. 3  Example of lung lobe contours from our 2D–3D segmentation network

Fig. 4  Example of auto-segmentation requires manual correction
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and evaluation on 5  mm slice-thickness CT images of locally advanced lung cancer 
patients.

Before locally advanced NSCLC patients undergoing radiotherapy, planning CT 
images were obtained on the simulation CT, target and OARs were delineated on the 
planning CTs, and then the CT images and RT structures were used for treatment plan-
ning. Since the treatment volume of these patients includes tumor and lymph nodes, 
and the irradiation volume is large, their planning CT images are usually acquired with a 
thickness of 5 mm. Compared with other CT images with thinner thickness, due to the 
partial volume effect (PVE) in Z-axis, the resolution and contrast of CT images will be 
reduced, and the thin front and back connecting lines in the images will be affected [18]. 
In addition, the existence of a tumor in the lung will also damage the structure of the 
adjacent lung lobe, which increases the difficulty of automatic segmentation. Although 
there are some commercial automatic contouring softwares provide auto-segmentation 
of some normal tissues on the radiotherapy planning CT images, but, as far as we know, 
there is no commercial software that can automatically contour the lung lobes to meet 
the needs of clinical applications on this type of CT images.

In recent years, some studies [13, 15, 16, 19] have reported the application of deep 
learning models based on convolutional neural networks in lung lobes segmentation, 
and many have obtained satisfactory results. Most of the models in these studies use 
public data sets for model training and verification. Taking into account the difficulties 
in the automatic segmentation of lung lobes in conventional radiotherapy planning CT 
images for patients with locally advanced NSCLC, these algorithms that perform well 
on public data sets cannot produce accurate and reliable segmentation when directly 
applied to clinical standard images, so we tried to establish a new automatic segmenta-
tion model that can meet this clinical need.

The 2D–3D CNN hybrid segmentation model we proposed uses 3D CNN to learn 
3D volumetric information [14] while taking advantage of 2D CNN to extract the edge 
information within the layers [13] to maximize the potential of the algorithm on limited 
data. Thereby improving the accuracy of segmentation. Our test results on a test set con-
taining 35 cases and 175 segmentation contours show that the DSCs of LUL, LLL, RUL, 
RML, and RLL are 0.9579 ± 0.0125, 0.9479 ± 0.0157, 0.9507 ± 0.0133, 0.9003 ± 0.0331, 
and 0.9484 ± 0.0225, respectively. The PDV-Net model reported by Imran [15], select 
the chest CT data training model from the LIDC data set, the slice thickness of the 
scans ranged from 0.50 to 1.50  mm, and the in-plane resolution varied between 0.53 
and 0.88 mm The DSC results of lung lobe segmentation of the model are 0.966 ± 0.014, 
0.966 ± 0.037, 0.937 ± 0.031, 0.882 ± 0.057, and 0.956 ± 0.017. Park [16] adopts the 3D 
U-Net model and select chest CT scans of mild-to-moderate chronic obstructive pul-
monary disorder (COPD) patients, Slice thickness ranged from 0.625 mm to 0.80 mm, 
the reported result is 0.9556 ± 0.013, 0.9701 ± 0.010, 0.9697 ± 0.007, 0.9306 ± 0.030, and 
0.9697 ± 0.007. Compared with previous studies, although our image data slice thickness 
is up to 5 mm, our hybrid segmentation model achieves satisfactory results in clinical 
data sets with less information in the image and large boundary variation between suc-
cessive layers.

Similar to that reported in previous studies, the DSC value of RML was lower than 
those of other lobes. The reasons may be as follows: First, in terms of volume, RML is 
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much smaller than the upper and lower lobes, about 30–50% of the upper or lower lobe. 
Small errors in auto-segmentation volumes can lead to large differences in Dice value 
and reduce the overall performance. Second, segmentation errors generally occur at the 
starting slices, where the RML/RLL appears, especially for CT images with a thickness 
of 5 mm, since the fissures between RML and RUL or RLL are more difficult to recog-
nize than those are displayed as lines on thin-section CT, the boundary of a middle or 
lower lobe in its starting slice is not often sensitively identified by segmentation network 
(Fig. 4), which makes accurate segmentation of RML a challenge. In the proposed hybrid 
network, the advantages of 2D and 3D networks are combined to improve the segmenta-
tion accuracy of RML. From our results, the mean DSC of RML reached 0.9, which was 
comparable to the results of other models in 1–2 mm slice thickness CT images. Among 
175 contours, 11 contours required manual correction by the physician. We analyzed 
the cases that are significantly different from manual contours in the evaluation results. 
The main differences are in the continuous layers, where the contour of the lung lobes 
changes greatly in the superior–inferior direction, especially in the slices, where the fis-
sures between adjacent lung lobes appear. However, most of the differences are consid-
ered acceptable for clinical use after visual assessment.

Our research has some limitations. Because our main research goal is to establish a 
hybrid model that can achieve automatic lung lobe segmentation on clinical standard 
CT images for locally advanced NSCLC patients undergoing radiotherapy and to eval-
uate the clinical applicability of the model. We did not perform much post-processing 
optimization to improve our segmentation results, which may also affect some of our 
segmentation results. We will further optimize our model in future work to achieve 
more precise lung lobe segmentation.

Conclusion
The 2D–3D CNN hybrid segmentation model proposed in this study can achieve rela-
tively accurate automatic segmentation of lung lobes on conventional chest CT of locally 
advanced lung cancer patients, and results that meet the needs of clinical applications 
can be obtained with minimal manual participation. Our model reduces the impact of 
heavy manual segmentation workload and time-consuming on clinical workflow and 
provides a basis for the implementation of lobar-level contouring, treatment planning, 
dose evaluation, and treatment outcome prediction for locally advanced lung cancer 
patients.

Methods
2D–3D hybrid CNN

Our model is an end-to-end trainable hybrid convolutional neural network, which com-
bines a 3D CNN to learn the long-range 3D contextual information of CT images, and 
a 2D CNN to capture intra-slice semantic information. The complete network structure 
diagram is shown in Fig. 5.

2D CNN adopts dense connection to ensure maximum information flow, which could 
capture more details in each layer for edge detection. The gradually decreasing num-
ber of channels in the encoding path increases the weight of the low-level information, 
which is beneficial to the network to focus on extracting the edge information.
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2D features are effectively fused with 3D features through a hybrid features fusion 
module, which combines the complementary information of the two networks and inte-
grates the information on different spatial scales. It solves the problem that 2D CNN 
cannot extract the volume information of CT image context, and alleviates the problem 
that 3D CNN is not sufficient in extracting intra-layer features. The Dice Loss function 
used by the network effectively alleviates the common problem of category imbalance in 
segmentation.

Fig. 5  Schematic diagram of network structure

Table 1  Tumor location information of all cases

LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, RML right middle lobe, RLL right lower lobe.

Location Entire cohort Training-validation cohort Test cohort

LUL 32 22 10

LLL 12 9 3

RUL 22 16 6

RML 14 4 10

RLL 25 19 6

Total 105 70 35

Table 2  Quantitative parameters for lung lobe segmentation

LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, RML right middle lobe, RLL right lower lobe.

N=35 LUL LLL RUL RML RLL

HD95 (mm) 22.3584±17.2096 20.9913±7.1894 16.9986±7.8134 26.553±13.995 23.4818±11.1656

MSD (mm) 0.9754±0.2355 1.2095±0.3613 1.1752±0.2935 1.9358±0.7122 1.2164±0.5285

DSC 0.9579±0.0125 0.9479±0.0157 0.9507±0.0133 0.9003±0.0331 0.9484±0.0225

Accuracy 99.5715±0.0928 99.5951±0.1209 99.6668±0.0892 99.7161±0.0707 99.5753±0.1421

Sensitivity 98.2261±0.6801 96.1441±1.5422 96.1279±1.7629 92.3785±3.6881 96.0335±2.0398

Specificity 99.6506±0.0652 99.7638±0.0603 99.8104±0.0756 99.8346±0.0762 99.7793±0.0638
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3D CNN

We employ the V-Net model proposed by Milletari [20] to extract the context infor-
mation of lung lobes on CT images. The training volumes were first normalized, fol-
lowed by rescaling to 512 × 512 × 64. The model is an encoder–decoder structure, 
where the encoder is used to extract features and reduce its resolution at the end of 
each stage, and the decoder is used to gradually restore the low-resolution features 
generated by the encoder to the same resolution as the input image through transpose 
convolution, the final output feature map of 3D CNN was 256 × 256 × 64 × 32, and 
the resolution is compressed for convolutional downsampling using a kernel size of 
2 × 2 × 2 with stride 2. The resolution of the feature map is reduced by half in three 
directions (XYZ) with each down-sampling. The parametric rectified linear units 
(PReLU) activation function is used in the network.

2D CNN

The 2D CNN proposed in this paper has an encoding path similar to the V-net struc-
ture. Three dense blocks are set on the encoding path to extract features. Through 
the dense connection scheme, network feature propagation is promoted and feature 
utilization is enhanced so that 2D CNN can fully excavate the 2D texture information. 
We trained the network with axial slices from all the training volumes, each sized 
256 × 256 and normalized to have values between 0 and 1. To avoid over-fitting to the 
background, only the axial slices, wherein at least one lung lobe is present were used. 
Different from V-net, the size of the feature map and the number of channels will be 
reduced after every down-sampling, which is beneficial for the network to concen-
trate on extracting the edge information of lung lobes on CT images. The decoding 
path eliminates most convolution processing for low-resolution feature maps, directly 
restores the resolution of feature maps through Transpose convolution processing, 
which improves the operating efficiency of the network.

2D–3D fusion

Before obtaining the final segmentation map, features extracted by 2D CNN and those 
extracted by 3D CNN need to be fused, and the feature maps of the two networks 
need to be consistent in size and dimension. The featured image extracted by 2D CNN 
becomes 256 × 256 × 32 after up-sampling, and the final output results of 64 consecu-
tive CT slices in 2D CNN are combined to generate a tensor that can be used for 
3D convolution. The size and channel number of the tensor are 256 × 256 × 64 × 32, 
which is the same as that of 3D CNN. After that, two-dimensional features and three-
dimensional features are concatenated to form hybrid features. The mixed features 
are refined through a 3 × 3 × 3 convolution kernel and generate feature maps of two 
channels. Finally, a softmax layer is applied to generate the final segmentation.

Loss function: To capture the local and global relationship between different output 
pixel predictions of this hybrid network, the context information based on the Dice 
coefficient was used to correct the lobe shape information in both networks:
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where xi is the prediction probability for each voxel and yi is the binary ground truth.

Data set

105 locally advanced non-small cell lung cancer patients with pathologically con-
firmed IIIA (N2) were retrospectively selected from the case database from June 2019 
to August 2020. The diagnostic CT of the patient is in the supine position, lying on 
the ordinary CT diagnostic curved bed, and the arm is raised above the head. The 
reconstructed image has a resolution of 512 × 512 and a slice thickness of 5 mm. It is 
transmitted to MIM 7.0.4 (MIM vista Corp, Cleveland, US-OH). A total of 350 three-
dimensional lung lobe contours, seventy contours per lobe was trained and validated 
after the image data augmentation process, so as to ensure the amount of data needed 
for model training. One experienced radiation oncologist contoured five lung lobes 
for each CT scan, and the data is saved in the RTstructure Dicom file.

Implementation

Each CT slice is resampled at the same resolution (1 × 1 × 3  mm) and cropped to 
256 × 256. For each CT sequence, a 64 × H × W 3D image was synthesized from 64 
consecutive images with stride as 1. 105 patients were randomly divided into a train-
ing group (50 cases) to optimize the network, a validation group (20 cases) to deter-
mine the optimal performance model, and a test group (35 cases) to test and evaluate 
the model after complete training. The total data set includes 7090 CT slices, 4705 
slices for the Training-Validation cohort, and 2385 slices for the Test cohort. The aug-
mentation of input data was used to avoid overfitting and improve the generaliza-
tion capabilities of deep neural networks. Random Translation, scaling, rotation, and 
other data enhancement techniques were used to increase the sample size.

The proposed CNN was trained on two NVIDIA 1080Ti GPU with 11 GB of RAM 
for 1000 epochs. The code was written in PyTorch Library using Python. Considering 
the GPU memory limitation, the batch size was set to 1. For the gradient descent opti-
mization algorithms, we used the Adam optimizer with a learning rate of 0.001 and a 
weight decay of 10–8.

Evaluation metrics

Multiple metrics were used to quantitatively evaluate the accuracy of the proposed 
segmentation method. The manual contours delineated by a single expert (RO) were 
considered ground truth in this study. Dice Similarity Coefficient (DSC) [21, 22] is the 
main evaluation metric that quantifies the spatial overlap between the ground truth 
and the automated contours, defined as

LDice = 1−
2
∑

i xi yi
∑

i x
2
i +

∑

i
y2
i

,

Dice =
2|X ∩ Y|

|X|+ |Y|
,
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where X was the set of segmentation results and Y was the set of ground-truth deline-
ation. The value of Dice varied from 0 to 1, and a higher value of Dice usually implied a 
better match between the two contours. A Dice score of 0.75 was considered an accept-
able match in this study.

Hausdorff distance (HD) [22] is a measure of surface distance between two point 
sets, defined as

where X and Y denoted the boundary-surface set of the automated contours and the 
ground truth, d (x, y) indicated the Euclidean distance between voxels x and y. 95th-
percentile Hausdorff distance (HD95) describes the largest surface-to-surface separation 
among the 95th percentile of surface points of automated contours and ground truth. 
Hausdorff distance referred to the maximum distance of all surface voxels. However, it 
was sensitive to small outlying objects and HD95 was employed to skip the outliers. A 
smaller value of HD95 usually implied a better result.

Mean surface distance (MSD) [23] was defined as follows:

Sensitivity, Specificity, and Accuracy [24] were also used as performance assess-
ment parameters:

where TP, TN, FP, and FN denotes true positive, true negative, false positive, and false 
negative correspondingly.

Statistical analysis

All statistical comparisons were performed using SPSS software (version 22.0; IBM, 
Inc., Armonk, NY, USA). A value of P < 0.05 indicated statistical significance.
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