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Background
Cerebral edema, which can be defined as the abnormal increase and accumulation of 
intracranial fluid, is a common condition secondary to stroke and traumatic brain injury 
(TBI). Cerebral edema has been associated with high morbidity, high mortality, and 
high disability [1–4]. Pathologically, cerebral edema can be divided into two subtypes: 
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cytotoxic and vasogenic cerebral edema. In the early stage of cerebral edema, it is mainly 
cytotoxic edema characterized by intracellular accumulation of fluid and Na+ resulting 
in cell swelling. Several hours after the onset of cerebral edema, intracranial changes 
gradually become dominated by vasogenic cerebral edema. At this stage, it is character-
ized by extracellular accumulation of fluid resulting from disruption of the blood–brain 
barrier (BBB) and extravasations of serum proteins [2]. It has been reported that effec-
tive monitoring methods and timely intervention can help improve the prognosis [5–7]. 
Effective cerebral edema monitoring is still necessary which will help medical staff to 
adjust the therapeutic schedule in time.

The current gold standard for the diagnosis of cerebral edema is mainly based on 
imaging methods, such as Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI) [8]. The cost of CT or MRI scan is relatively expensive and these devices 
require expert operators. Also, CT scans are based on radiation, so there is difficulty 
in performing repeat scans on children. On the other hand, most imaging equipment is 
usually located in the radiology department. Thus, patients need extra referral for imag-
ing, which increases the difficulty and procedures of nursing, especially for severe cases. 
In addition, early diagnosis requires collection of patient’s physiological information as 
soon as possible. However, it is difficult for patients to undergo CT or MRI examina-
tions in the first place. Besides, the imaging equipment is large and fit, which means that 
the traditional imaging methods cannot carry out bedside monitoring. The most widely 
used bedside monitoring tool is Intracranial Pressure (ICP) monitoring [9]. According to 
different measurement needs, the ICP probe can be inserted into the subdural, cerebral 
ventricle, and parenchyma [10]. However, as an invasive method, ICP causes secondary 
injury to patients, which may adversely affect the prognosis. In addition, ICP itself has 
not been currently an internationally recognized indicator of bedside monitoring [11]. 
Recent research found that ICP monitoring could hardly improve the functional out-
come of moderate TBI, although it may possibly reduce the in-hospital mortality [12]. 
Another research also found that there was no relationship between ICP monitoring and 
clinical outcome for patients with Glasgow Coma Scale (GCS) scores of 3–8 [9].

In view of this situation, non-invasive bedside diagnosis and monitoring methods have 
become an attractive research field in recent years [13, 14]. Transcranial Doppler (TCD) 
utilizes ultrasound to detect variations in cerebra blood flow velocity of specific intrac-
ranial blood vessels (such as the middle artery), through which it can assess the level 
of intracranial blood supply [15]. However, TCD highly depends on medical staff and 
requires professional training. Generally, it can only be done by an ultrasound techni-
cian. Near-infrared spectroscopy (NIR) can be used as a monitoring tool of cerebral and 
myocardial oxygenation [16]. However, the measurement depth of NIR is limited [17]. 
Electrical Impedance Tomography (EIT) method measures the dielectric properties of 
biological tissues. Amid that different biological tissues have different electrical conduc-
tivity and permittivity at specific frequencies, lesions such as stroke or TBI which causes 
changes in intracranial components lead to changes in brain’s dielectric parameters. 
However, EIT requires multiple electrodes attached to the scalp. The contact impedance 
brings inevitable interference to the measurement results [18]. Also, the skull, as a high 
resistance layer, will block the passage of current, which weakens the EIT signal [19]. The 
electromagnetic induction detection method is also based on the dielectric properties 
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of biological tissues [20]. The advantage of this method is that the skull does not act as a 
barrier for the passage of electromagnetic waves [21]. This method uses electromagnetic 
waves to pass through the brain. Under certain pathological conditions (such as cerebral 
hemorrhage, cerebral ischemia, cerebral edema, etc.), the change of brain’s dielectric 
properties can be measured via the signal from the receiving antenna [22]. Electromag-
netic induction detection has developed many research branches. For example, Capaci-
tively Coupled Electrical Impedance Tomography (CCEIT) uses low-frequency electric 
field to study the permittivity of biological tissues [19, 23]. However, the capacitive sen-
sor used in the CCEIT method has low sensitivity in the deep part of the brain. There are 
also studies focusing on microwave-based detection, including microwave-based diag-
nosis [24, 25] and microwave imaging that use multiple antennas for discrimination [26–
29]. In addition, there are studies utilizing low-frequency magnetic induction method to 
measure vital signs [30–33], intracranial lesions [34–36], cancer [37–39], osteoporosis 
[40], suit fit [41], etc.

Electromagnetic induction has high potential application prospects in the field of 
diagnosis and monitoring of specific brain diseases. Oziel et al. utilized the Z-parame-
ter to monitor the accumulation of blood in the head [42]. Teichmann et al. proposed a 
non-contact magnetic induction monitoring device that can measure pulse and respira-
tory activity via variation in the resonance frequency of the oscillatory circuitry [43–46]. 
Griffith developed a skin patch sensor and measure intracranial fluid-volume change via 
S-parameters from 700 MHz to 1.1 GHz [20]. Jiang et al. used an open-ended cylindri-
cal waveguide for continuous assessment of intracerebral hemorrhage utilizing the S11 
parameter in a range of 100–400 MHz [29]. Saied et al. designed an antenna system that 
propagates at 800  MHz and 2.1  GHz, respectively for neurodegeneration monitoring. 
The resonant nature of the sensor, which can be assessed by S11 , can be used to differen-
tiate between detecting brain atrophy and lateral ventricle enlargement [47]. However, 
there still are some unsolved issues in existing studies. Previous measurement methods, 
which only relies on the change trend of the phase shift of a single frequency or the fre-
quency shift of the characteristic frequency, has been proved that it cannot be directly 
applied to detection and monitoring due to the complexity of the physiological structure 
and regulation mechanism of brain. There were studies showing that brain cannot be 
simply equivalent to a multilayer dielectric structure [42, 48, 49]. Pathological changes 
inside the brain cause one or more variations including intracranial volume, conductiv-
ity, permittivity, and the relative proportions of intracranial tissues. It is difficult to make 
diagnosis only based on the phase shift or frequency shift data. More importantly, this 
change is not linear. Our recent animal research based on the epidural freezing edema 
model has found that the electromagnetic induction signal and ICP showed fast change 
in the first 6 h on account of the strong intracranial compensatory effect. The change 
rate gradually decreased from 6 to 24th h with the exhaustion of compensatory [50]. 
According to the change trend of ICP and electromagnetic induction signals, it can 
be considered that in this rabbit edema model, the first 6 h is the acute phase of cer-
ebral edema and the latter 6–24 h is the chronic phase. If the magnetic induction sig-
nals can provide hints at these two different stages of cerebral edema, this method may 
become a new indicator for early intervention. On the other hand, the latest research 
by Oziel et al. also showed that the amplitude/phase change has an increase or decrease 
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or even a non-linear trend with the injected blood volume at different measurement 
frequencies [51–54]. At present, some studies have begun to use multi-frequency data 
combined with specific algorithms. Gen Li used multi-frequency reflection and trans-
mission characteristics, combined with BP algorithm, to carry out brain edema monitor-
ing [55]. Oziel also presented a single coil inductive device and the attendant algorithm 
for detection of changes in fluid/tissue ratio [52]. These studies were all targeted to use 
algorithms for S-parameter characteristic extraction and further analysis. Consequently, 
using proper algorithms to extract multiple parameters and multi-dimensional informa-
tion can improve detection capabilities. Based on the above studies, this article proposes 
a hypothesis that the electromagnetic induction-based detection and distinction of 
acute/chronic phase of cerebral edema can be realized through a specialized characteris-
tic parameter extraction algorithm.

In this study, an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) 
algorithm was proposed based on the principle of multi-frequency electromagnetic 
induction and two-port network theory. For characteristic analysis, a 24-h monitoring 
experiment was carried out utilizing the rabbit liquid nitrogen freezing brain edema 
model. In particular, the performance of brain edema detection and the distinction of 
acute/chronic phase was investigated. This research is expected to provide algorithmic 
foundation for the clinical application of electromagnetic induction methods and bed-
side monitoring of cerebral edema.

Results
Results of S21 amplitude–frequency curve

For illustration, Fig. 1 shows the amplitude-frequency data of rabbit Exp.6 in the experi-
mental group at 4 h interval. It can be seen from Fig. 1a that when rabbit’s brain is placed 
in the two-port network, its dielectric properties will affect the transmission parameters, 
resulting in various amplitude of S21 at each frequency in 1–100  MHz, which is con-
sistent with previous findings [20, 52]. The dashed line in Fig. 1a showed its character-
istic frequency. For further observation, Fig. 1b draws the amplitude–frequency curve 
within 52–62 MHz. It can be found that there are multiple variation characteristics in 

Fig. 1  Amplitude–frequency curve of rabbit Exp.6 in 24 h. a Measurement data in 1–100 MHz. b 
Measurement data near characteristic frequency (52–62 MHz)
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this curve. First, the peak value gradually increases and the characteristic frequency also 
shows a frequency shift trend.

Next, two frequency points near the characteristic frequency in the amplitude–
frequency curve were selected to observe the change trend of the amplitude over 
time (54.10 MHz, 57.56 MHz). Results are shown in Fig. 2a. It can be seen that S21 at 
54.1 MHz showed a downward trend. The decline rate was relatively linear within 0-15 h 
and gradually changed faster in 15–18  h. And finally, it tended to be stable again. At 
57.56 MHz, S21 showed an upward trend, in which it changed fast within 3 h, and gradu-
ally slowed down in subsequent hours. Although change rate also increased during the 
15–18 h period, the trend was not as obvious as that at 54.1 MHz. Figure 2b plots the 
frequency shift trend of the characteristic frequency. It can be found that the charac-
teristic frequency gradually increased. This trend was relatively obvious in the first 6 h 
and progressively stabilized in 6–15 h. Then, it started increasing again in 15–24 h. It 
can be concluded that S21 contains rich variation characteristics near the characteristic 
frequency. Observing only the frequency shift or the amplitude change of S21 at one fre-
quency will miss part of the data trends [53].

Detection of cerebral edema

Figure 3 shows the characteristic parameters in experimental group and control group 
obtained by the Ab-CPE algorithm. All the five characteristic parameters of the exper-
imental group had clear changes. In contrast, the characteristic parameters of control 
group had little change, especially for δ and ρ.

Table 1 lists the Receiver-Operating Characteristic (ROC) data of experimental group 
vs control group based on every possible combination of characteristic parameters. 
ROC is evaluated by Area Under Curve (AUC), where AUC ∈ [0, 1] and higher AUC 
represents better detection capability. The AUC of single characteristic parameters are 
relatively poor, of which all were lower than 0.9. Among those multi-parameter com-
binations, AUC of γ δρ was highest, reaching 0.9699.AUC of γ δ and γρ is close to γ δρ , 
reaching 0.9657 and 0.9658, respectively. Thus, γ δρ can be selected as the detection 
characteristic parameters of cerebral edema.

Fig. 2  a Change trend of the S21 in 54.1 MHz and 57.56 MHz as a function of time. b Frequency shift trend of 
characteristic frequency as a function of time
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Figure  4a, b plots the ROC curves based on single characteristic parameter and 
combination γ δρ . The selected γ δρ parameters can achieve high sensitivity and speci-
ficity, reaching 94.1% and 95.4%, respectively.

At the same time, we also selected the data within 1 h to evaluate the performance 
of Ab-CPE algorithm in early detection of cerebral edema. Results are shown in 
Table 2. Consequently, the ROC result in early stage was slightly inferior to that in the 
whole 24 h, but the highest AUC, the combination of γ δρ , still reached 0.88, which 
consisted with the results in Table 1.

Figure 5a, b plots the ROC curve within the first hour of experimental group vs con-
trol group. The optimal discrimination index based on γ δρ reached 85.0% sensitivity 

Fig. 3  Characteristic parameters in experimental group and control group. Ten rabbits (Exp.1–Exp.10) in 
experimental group were listed with white background. Four rabbits (Con.1–Con.4) in control group were 
listed with gray background

Table 1  ROC results of cerebral edema detection in 24 h based on every possible combination of 
characteristic parameters

*AUC takes two significant digits

Single Double Triple Quadruple Quintuple

Characteristic 
parameter

AUC​* Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​

α 0.89 αβ 0.84 αβγ 0.90 αβγ δ 0.89 αβγ δρ 0.92

β 0.72 αγ 0.92 αβδ 0.87 αβγρ 0.95

γ 0.87 αδ 0.90 αβρ 0.87 αβδρ 0.88

δ 0.64 αρ 0.90 αγ δ 0.94 αγ δρ 0.92

ρ 0.74 βγ 0.84 αγρ 0.95 βγ δρ 0.91

βδ 0.75 αδρ 0.91

βρ 0.77 βγ δ 0.88

γ δ 0.97 βγρ 0.89

γρ 0.97 βδρ 0.78

δρ 0.94 γ δρ 0.97
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Fig. 4  ROC curve of experimental group vs control group distinction within 24 h. a ROC curves based on 
single characteristic parameter; b ROC curves based on γ δρ

Table 2  ROC results of cerebral edema detection in 1  h based on every possible combination of 
characteristic parameters

* AUC takes two significant digits

Single Double Triple Quadruple Quintuple

Characteristic 
parameter

AUC​* Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​

α 0.77 αβ 0.45 αβγ 0.55 αβγ δ 0.64 αβγ δρ 0.67

β 0.71 αγ 0.71 αβδ 0.51 αβγρ 0.84

γ 0.72 αδ 0.62 αβρ 0.53 αβδρ 0.59

δ 0.59 αρ 0.69 αγ δ 0.74 αγ δρ 0.62

ρ 0.73 βγ 0.44 αγρ 0.83 βγ δρ 0.62

βδ 0.61 αδρ 0.71

βρ 0.56 βγ δ 0.61

γ δ 0.82 βγρ 0.56

γρ 0.87 βδρ 0.65

δρ 0.81 γ δρ 0.88

Fig. 5  ROC curve of experimental group vs control group distinction within 1 h. a ROC curves based on 
single characteristic parameter; b ROC curves based on γ δρ
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and 87.5% specificity. The performance of Ab-CPE algorithm-based detection had 
indeed weakened in the early stage. There may be errors caused by insufficient data. 
There are not many data sampling points within 1 h. In this experiment, data are sam-
pled every 30 min, so there are only two rounds of data within 1 h that can be enrolled 
for analysis. In the next step, the sampling rate will be increased in early stage. In 
all, the combination of γ δρ has the highest AUC both in 24 h and within 1 h. It can 
be concluded that γ δρ is the optimal combination choice for the detection and early 
warning of cerebral edema.

Distinction of acute/chronic phase of cerebral edema

Aiming at the distinction between the acute and chronic phases of cerebral edema, this 
study also evaluated those characteristic parameters data within 0–6 h and 6–24 h. We 
assumed that it is possible to distinguish between the acute and chronic phases of cer-
ebral edema. Figure 6 plots the characteristic parameter of rabbits in the experimental 
group within 0–6 h and within 6–24 h, during which cytotoxicity and vasogenic cerebral 
edema, respectively, dominate the process in this cerebral edema model [2, 56]. The con-
trast between the acute phase and the chronic phase of rabbits is not as clear as that 
between experimental group and control group. Among these characteristic parameters, 
the distribution in acute/chronic phase also overlaps partly.

Table 3 lists the ROC data of 0–6 h vs 6–24 h in experimental group based on every 
possible combination of characteristic parameters. It turns out that AUC of αβγ δρ was 
highest, reaching 0.9326.

Figure 7 plots the ROC curve of 0–6 h vs 6–24 h in experimental group. The AUC of 
single characteristic parameters were also relatively poor, of which all were lower than 
0.85. When combined all these five characteristic parameters, the optimal discrimina-
tion index can be achieved, reaching 85.0% sensitivity and 91.0% specificity.

Fig. 6  Characteristic parameters of cerebral edema rabbits within 0–6 h and within 6–24 h. Ten rabbits 
(Exp.1–Exp.10) in acute phase were listed with white background. Ten rabbits (Exp.1–Exp.10) in chronic phase 
were listed with gray background
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Discussion
As a high-incidence non-specific pathological swelling, cerebral edema seriously 
affects the prognosis. Especially for those hospitalized patients suffering from stroke, 
monitoring is urgently required. Electromagnetic induction measurement has high 
application prospects in bedside and point-of-care monitoring. Recently, Alruwailli 
et al. showed that resonant skin patch sensors can be used to detect changes in the 
cardiac intraventricular stroke volume, thereby providing a non-invasive monitoring 
index for stroke patients [57]. Mohammed et  al. proposed a wearable readout sys-
tem to carry out hemodynamic detection by extracting the radio frequency attributes 
of resonant frequency shift and magnitude variation [58, 59]. This study demon-
strates that, combined with our specific algorithms, the detection and distinction of 
acute/chronic cerebral edema can be realized in a non-invasive and bedside manner. 
The next iteration of development will be integration of hardware and algorithms 
into a wearable system to carry out clinical trials, through which may improve the 
prognosis.

Table 3  ROC results of 0–6 h vs 6–24 h distinction in experimental group based on every possible 
combination of characteristic parameters

*AUC takes two significant digits

Single Double Triple Quadruple Quintuple

Characteristic 
parameter

AUC​* Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​ Characteristic 
parameter

AUC​

α 0.83 αβ 0.88 αβγ 0.88 αβγ δ 0.87 αβγ δρ 0.93

β 0.83 αγ 0.81 αβδ 0.90 αβγρ 0.91

γ 0.65 αδ 0.88 αβρ 0.91 αβδρ 0.90

δ 0.64 αρ 0.88 αγ δ 0.89 αγ δρ 0.93

ρ 0.69 βγ 0.83 αγρ 0.88 βγ δρ 0.91

βδ 0.85 αδρ 0.88

βρ 0.88 βγ δ 0.84

γ δ 0.83 βγρ 0.86

γρ 0.84 βδρ 0.88

δρ 0.89 γ δρ 0.88

Fig. 7  ROC curve of experimental group vs control group distinction within 1 h. a ROC curves based on 
single characteristic parameter; b ROC curves based on γ δρ
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This study focuses on the amplitude-frequency data within the 3 dB bandwidth near 
the characteristic frequency. Hui et al. pointed out that, for the electromagnetic detec-
tion signals, the amplitude data have high stability and poor sensitivity. In contrast, the 
phase data have high sensitivity and poor stability. The phase data are more vulnerable 
to the change in relative position of the measured object [60]. Therefore, we chose the 
amplitude data and managed to improve the sensitivity through reasonable process-
ing and analysis. In addition, many studies believed that the S-parameters data at this 
frequency point are correlated with intracranial changes [20, 61, 62]. Studies by several 
teams such as Li, Pan, Oziel, and so on have focused on the data features near the char-
acteristic frequency [42, 50, 55, 61, 63]. At this frequency, the two-port network indeed 
reached best impedance matching. Also, the radiation field radiated by the sensor has 
the strongest energy at this frequency. When the energy of this field reached largest, the 
weak disturbance of pathophysiological changes in biological tissues can modulate the 
near-electromagnetic field received by port 2 to the greatest extent, resulting in the max-
imum change of S-parameters in the frequency band.

Furthermore, five characteristic parameters were proposed in this study. Brain’s equiv-
alent impedance Z = R+ jωX will change due to intracranial lesions. This disturbance 
caused by intracranial lesions will have a complex impact on the electrical parameters of 
this two-port network, which may change the sensor’s self-inductance L , parasitic capac-
itance C , and parasitic resistance R . The shift of the characteristic frequency to higher 
frequency does not necessarily represent the decrease of C . It may also be caused by the 
change of L . Similarly, the improvement in gain may not only be related to the change of 
R . The Ab-CPE algorithm comprehensively considers the change characteristics of the 
amplitude-frequency data near the characteristic frequency and the coupling mecha-
nism between brain and the two-port network. The frequency where meets the maxi-
mum coupling coefficient of the coil sensor and the coupling degree can be reflected 
by parameter α and β . The parameter γ extracted by the 3 dB bandwidth combined the 
multi-frequency data to comprehensively reflect the change of Z . Then, the parameters 
δ and ρ were a composite transform on the former parameters. The results showed that 
although the single parameter-based result is not optimal, the optimal combinations 
of those characteristic parameters in cerebral edema detection and phase discrimina-
tion both contained γ , δ , and ρ . This showed that the availability of multi-frequency data 
is higher. Combining characteristic parameters at multiple frequencies can improve 
robustness and accurately reflect the difference between different intracranial condi-
tions. This also explains the complexity of brain’s equivalent impedance change.

During the analysis of cerebral edema detection, the variations in S-parameters data 
were basically caused by metabolic activities such as blood supply and oxygen supply in 
control group. Compared with the drastic changes caused by brain edema, all the char-
acteristic parameters of the control group were near 0. Among those parameter combi-
nations for the detection of cerebral edema, γ δρ is the best. This is also due to the high 
discrimination of the experimental group and the control group. Triple combination 
was enough for distinction and more parameters’ combination may even bring unneces-
sary information. Evidently, the AUC results of quadruple and quintuple combinations 
showed that they are also capable for the detection requirements, and we just select the 
optimal solution.
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During the analysis of acute/chronic phase distinction, the distinction performance 
rose with multiple parameters included, reaching the highest when all parameters were 
enrolled. This means that each parameter was slightly different in the acute and chronic 
phase. Incorporating multiple parameters can improve the distinction accuracy. The 
reason why the best characteristic parameter combination in the acute/chronic phase 
distinction and detection of cerebral edema was different may be caused by the algo-
rithm procedures. In the Ab-CPE algorithm, combination of multiple parameters needs 
to be mapped to [−1, 1] for Euclidean distance calculation. The true value ranges of 
those parameters under the experimental design of detection and distinction are dif-
ferent. Thus, the relationship between different parameters may change after mapping, 
which leads to divergence in optimal solutions. This revealed that, in the subsequent 
clinical experiments, the electromagnetic induction data should be collected in a mas-
sive manner, by which we can obtain multiple characteristic parameters through specific 
algorithms. After that, iterative analysis and trial of all parameter combinations can be 
conducted to determine the optimal solution. The Ab-CPE algorithm proposed in this 
study provided a feasible solution for the clinical data in future researches.

Certainly, this study also has some limitations. This study currently only analyzed the 
transmission parameter S21 in the S-parameter data. The next step may be the com-
prehensive analysis of all characteristics of this two-port test system by integrating all 
S-parameters. In addition, this study focused on the narrow frequency band near the 
low-frequency characteristic frequency. Considering that biotissues have different cou-
pling mechanisms in low-, medium-, and high-frequency electromagnetic fields, it is 
also necessary to broaden the working frequency [51, 64]. In the next stage, we will con-
sider methods such as adding switch matrix to carry out broadband research.

Conclusion
The multi-frequency and multi-parameter electromagnetic induction measurement 
data have great potential in the detection and monitoring of cerebral edema. Aiming at 
improving the effectiveness of cerebral edema detection and monitoring, this research 
proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm 
for characteristic analysis. It has been demonstrated that multi-frequency measurement 
data, combined with proper algorithm, have advantages over the traditional measure 
design. Notably, it is worthwhile to extract multi-dimensional characteristic parameters 
based on both coupling mechanism and data features for evaluation, through which the 
suitable parameter combination can be selected to improve accuracy. This research laid 
the foundation for the next step of multi-parameter and multi-sensor array research.

Methods and materials
Principle of electromagnetic induction detection

The dielectric properties of biotissues are frequency-dependent. Gabriel et al. measured 
the dielectric properties of various tissues over a wide frequency band. This database 
is widely used in electromagnetic induction-based detection studies [65–67]. Figure  8 
shows the conductivity and relative permittivity of several brain tissues in 1–100 MHz. 
It can be found that the dielectric properties of brain tissues are frequency-dependent.
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It can be found from Fig. 8 that the conductivity and permittivity of those brain tis-
sues change with frequency, where different tissues have specific trend. For example, 
the σ and εr of the cerebrospinal fluid (CSF) do not significantly change in this fre-
quency band and it has almost a linear relationship with frequency. By comparison, 
there is a non-linear relationship between blood’s dielectric properties and frequency. 
Based on this fact, when intracranial components change relatively due to cerebral 
edema, the average conductivity and relative permittivity of the brain will change 
[68]. Furthermore, at different frequencies, the change trend of the whole intracranial 
dielectric parameters may be different.

According to the two-port network theory, bio tissue can be treated as the device 
under test (DUT). Figure 9 sketches out the principle of the two-port network system. 
At a specific frequency, the brain can be equivalent to a frequency-dependent com-
plex impedance ZL = R+ jωX . This complex impedance ZL will show characteristic 
change when intracranial lesion occurs. Furthermore, this characteristic change can 
be extracted by measuring S21 in scattering parameter (S-parameter) matrix

(1)
[

b1
b2

]

=

[

S11 S12
S21 S22

][

a1
a2

]

,

Fig. 8  Dielectric properties of brain tissues in 1–100 MHz. a Conductivity σ ; b relative permittivity εr

Fig. 9  Principle of two-port network
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where a1 , a2 are the incident wave and b1 , b2 are the reflected wave of port 1 and port 2, 
respectively. Consequently, S21 can be calculated by

Studies have shown that because of the frequency dependence of the brain tissues’ 
dielectric parameters, the S-parameters in the two-port network will show different 
amplitude within a given measurement frequency range. When S21 has maximum value, 
the coupling coefficient is highest between brain and the two-port network. At this fre-
quency, the electromagnetic wave which radiated from the port 1 penetrates the brain 
tissue and transmits to port 2 to the greatest extent [61–63, 69]. Using vector network 
analyzer (VNA) to carry out sweep measurements, the measurement data at different 
frequencies can be obtained for characteristic analysis.

Measurement system and data collection

Figure 10 shows the system diagram, the picture of the sensor, and its electromagnetic 
characteristics. The system consists of a RF vector network analyzer (Agilent E5061B, 
Keysight, USA), a homemade flexible conformal electromagnetic sensor which is desir-
able for local focusing measurement of CE [69], PC, and the Amplitude-based Char-
acteristic Parameter Extraction algorithm. The VNA generates an excitation signal of 
a certain frequency, which is transmitted to the reference and port 1 through splitter. 
The excitation signal generates an electromagnetic field near the head via the sensor’s 
excitation coil. The receiving coil collects the transmission signal and transmits it to 

(2)S21 =
transmitted

incident
=

b2

a1

∣

∣

∣

∣

a2=0

.

Fig. 10  a Diagram of electromagnetic induction detection system; b flexible conformal electromagnetic 
sensor; c amplitude–frequency curve of sensor without measured object
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port 2 [61, 63, 69, 70]. The system parameters are set as follows. Sweep frequency range: 
1–100  MHz; frequency points 1060; intermediate frequency (IF) bandwidth: 30  kHz; 
signal power: 10dBm.

In this study, 14 rabbits (available from Daping Hospital, 2.0–3.0  kg) were enrolled 
in the animal experiments. Rabbits were arrived 1 day before experiments and housed 
under ambient conditions (22  °C, 50% relative humidity, and a 12-h light/dark cycle), 
with free access to water and chow. The rabbits were randomly divided into experimen-
tal group ( n = 10 , marked as Exp.1, Exp.2, …, Exp.10) and control group ( n = 4 , marked 
as Con.1, Con.2, Con.3 and Con.4).

Our previous studies had proved the validity of the cerebral edema model established 
by epidural liquid nitrogen freezing method [55, 69, 71]. Thus, this model was still uti-
lized in experimental group. Also, in contrast, rabbits in control group experienced the 
same procedure but without freezing. After the establishment of cerebral edema and 
control model, rabbits were fit on the board and monitored for 24 h while the flexible 
conformal electromagnetic sensor was placed close to the freezing point of the head. 
The sensor was fixed on rabbit’s head by medical transparent adhesive tape to prevent 
body movement-induced relative displacement. This sensor can monitor local cerebral 
edema and has good bending robustness [69]. The measurement interval is set to once 
every 30 min. Rabbits in both groups were euthanized via IV pentobarbital overdose at 
the end of monitoring. Experimental arrangement is shown in Fig. 11.

Amplitude‑based characteristic parameter extraction algorithm

In this research, we proposed an Amplitude-based Characteristic Parameter Extraction 
(Ab-CPE) algorithm and input the measurement data for further characteristic analysis. 
Notably, this study selected the frequency points near characteristic frequency for fur-
ther analysis. The Ab-CPE steps are as follows:

1) Define the measurement start time t0 (the first measurement time). Record the 
amplitude-frequency curve of S21 at t0 and define A0

(

f0
)

= max
(

S21|t0
)

 . f0 is the fre-
quency where A0

(

f0
)

 is. Then, find the lower frequency f ′0 and upper frequency f ′′0  where 
S21

(

f
′

0

)

= S21

(

f
′′

0

)

= A0

(

f0
)

− 3, f
′

0 < f0 < f
′′

0  . After, the 3  dB bandwidth (half-power 

bandwidths) F0 at time t0 is

Fig. 11  24-h real-time monitoring experiments in rabbits



Page 15 of 20Chen et al. BioMed Eng OnLine           (2021) 20:74 	

Denote N0 as the number of frequency points contained in the 3 dB bandwidth. Further-
more, calculate the mean amplitude of all frequency points in F0 at t0

2) Define the subsequent ith measurement as ti . Record the amplitude–frequency curve 
of S21 at ti and define Ai

(

fi
)

= max
(

S21|ti
)

 . fi is the frequency where Ai

(

fi
)

 is. Then, find 
the lower frequency f

′

i  and upper frequency f
′′

i  where S21

(

f
′

i

)

= S21

(

f
′′

i

)

=

Ai

(

fi
)

− 3, f
′

i < fi < f
′′

i  . After, the 3 dB bandwidth Fi at time ti is

Denote Ni as the number of frequency points contained in the 3 dB bandwidth. Define 
the mean amplitude of all frequency points in F0 at ti

Define the 3 dB bandwidth followed mean amplitude of all frequency points in Fi at ti:

3) Define maximum characteristic parameter α:

4) Define frequency shift characteristic parameter β:

5) Define 3 dB characteristic parameter γ:

6) Define mean amplitude characteristic parameter δ:

7) Define followed mean amplitude characteristic parameter ρ:

(3)F0 = f
′′

0 − f
′

0 .

(4)a0 =

N
∑

n=1

S21
(

fn
)

/N .

(5)Fi = f
′

i − f
′′

i .

(6)ai =

N
∑

n=1

S21
(

fn
)

/N0, fn ∈ F0.

(7)a
′

i =

N
∑

n=1

S21
(

fn
)

/Ni, fn ∈ Fi.

(8)α = [Ai(fi
)

− A0(f0)]/A0(f0).

(9)β =
(

fi − f0
)

/f0.

(10)γ = (Fi − F0)/F0.

(11)δ = (ai − a0)/a0.

(12)ρ =

(

a
′

i − a0

)

/a0.
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Characteristic analysis based on the Ab‑CPE algorithm

Figure  12 shows the diagram of characteristic analysis based on the Ab-CPE algo-
rithm. The data analysis in this study was conducted by MATLAB (MathWorks, Inc., 
USA), by which the Ab-CPE algorithm and ROC analysis was carried out.

We assumed that the characteristic parameters extracted from this Ab-CPE algo-
rithm can be used to detect cerebral edema and distinguish the acute and chronic 
phase. For single characteristic parameter, threshold T  is set for binary classification. 
For the combination of multiple parameters, we use Euclidean distance to set the 
threshold T  and map these parameters to [−1, 1] to eliminate the influence of value 
difference between those characteristic parameters. Take parameter α and β as an 
example

where {Exp.} represents the α value of the experimental group within 24  h, and 
{Con.} represents the α value of the control group within 24  h. Here, we set 
mean({Con.}) ≥ mean({Exp.}) for expression purpose. Using Eq.  (13), (14) for 
every possible combination of characteristic parameters, the performance of cer-
ebral edema detection can be evaluated. Furthermore, take only those data where 
{Exp.}′ =

{

Exp.|0− 1h
}

 and {Con.}′ =
{

Con.|0− 1h
}

 , we can evaluate the detection 
performance in early stage.

Similarly, different T ′ in Eqs. (15) and (16) can evaluate the capability of Ab-CPE in 
distinction between acute and chronic phase. Take parameter α and β as an example

(13)αi ≤ T ≤ αj , i{Exp.}, j{Con.}

(14)

√

(

αi

max (|αi|)

)2

+

(

βi

max (|βi|)

)2

≤ T ≤

√

√

√

√

(

αj

max
(∣

∣αj
∣

∣

)

)2

+

(

βj

max
(∣

∣βj
∣

∣

)

)2

, iǫ{Exp.}, jǫ{Con.},

(15)αi ≤ T ′ ≤ αj , iǫ {Exp.|0− 6h}, jǫ {Exp.|6− 24h}

Fig. 12  Flow diagram of Ab-CPE algorithm
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