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Abstract 

Background:  Fractional flow reserve (FFR) is a widely used gold standard to evalu-
ate ischemia-causing lesions. A new method of non-invasive approach, termed as 
AccuFFRct, for calculating FFR based on coronary computed tomography angiography 
(CCTA) and computational fluid dynamics (CFD) has been proposed. However, its diag-
nostic accuracy has not been validated.

Objectives:  This study sought to present a novel approach for non-invasive computa-
tion of FFR and evaluate its diagnostic performance in patients with coronary stenosis.

Methods:  A total of 54 consecutive patients with 78 vessels from a single center who 
underwent CCTA and invasive FFR measurement were retrospectively analyzed. The 
CT-derived FFR values were computed using a novel CFD-based model (AccuFFRct, 
ArteryFlow Technology Co., Ltd., Hangzhou, China). Diagnostic performance of AccuF-
FRct and CCTA in detecting hemodynamically significant coronary artery disease (CAD) 
was evaluated using the invasive FFR as a reference standard.

Results:  Diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV) for AccuFFRct in detecting FFR ≤ 0.8 on per-patient 
basis were 90.7, 89.5, 91.4, 85.0 and 94.1%, respectively, while those of CCTA were 38.9, 
100.0, 5.71, 36.5 and 100.0%, respectively. The correlation between AccuFFRct and FFR 
was good (r = 0.76 and r = 0.65 on per-patient and per-vessel basis, respectively, both 
p < 0.0001). Area under the curve (AUC) values of AccuFFRct for identifying ischemia 
per-patient and per-vessel basis were 0.945 and 0.925, respectively. There was much 
higher accuracy, specificity and AUC for AccuFFRct compared with CCTA.

Conclusions:  AccuFFRct computed from CCTA images alone demonstrated high 
diagnostic performance for detecting lesion-specific ischemia, it showed superior diag-
nostic power than CCTA and eliminated the risk of invasive tests, which could be an 
accurate and time-efficient computational tool for diagnosing ischemia and assisting 
clinical decision-making.
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Introduction
Accurate diagnosis of stenosis severity is essential for doctors in therapeutic decision-
making regarding the need for percutaneous coronary intervention (PCI) or coro-
nary artery bypass grafting (CABG). Coronary computed tomography angiography 
(CCTA) has emerged as a useful tool for evaluating coronary artery disease (CAD) 
severity [1]. However, the anatomic information obtained by CCTA is unable to ulti-
mately reflect the physiological and physical influence on blood flow, which results 
in the poor correlation between lesion-specific ischemia and stenoses detected by 
CCTA [2–4]. Invasive fractional flow reserve (FFR), which assesses the ratio of flow 
across stenoses to putative flow in the absence of stenosis, is a well-established refer-
ence standard for evaluating the ischemic potential of individual lesions [5, 6]. Sev-
eral validation studies have demonstrated that FFR-guided coronary intervention can 
enhance survival and reduce unnecessary revascularization [3, 7]. Despite the clinical 
benefits of FFR, the cost and potential complication of a pressure wire limited the 
wide application of FFR. Thus a tool that could precisely calculate the FFR value inex-
pensively would benefit more people in the world.

Computational fluid dynamics (CFD), as applied to CCTA images, represents a 
novel technique for assessing the physiological significance of CAD [8]. CT-derived 
FFR can be computed non-invasively from standard CCTA images without modifying 
acquisition protocols or additional imaging, and it has been validated in several trials 
with good diagnostic performance [9–11]. CT-FFR involves coronary segmentation, 
estimation of blood flow, numerical solving for the flow field across a coronary tree, 
etc. The complexity of these steps results in the most significant restriction of CT-
FFR, namely time-consuming. In the FFRCT computation process, parallel supercom-
puters are needed [12]. Thus, a CT-derived FFR approach without high computational 
demands becomes very attractive.

In this study, a novel CT-derived FFR method, AccuFFRct, which efficiently com-
putes lesion-specific non-invasive FFR based on anatomic and functional informa-
tion, was used to assess its feasibility and diagnostic accuracy with wire-based FFR as 
a reference standard.

Results
Patient characteristics

The study population consisted of 54 patients with 78 vessels, including 34 males 
and 21 females. 45 (58%) lesions were located in left main or left anterior descending 
arteries, 10 (13%) were in left circumflex arteries and 14 (18%) were in right coronary 
arteries, there were 9 multi-vessel lesions. Detailed patient baseline characteristics 
are summarized in Table 1.

Correlation and agreement between AccuFFRct and invasive FFR

The correlation and agreement between AccuFFRct and FFR on a per-patient and 
per-vessel basis are shown in Figs. 1 and  2, respectively. Good correlation (Pearson’s 
correlation coefficient r = 0.76 and 0.65, p < 0.0001) and agreement (mean difference 
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Table 1  Patient baseline characteristics

CT computed tomography, CCTA​ coronary computed tomography angiography, LM left main artery, LAD left anterior 
descending artery, LCX left circumflex artery, RCA​ right coronary artery, FFR fractional flow reserve

Parameter Number 
of patients 
(54)

Age (y) 65 ± 8

Male sex 63% (34)

Weight (kg) 66 ± 11

Height (cm) 165 ± 8

Body mass index (kg/m2) 24 ± 3

Cardiovascular risk factors

 Systolic blood pressure (mm Hg) 131 ± 20

 Diastolic blood pressure (mm Hg) 76 ± 14

 Angina pectoris 20% (11)

 Diabetes 19% (10)

 Hypertension 57% (31)

 Hyperlipidemia 7% (4)

Coronary CT angiography

Agatston score, % (n)

 0–399 69% (37)

 400–799 22% (12)

  > 799 9% (5)

 CCTA stenosis ≥ 50% (patient) 56% (30)

 CCTA stenosis ≥ 50% (vessel) 65% (51)

 AccuFFR ≤ 0.80 (patient) 37% (20)

 AccuFFR ≤ 0.80 (vessel) 32% (25)

Vessel location, % (n)

 LM/LAD 58% (45)

 LCX 13% (10)

 RCA​ 18% (14)

 Multi-vessels 11% (9)

Stenosis degree, % (n)

  < 50% 43% (23)

  ≥ 50% 57% (31)

 FFR ≤ 0.8 41% (22)

Fig. 1  Per-patient correlations (r = 0.76, p < 0.0001) and per-vessel correlations (r = 0.65, p < 0.0001) between 
wire-based FFR and AccuFFRct. FFR fractional flow reserve
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0.06 ± 0.07) were observed. Representative patient case from the study is shown in 
Fig. 3.

The average AccuFFRct was 0.83 ± 0.10. Among all 78 vessels, there were 20 true 
positives (TP), 50 true negatives (TN), 6 false positives (FP), and 2 false negatives (FN) 
using FFR as the reference standard. With AccuFFRct ≤ 0.8 taken as the cut-off value 
of ischemia-causing stenoses (FFR ≤ 0.8), the sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV) of AccuFFRct for diagnosis of ischemia-
causing stenoses on the per-patient basis were 89.5, 91.4, 85.0, and 94.1%, respectively. 
The diagnostic accuracy was 90.7%. For the per-vessel assessment, the diagnostic accu-
racy, sensitivity, specificity, PPV, and NPV for AccuFFRct were 89.7, 90.5, 89.5, 76.0 and 
96.2%, respectively. Detailed information of diagnostic performance of AccuFFRct is 
summarized in Table 2. When using CCTA only to predict FFR ≤ 0.8, the accuracy, sen-
sitivity, specificity were 38.9, 100.0, 5.7% on per-patient basis and 32.0, 100, 7.0% on per-
vessel basis, respectively. It is notable that AccuFFRct showed much better diagnostic 
performance in detecting ischemia-causing stenoses than the traditional assessment by 
CCTA. The extremely low specificity and accuracy of CCTA means overestimation of 

Fig. 2  Bland–Altman plot of FFR and AccuFFRct on the per-patient and per-vessel basis, respectively. 
FFR = fractional flow reserve

Fig. 3  AccuFFRct results with invasive FFR measurement. a CCTA demonstrating 80% stenosis at the 
proximal to middle portion of LAD (green arrow); b a computed AccuFFRct value of 0.79 (red arrow); c the 
corresponding measured FFR value of 0.75, demonstrating stenosis ischemia. FFR fractional flow reserve; 
CCTA​ coronary computed tomography angiography, LAD left anterior descending artery
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lesion severity, which may lead to unnecessary downstream invasive tests or interven-
tion therapies. The high accuracy, sensitivity, specificity of AccuFFRct means it can get 
accurate assessment of coronary stenoses in most of cases without obvious underestima-
tion or overestimation.

The ROC curves of AccuFFRct and CCTA on a per-patient and per-vessel basis are 
shown in Fig. 4. For a per-patient basis, the AUC for AccuFFRct and CCTA was 0.945 
vs. 0.870, while for a per-vessel basis, the AUC for AccuFFRct and CCTA was 0.925 
vs. 0.853. This also showed the superior diagnostic ability of AccuFFRct in identifying 
whether a stenosis can lead to ischemia.

Discussion
We have developed a novel method that allows fast computation of FFR from CCTA 
images alone. In the study on a population of 54 patients with stenoses in 78 coronary 
vessels, AccuFFRct showed a good correlation with Pearson’s correlation coefficient 
r = 0.76 (p < 0.001) and agreement with invasive FFR. The overall diagnostic accuracy of 
AccuFFRct in predicting hemodynamically significant CAD (defined by FFR ≤ 0.80) was 
90.7 and 89.7% on a per-patient and per-vessel basis, respectively. In this population, the 

Table 2  Diagnostic performance of AccuFFRct for the prediction of ischemia of lesion on a per-
patient and per-vessel level

Data are shown in percentage with raw data in parentheses and 95% confidence interval in brackets. CI confidence interval, 
NPV negative predictive value, PPV positive predictive value

Parameter AccuFFRct ≤ 0.80 [95% CI] AccuFFRct ≤ 0.80 [95% CI]
Per-patient level (n = 54) Per-vessel level (n = 78)

Accuracy 90.7 [79.7–96.9] 89.7 [80.8–95.5]

Sensitivity 89.5 [66.9–98.7] 90.5 [69.6–98.8]

Specificity 91.4 [76.9–98.2] 89.5 [78.5–96.0]

PPV 85 [65.5–94.4] 76 [59.5–87.2]

NPV 94.1 [81.1–98.3] 96.2 [87.20–98.9]

Fig. 4  Areas under the curve (AUC) for receiver-operating characteristics (ROC) of AccuFFRct and CCTA, for 
per-patient and per-vessel basis. CCTA​ coronary computed tomography angiography
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accuracy of CCTA was only 61.8 and 58.1% for per-patient and per-vessel, respectively. 
The diagnostic accuracy of AccuFFRct is much higher than CCTA in the functional 
evaluation of lesion-specific ischemia. The cause is that CCTA often overestimates ste-
nosis severity, and existing studies showed that less than 50% of CCTA-defined severe 
stenoses caused ischemia [2, 13]. Considering both anatomic and functional informa-
tion, AccuFFRct can comprehensively assess the influence of stenoses on blood flow and 
facilitate clinical decision-making.

CT-derived FFR methods can estimate FFR from typically acquired CCTA images 
without additional image acquisition, CCTA protocols, and medication administration 
modification. The diagnostic performance of such approaches has been validated and 
verified [9–11, 14, 15]. A 3D CT-FFR technique (FFRCT, Heartflow) exhibited good cor-
relations with invasive FFR, with diagnostic accuracy ranging from 73 to 86% and AUCs 
of FFRCT in detecting lesion-specific ischemia ranging from 0.81 to 0.90 [9–11]. FFRCT 
showed excellent diagnostic performance compared with CCTA, SPECT and PET and 
reduced more than one-half ICA in clinical practice [16, 17]. Hlatky et al. [18] demon-
strated that the use of FFRCT to guide ICA planning and revascularization could reduce 
costs and improve clinical outcomes. Furthermore, a recent trial including 5083 patients 
represented that FFRCT could provide much more useful information for clinical deci-
sion-making and FFRCT-guided patient management enhanced one-year survival free of 
major adverse cardiac events [19, 20]. Besides, Siemens Healthcare [15] reported a new 
approach for computing cFFR from CCTA images using a reduced-order CFD model. 
The correlation of cFFR and invasive FFR ranged from 59 to 75% and the AUCs var-
ied from 0.83 to 0.92 [15, 21, 22]. The machine learning (ML)-based cFFR was the latest 
version of the CT-FFR approach developed by Siemens Healthcare [23]. This algorithm 
learned the output of the CFD model and CCTA anatomies. Validation studies [12, 24] 
showed that the highest diagnostic accuracy of ML-based cFFR was 85%, with the sen-
sitivity, specificity, PPV and NPV of 89, 76, 89 and 77%, respectively. The highest AUC 
of ML-based cFFR was 0.84. A more recent CT-FFR study (μCT-FFR) using translumi-
nal attenuation gradient (TAG) to define boundary conditions also showed good results, 
with the diagnostic accuracy of 91% with sensitivity of 89% and specificity of 91% [25]. 
Besides CFD-based approaches, Gao et. al. proposed a deep neural network solution 
(TreeVes-Net) that allows obtaining FFR values directly from static coronary CT angi-
ography images, with AUC = 0.92 for detecting FFR ≤ 0.8 [26]. In addition, blood was 
generally modelled as Newtonian fluid in most validated approaches, which was reliable 
because there was no essential difference in results between Newtonian and non-New-
tonian fluid assumptions in large arteries [27, 28]. On the other hand, there were studies 
showing differences between non-Newtonian and Newtonian fluid flows [29, 30], and 
Toshiba proposed a CT-FFR technique with non-Newtonian fluid model [31], however, 
the diagnostic performance was not very good (accuracy of 83.9% with AUC of 0.88).

Our study demonstrated credible results using AccuFFRct for exploring ischemia-
causing stenosis comparing with above-mentioned works. The overall diagnostic accu-
racy of AccuFFRct was 89.7% on the per-vessel basis, which is higher than that of FFRCT 
and cFFR. The sensitivity, specificity, PPV, and NPV were 90.5, 89.5, 76.0 and 96.2%, 
respectively, while those for FFRCT were 84%, 86%, 61%, and 95%, respectively. μCT-
FFR showed good diagnostic performance with 1% higher accuracy, While AccuFFRct 
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resulted in slightly better sensitivity. It should be noted that higher sensitivity means less 
false negatives, which were critical in clinical application because false-negative results 
might put patients in danger for wasting the best treatment time. AccuFFRct showed an 
AUC of 0.945 for a per-patient basis and 0.925 per-vessel basis for categorizing func-
tionally significant stenoses. The AUCs for FFRCT, cFFR, ML-based cFFR, μCT-FFR 
and TreeVes-Net-based FFR were 0.9, 0.92, 0.84, 0.92, 0.92, respectively. One cannot say 
AccuFFRct was superior in defining ischemia, but AccuFFRct did show very competitive 
results among similar works, and the diagnostic performance could be further optimized 
with future studies focusing on computational condition settings and algorithms, etc.

Except for the good diagnostic performance of AccuFFRct, the advantage of AccuF-
FRct lies in its time-efficient and convenient workflow. The application of FFRCT requires 
significant computational time (1–4 h) due to the need of data transfer to off-site super-
computers [11]. Workstation-based cFFR takes approximately 40  min with ML-based 
CT-FFR and 43  min with the reduced-order CFD-based CT-FFR [12, 15, 24, 32, 33]. 
As for AccuFFRct, only 35 min is required for the whole workflow, including 3D recon-
struction of coronary artery geometry and CFD simulation, on average. Time efficiency 
is a critical factor for patients with coronary stenosis during the diagnostic procedure, 
because the time allowed for them varies from several minutes to weeks depending on 
their symptoms and the severity of ischemia, so it is important to shorten the diagnostic 
time for helping more patients during a fixed time. Moreover, a new ML-based algo-
rithm for 3D reconstruction is under development, the total duration of AccuFFRct cal-
culation will be reduced to about 10 min in the coming new version.

Though invasive FFR measurement is relatively safe in clinical use, risks and other lim-
itations are still inevitable. Kumsars et al. [34] reported that about 1/10 of FFR could not 
be obtained due to side branches or wiring failure. Moreover, the high price of pressure 
wires may become a financial burden for patients. As a result, advanced computational 
analytical approaches that can compute FFR values from CCTA images alone could lead 
to widespread clinical utilization. AccuFFRct offers a time-efficient and accurate tool for 
FFR computation, and the visualized anatomic geometry of coronary tree can be used 
for subsequent clinical planning.

The main limitation of this study is its relatively small sample size with all CCTA data 
from a single center. A multi-centered study with large sample size is necessary to vali-
date AccuFFRct further. In this study, the workflow and analysis were all performed by 
professionals. Thus training of normal medical staff is essential to ensure reliable execu-
tion of AccuFFRct analysis.

Conclusions
The novel CFD-based CT-FFR method, AccuFFRct, is influential in determining signifi-
cant functional CAD in a time-efficient manner with good diagnostic performance. It 
may emerge as a safe, efficient, and credible tool for evaluating coronary stenosis sever-
ity during diagnostic CCTA. In the future, algorithms would be continuously updated, 
some computational conditions or assumptions could also be optimized to assure clini-
cally reliable results and to help more patients. A multicenter prospective clinical trial 
would be conducted to study the accuracy and clinical suitability of the algorithm for 
different types of stenosis, such as left main lesion, tandem lesion and bifurcation lesion.
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Methods
Study design

This was a retrospective, observational, analytical study conducted at The Second Affili-
ated Hospital of Zhejiang University School of Medicine. Patients who had undergone 
coronary computed tomography angiography (CCTA) and invasive FFR measurements 
within 2 months were included. This study was approved by the Institutional Review 
Board of the hospital and informed consent of the patients was waived.

Study population

The study population comprised 54 stable patients with suspected or known CAD who 
underwent CCTA and FFR measurements between January 2016 and September 2017. 
Exclusion criteria included individuals with prior myocardial infarction, prior coronary 
artery bypass surgery (CABG), prior stenting at the lesion of interest, significant motion 
or blurring artifact in CCTA, occlusion in any major coronary artery.

CCTA acquisition and analysis

CCTA was performed using a dual-source 128-slice CT scanner (Somatom Definition 
FLASH, Siemens, Forchheim, Germany). Medications were administered individually 
and different CCTA scan modes were chosen according to patients’ heart rate condi-
tions. The tube voltage and tube current were set based on the body mass index of the 
patients. All CT images were reconstructed with a slice thickness of 0.5 mm. The CCTA 
image data was assessed in the central AccuFFRct core laboratory (ArteryFlow Technol-
ogy Co., Ltd., Hangzhou, China) and selected for subsequent AccuFFRct calculation and 
analysis. The flowchart of this study is displayed in Fig. 5.

ICA and FFR measurement

Invasive coronary angiography (ICA) was performed within 30  days after the CCTA 
acquisition according to standard practice. FFR measurements were conducted after 
inducing the maximum hyperemia by intravenous injection of adenosine at 180 μg/kg/

Fig. 5  Flowchart for computing AccuFFRct: a CCTA image data; b segmented 3D coronary artery model; c 
segmented 3D ventricle model; d mesh generation; e coronary flow computational algorithm for computing 
coronary flow, pressure from Navier–Stokes flow governing equations; f AccuFFRct distribution over the 
coronary artery tree. g CCTA​ coronary computed tomography angiography, 3D three-dimensional
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min. FFR was defined by dividing the mean pressure distal to the lesion by the mean 
aortic pressure under hyperemic condition, and an FFR value of ≤ 0.80 was considered 
hemodynamically significant. FFR data were transferred to the central AccuFFRct core 
laboratory for the following analysis by independent, blinded readers.

CFD‑based AccuFFRct computation

Using the most recent AccuFFRct analysis software (AccuFFR®ct, version 1.0, Artery-
Flow), analysis was performed in a blinded fashion in the central AccuFFRct core 
laboratory.

The calculation of AccuFFRct includes four steps:

1.	 Anatomical model reconstruction and segmentation

	 In this step, the anatomical geometry model of coronary arteries and ventricles 
can be obtained accurately from CCTA image data. First of all, the fast marching 
algorithm and colliding fronts algorithm were applied to segment aorta and coro-
nary tree, differentiating them from other anatomic parts which were also include in 
CCTA image data. Subsequently, the optimal vessel borders were identified using the 
level-set method base on segmented CCTA images to ensure the real vessel shape. 
Then with an automatic geometry cleaning algorithm, the anatomical model of the 
coronary tree was obtained by marching cubes method [35] and the left ventricle 
model was extracted by a deep-learning segmentation method based on an 8-layer 
residual U-Net to compute the myocardium volume further. As shown in Fig. 5a–c.

	 In addition, though the CT images included in this study were relatively good, gen-
eral CT data that meet the standard of Digital Imaging and Communications in 
Medicine (DICOM) with a slice thickness < 1  mm is compatible with AccuFFRct, 
which means our technique can be used in numerous hospitals.

2.	 Mesh generation and boundary conditions
	 The anatomical model of coronary arteries should be pre-processed, including hole 

checking, smoothing, boundary face editing of the 3D model, and then it would be 
transformed into a mesh model for later numerical CFD simulation to obtain the 
flow field of blood. In general, millions of mesh elements with different sizes were 
generated based on the structure of an anatomical model. In general, the maximum 
mesh size was limited as 0.3 mm for the best balance of computational precision and 
time based on previous mesh sensitivity tests, coarser mesh may lead to bigger error. 
Boundary conditions were the physical and physiological conditions applied to the 
mesh model to simulate the interaction between coronary arteries and related body 
parts. In this study, the patient-specific blood flow and aortic pressure were set as 
the inlet boundary condition. The resting blood flow was estimated by myocardium 
mass (Q ∝ Mk) and the flow rate was 2–4 times of resting condition at hyperemia. 
The blood flow rate at the outlet of each branch was calculated using Murray’s law 
(Qi ∝ d3), and the rigid wall with no-slip boundary condition was applied to the ves-
sel wall.
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3.	 CFD simulation
	 The flow field information, including pressure and velocity at each mesh element, 

could be calculated by solving the fluid governing Navier–Stokes equations using the 
finite volume method. In this study, blood was modeled as Newtonian fluid (density 
ρ = 1056 kg/m3, viscosity μ = 0.0035 Pa·s) and incompressible [27], a modified solver 
based on an open-source CFD package (OpenFOAM 7) was used for this simulation 
of coronary blood flow.

4.	 AccuFFRct computation
	 The AccuFFRct value was calculated as the ratio of the distal pressure located at the 

measuring point of FFR to the mean aortic pressure. The simulation time for each 
case was approximately 35  min on a standard desktop, including the time of 3D 
reconstruction and CFD computation using AccuFFRct software.

Statistical analysis

Continuous variables were presented as means ± standard deviations or median in case 
of non-normal distribution. Categorical variables were presented as frequencies and per-
centages. The diagnostic performance of AccuFFRct (the ability of AccuFFRct to predict 
whether the FFR ≤ 0.80 or FFR > 0.80, i.e., whether the lesion would cause ischemia or 
not) was evaluated by calculating sensitivity, specificity, PPV, NPV and overall accuracy. 
Using FFR as a reference standard, sensitivity was defined by true positives divided by 
the sum of all true-positive and false-negative cases, specificity was defined as true nega-
tives divided the sum of all true-negative and false-positive cases, PPV = TP/(TP + FP), 
NPV = TN/(TN + FN) and accuracy = (TP + TN)/(TP + FP + TN + FN). Pearson corre-
lation was used to quantify the degree of correlation between invasive FFR and AccuF-
FRct in detecting ischemia-causing stenoses. The area under the curve (AUC) derived 
from receiver-operating characteristic (ROC) curve analysis were computed using inva-
sive FFR as the reference standard for checking classification performance (positive or 
negative for ischemia-causing) of AccuFFRct. The Bland–Altman statistics were also 
performed to assess the agreement of FFR and AccuFFRct. A two-sided P value of less 
than 0.05 was considered statistically significant. All statistical analyses were performed 
using MedCalc (MedCalc Software Inc., Belgium).
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