
Biomedical signals and machine learning 
in amyotrophic lateral sclerosis: a systematic 
review
Felipe Fernandes1*†  , Ingridy Barbalho1†, Daniele Barros1, Ricardo Valentim1, César Teixeira2, Jorge Henriques2, 
Paulo Gil2 and Mário Dourado Júnior1 

Background
Amyotrophic lateral sclerosis is a disease characterized by the progressive and irrevers-
ible degeneration of motor neurons, which causes deficits in the ability to control move-
ment, breathing, and, in 50% of cases, in cognitive and behavioral functioning [1–3]. The 
cause of ALS is still unknown and there is no treatment to cure it. Hence, there are only 
alternatives of palliative care and medication to delay the progress of the disease [4, 5]. 

Abstract 
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Diagnosing patients with ALS represents a challenging task due to its complex patho-
genesis and the absence of specific biomarkers [6, 7]. The diagnosis is based on clinical 
presentation, progression of symptoms, and the exclusion of other diseases supported 
by tests such as Electromyography (EMG). Such a process requires an average of 10–18 
months from the onset of symptoms to confirmation [8–11]. What is more, the diagno-
sis is considered slow and late given the characteristics of ALS, in which life expectancy 
after confirmation is of 2–5 years [12].

Despite being described by Jean-Martin Charcot more than 100 years ago [13], ALS is 
considered a rare disease, and, to this date, there are not many countries with records of 
epidemiological data. In a few European countries, as well as in the United States, epide-
miological records show that the incidence rate of ALS is of 1–2 cases per 100,000 indi-
viduals per year, while the prevalence is approximately 5 cases per 100,000 individuals, 
which for van Es et al. [3] reflects the fast lethality of the disease. A worldwide increase 
in the number of ALS-affected individuals is expected, rising from 222,801 cases in 2015 
to 376,674 by 2040, according to the projection made by Arthur et al. [14]. The aging of 
populations and the consequent rise in the number of individuals within the age group 
with a more considerable risk for ALS, which is of 60–79 years, represent the probable 
culprits for the 69% worldwide increase [14].

Considering the intrinsic aspects of ALS, it is critical to promptly search for diagnostic 
support systems, as well as for alternatives that intermediate essential communication, 
autonomy, and promote quality of life to patients. From this standpoint, several tech-
nology-based studies have been developed. These investigations typically provide aux-
iliary resources for diverse aspects regarding ALS, going from what pertains to patients 
and their caregivers to matters related to outpatient care in organizational health entities 
[15–17].

Technologies developed for health encompass and collaborate in positive progres-
sions in remarkable ways, such as with the diagnosis of ALS [18, 19], monitoring of dis-
ease progression [20], monitoring of food intake [21], communication intermediation 
[22–25], autonomy [26], and other applications based in artificial intelligence, as it has 
been reviewed by Schwalbe and Wahl [27]. Automated systems for disease diagnosis, 
for instance, are computational tools composed of ML techniques that, based on the 
processing of biomedical signals, are capable of aiding the detection of neuromuscular 
disorders [28]. These systems contain expert information of specific domains, which 
provide health professionals with decision-making support and represent strategies and 
measures adopted in the care of patients [29].

Recently, in the context of ALS, Grollemund et  al. [30] published a comprehensive 
review that presents and investigates ML models. Thus, it uses or combines different 
data types from individuals with ALS (clinical, genetic, biological clinical, and imaging), 
in three-class applications: diagnosis, prognosis, and risk stratification. In conclusion, 
the authors point to promising advances with this approach in the academic and clini-
cal field in the ALS ecosystem. In this perspective, this SLR complements Grollemund 
et al. [30] in analyzing ML models in applications for ALS using specifically biomedical 
signals.

Biomedical signals consist of data from a studied physiological system and their 
processing aims mainly to extract relevant information [31, 32]. This information can 
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enhance data-driven artificial intelligence techniques, especially ML algorithms, and 
it is used to support the diagnosis of various diseases [27]. There are several types of 
biomedical signals, as EMG, electroencephalogram (EEG), electrocardiogram (ECG), 
electrooculogram (EOG), gait rhythm (GR) and magnetic resonance imaging (MRI). 
Regarding the ML models, Artificial Neural Network (ANN), decision tree (DT), sup-
port vector machine (SVM), and K-Nearest Neighbor (KNN) are particular examples 
of techniques that have been extensively considered in the healthcare realm, includ-
ing in the context of ALS [33–36].

Objective
The chief goal of this systematic literature review is to investigate ML-based 
approaches, in tandem with the biomedical signals, that contribute to the practical 
and scientific advancement of aspects in the field of ALS. In this manner, it is expected 
to provide an overview of the matter at hand, considering the identification of the 
most-used biomedical signals and ML-based models, in addition to gathering details 
of primary studies, such as the purpose, the performance of algorithmic models, and 
experimental data, to identify strengths and opportunities for future researches.

Methods
We have developed this research considering the systematic review guidelines pro-
posed by Kitchenham [37]. In the perspective of investigating technological applica-
tions in ALS, this study aims at (i) identifying the most applied biomedical signals; 
(ii) identifying for what purposes those are used; and (iii) verifying the usage of ML 
techniques or intelligent approaches to the processing of those signals. Hence, the 
research questions (RQ) were elaborated on this premise (see Table  1, presented 
below).

The primary studies searching and screening process in the scientific databases 
were categorized into four stages, according to what is displayed in Fig. 1. In the first 
stage, an initial set of articles was selected from the output of searches carried out in 
the IEEE Xplore, Web of Science, Science Direct, Springer, and PubMed databases. 
The following search strings (STR) were used in this first stage:

•	 STR01: (((“signals processing” OR “signals biomedical”) OR (“smart systems” OR 
“machine learning” OR “artificial intelligence” OR “computational intelligence” OR 
“algorithm” OR “algorithms”)) AND (“amyotrophic lateral sclerosis” OR “als”));

Table 1  Research questions

RQ Description

01 For what purpose is the processing of signals used?

02 What are the types of signals analyzed by the study?

03 What intelligent techniques are used in the study?

04 What is the performance of the analyzed techniques?

05 How many subjects are used to test or validate the study?
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•	 STR02: (((“signals processing” OR “signals biomedical”) OR (“intelligent systems” OR 
“machine learning” OR “artificial intelligence” OR “algorithms” OR “Computational 
Intelligence”)) AND (“amyotrophic lateral sclerosis” OR “als”)).

In the second stage, the predefined inclusion criteria (IC), presented in Table  2, were 
applied to the initial set of articles from the previous phase. Primarily, an IC delimits the 
boundaries or scope of the investigation and possibilities the generation of a new subset 
of papers with a more significant probability of answers to the RQ. In such a context, 
the subset includes research articles from the last ten years that have been published in 
journals and are directly related to the principal area of interest of this systematic review.

In the third stage, after screening the articles through the IC, the verification and 
removal of duplicate papers were carried out. Besides, a filtering procedure—by consid-
ering title, abstract, and keywords—was performed to exclude papers that did not pre-
sent specific terms related to the theme of this review. Such a process was guided by the 
exclusion criteria (EC) (see Table 3) and was executed through the Rayyan web applica-
tion [38].

Fig. 1  Methodology steps

Table 2  Inclusion criteria

IC Description

01 Articles published between 2009 and 2019

02 Research articles published in Journals

03 Articles in the areas of technology, engi-
neering or computer science

Table 3  Exclusion criteria

EC Description

01 Duplicate articles

02 Studies not related to the processing of biomedical sig-
nals, ML, smart systems and data analysis of patients 
with ALS
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In the fourth stage, the total reading of the filtered articles was performed. Hence, it 
was executed the quality assessment (QA) protocol (see criteria in Table 4). In the QA 
procedure, each criterion was attributed points measuring the relevance of the article 
to the target subject of this research. The points were distributed in the form of weights 
(w), considering suitable responses to the QA criteria, present in the primary studies, 
with 1.0 being the most relevant weight and 0 the lowest:

A score, the arithmetic mean of the points of the QA criteria (Eq. 1), was generated for 
each article. In this case, all articles that obtained a score greater than or equal to 0.5 
( 0.5 ≤ score ≤ 1 ) were selected for this research and constitute the final set of articles.

Records relevant to each stage, as well as the data extracted from the articles, were 
properly gathered in spreadsheets and the Rayyan web application [38] for data extrac-
tion. Data, such as year of publication, authors, and possible responses to the RQ, were 
extracted from the set of articles of the fourth stage. They permitted the final analysis 
and fulfillment of the objectives of this systematic review.

Results
The results obtained from the searching and screening process of primary studies are 
synthesized in Fig.  2. In the first stage, 10128 candidate articles were identified after 
searching with the STRs. In the subsequent phase, three refining procedures based on 
IC (Table 2) were applied, and 9914 papers were discarded for not meeting the IC. At 
this point, 214 articles were considered appropriate for inclusion and analysis in the 
following stage. In stage three, the applied filters, based on the EC (Table 3), removed 
186 articles amongst duplicates and those missing the target terms of the search. In this 
manner, 28 studies were selected for full-text reading and assessment through the QA 
criteria. After the QA procedure, the fourth and latter phase, 18 papers exceeded the 
pre-established minimum score, according to the result presented in the respective col-
umn in Table 5, and were included for analysis and definitive investigation in this review.

wQA =







1.0, yes, fully describes,
0.5, yes, partially describes,
0, does not describe.

(1)score =
1

QA

QA
∑

i=1

wQAi

Table 4  Quality assessment

QA Description

01 Does the study clearly describe the types of biomedical signals?

02 Does the study describe how signal processing is performed (algorithmic techniques, intelligent systems)?

03 Does the study describe the process of the proposed application for ALS patients (does it detail how it was 
applied)?

04 Does the study clearly describe its scientific contributions to the evolution of ALS-related research?
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In sum, considering the 18 articles included in this research, the results presented 
in Fig. 3 evidence three major classes of probable practical applications of biomedi-
cal signals processing and machine learning within the context of the ALS disease: 
diagnosis (or classification), communication, and survival prediction. In addition to 
categorizing the purposes of such studies, Fig. 3 highlights the number of biomedical 
signals used and the respective classes that utilized them. Four distinct types of sig-
nals were identified: EMG, EEG, GR, and MRI.
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Of the analyzed studies, 44.44% focus on the processing of the EMG signal, the 
most used biomedical signal (see Fig. 3), and specifically for classification. That is, 
for the diagnosis of individuals amongst healthy controls (HC), ALS patients, and, in 
some cases, other diseases (OD). With the same objective, especially for classifica-
tion, 16.67% of the studies use GR and 11.11% MRI. The MRI signal was additionally 
used in a particular article for survival prediction of ALS-afflicted individuals, which 
represents 5.56%. In the communication class, 22.22% of the studies focus exclu-
sively on the approach through the processing of the EEG signal, being this the only 
one presented for that purpose. This first general analysis of the studies, identifying 
the purposes of the articles and the signals used, answers research questions RQ01 
and RQ02.

Other significant and specific characteristics extracted from the 18 articles 
included in this study are summarized in Table 5, to support the analysis and answer 
research questions RQ03, RQ04, and RQ05. Regardless of the classes observed, 
diagnosis, communication, or survival prediction, all studies used ML algorithms. 
Alternative algorithmic models were employed and, according to the performance 
analysis of the algorithm concerning accuracy (Acc), specificity (Spe), or sensitiv-
ity (Sen) metrics of evaluation, the best or the only proposed model of each work is 
shown in Table 5, as well as their respective performances.

For testing, validating, and appraising the proposed approaches in the studies, the 
algorithmic techniques were applied to a set of data from individuals, distributed 
in different group combinations of HC, ALS, and/or myopathy, or other neurologi-
cal diseases. The number of individuals and the type of participating groups in the 
experiments of each study is specified in Table 5 and summarized in Fig. 4. More-
over, Table  5 describes the source of the dataset and specifies whether they come 
from public or local repositories.

Fig. 3  Summary of the signals used and their objectives
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Description of the diagnosis studies

Diagnosis of ALS patients is the most numerous task described among the selected 
papers, accounting for 72.22% of the studies. Considering only this class, Fig. 5 pre-
sents an overview of the number of biomedical signals employed. The use of the EMG 
signal stands out, being addressed in 61.54% of the studies aimed at diagnosis [39–
46]. GR is applied in 23.08% of the studies [47–49] and MRI in 15.38% [50, 51]. The 
EEG signal is unused for this purpose.

In the studies, the focus on the development of strategies to reduce the noise of 
collected biomedical signals is evident, intending to discover the most significant fea-
tures to enhance the performance of the algorithmic models, therefore reflecting on 
the accurate classification of individuals. In the case of the EMG signal, Gokgoz and 

Fig. 4  Number of individuals used in the studies

Fig. 5  Number of studies by type of biomedical signal defined in the diagnosis class
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Subasi [42] show the performance gain in the classification of HC, ALS, and OD with 
different ML algorithms, such as KNN, ANN, and SVM, after applying the multiscale 
principal component analysis (MSPCA) noise removal technique combined with the 
multiple signal classification (MUSIC) feature extraction technique.

In this study, the most satisfactory performance was of the SVM model, with 92.55% 
Acc. In the following year, also addressing the EMG signal, Gokgoz and Subasi [46] pro-
posed another study focusing on noise reduction and selection of features. Hence, in 
this research, the authors developed a structure to eliminate noise, also employing the 
MSPCA technique, with a novel strategy based on Discrete Wavelet Transform (DWT) 
for feature extraction. The authors performed experimental tests, with and without the 
noise-removing structure and feature extraction, utilizing three different DT algorithmic 
models: CART, C4.5, and random forest (RF). Similarly to their previous study, Gokgoz 
and Subasi [46] achieved satisfactory results in their second work in the classification of 
HC, ALS, and OD, and demonstrated that the use of the MSPCA noise removal method 
in conjunction with feature extraction using DWT improved the performance of the RF 
algorithmic model, which obtained in the best case 96.67% Acc using the EMG signal. In 
both studies, three distinct groups of subjects were considered: HC = 10 , ALS = 8 and 
OD = 7.

Vallejo et al. [45] adopted the DWT approach to decompose EMG signals and gener-
ate the hyperspace of features that aims at selecting the most relevant features through 
the fuzzy entropy technique to feed an ML algorithm based on an ANN. To verify and 
validate the proposed method, the authors used a feedforward ANN with four layers of 
seven neurons each, except for the output layer, and the log-sigmoid activation func-
tion. The ANN, acting with the DWT and fuzzy entropy approaches, obtained 98% Acc 
in the best result. Such a fact indicated that the proposed strategies for feature selec-
tion and extraction improved the classification process of individuals into three distinct 
groups, including HC, ALS, and/or myopathy. In the experiments, the authors included 
ten healthy subjects, eight with ALS and seven with OD.

In Doulah et al. [44], the DWT approach was applied to decompose, filter, and extract 
relevant features from preprocessed EMG signals. Preprocessing encompassed two 
methods proposed for the classification of subjects in HC and ALS, and/or myopathy. 
In the direct EMG method with DWT, features are extracted after a frame-by-frame 
sequential analysis. For the second approach, a set of features was selected through the 
procedure of dominant motor unit action potential (MUAP), and, based on the DWT 
decomposition, the key features for classification were extracted. Doulah et al. [44] veri-
fied both proposed methods in a KNN classifier. The authors evaluated the performance 
of the algorithm by operating distinct settings on three separate sets of data correspond-
ing to HC, ALS, and OD subjects (10, 8 and 7 subjects, respectively). Both processes 
presented significant results for the classification of two and three sets (HC, ALS, and 
OD). The Dominant-MUAP method may be highlighted for its consistent performance, 
reaching out 98.8% Acc using three sets.

Chatterjee et al. [39] presented a new generalization of the Stockwell transform (ST), 
called Modified Window ST (MWST), for preprocessing the EMG signals to generate 
a more representative feature matrix (or a time–frequency plane). MWST parameters 
α , β , γ , and δ which affect the shape of the window or the energy concentration in the 
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time–frequency plane, are defined in an optimized way through the Particle Swarm 
Optimization (PSO) metaheuristic algorithm. After applying the MWST technique to 
the EMG signals of eight individuals with ALS and seven with myopathy, four features 
are extracted from the matrix to serve as input to four ML models: SVM, KNN, Naïve 
Bayes, and DT. The approach proposed by Chatterjee et al. [39] presented significantly 
better results in the classification of individuals between ALS and myopathy when com-
pared to the conventional ST method. The SVM model achieved the most satisfactory 
performance with 98.28% Acc.

Four distinct methods of feature extraction from EMG signals in the time–frequency 
domain have been addressed ST, Synchro-extracting Transform, Wigner Ville distribu-
tion, and Short-Time Fourier Transform. The four approaches applied to EMG signals 
generated images and, using the Gray Level Co-occurrence Matrix technique, 20 fea-
tures were extracted with each method, and a set of 80 features was originated. To opti-
mize the performance of the ML model proposed by the authors, an ANN with a hidden 
layer of 10 neurons and tan sigmoid activation function combined with a subset contain-
ing the most suitable combination of 15 features (from a finite set of possibilities) was 
defined through a genetic algorithm (GA), implemented with the KNN classifier to carry 
out fitness evaluation of the different combinations of the GA population. The strategy 
proposed by Ambikapathy et  al. [43] to aid diagnosis using ANN obtained promising 
and statistically significant results in the process of classifying individuals between HC 
and ALS (86.6% Acc, 86.6% Spe, 86.6% Sen), HC, ALS or myopathy (82.2% Acc, 81.89% 
Sen, 91.31% Spe), and ALS or myopathy (96.6% Acc, 93.7% Sen, 100% Spe).

Zhang et al. [40] developed a method to characterize patterns in surface EMG signals 
based on three markers/features for supporting the diagnostic: clustering index, kurtosis 
of the EMG signal amplitude histogram, and kurtosis of EMG zero crossing-rate expan-
sion. Furthermore, the linear discriminant analysis (LDA) ML algorithm was applied to 
the process of discriminating subjects as HC and ALS, obtaining as input data a fea-
ture vector originated from the concatenation of vectors of the mentioned features. The 
experiments carried out in this study relied on the analysis of data from 10 subjects with 
ALS and 11 from HC. Each of the three features displayed unique promising results. 
When used synergistically in an approach that combines them with the LDA algorithm, 
it rendered a more robust technique that presents even more significant outcomes, pre-
senting a Spe of 100% and Sen of 90%. Such an aspect indicates favorable perspectives to 
be used as a diagnosis support application.

Hazarika et al. [41] proposed a novel process assessment and inference system (PAIS) 
with a robust structure for preprocessing and extracting features from EMG signals. This 
structure is composed of procedures that initially evaluate the EMG signal features via 
an approach involving partitioning strategies of the input data (called multi-view direct) 
and decomposition by DWT, followed by the application of multidomain multiview dis-
criminant correlation analysis (mmDCA). mmDCA analyzes the correlation of features, 
verifies redundancy, eliminates irrelevant features, and synchronizes them from par-
titions in a single vector. The mmDCA produced vector is incorporated into different 
ML models, such as KNN, and fed to a feedforward back-propagation neural network 
(FFBP-ANN) with two hidden layers of 8 neurons each, a conventional density-based 
linear classifier (LDC), a quadratic classifier (QDC) and SVM.
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Each algorithm performance was evaluated positively in the classification of subjects 
between HC, ALS, and myopathy classes in two real-time EMG signal datasets. In the 
first dataset, containing ten healthy subjects, eight with ALS and seven with OD, and 
in the second dataset, containing four healthy subjects, four with ALS and four with 
OD, the QDC model presented the most robust results: 99.03% Acc and 100% Acc, 
respectively.

The studies mentioned thus far show the potential and the importance of processing 
the EMG biomedical signal to provide consistent and elementary features or data to the 
learning of intelligent algorithms and, consequently, to help with the diagnosis of ALS. 
However, as an alternative to EMG signals for diagnosis, the studies [47–49] investigated 
the performance of ML models with strategies that process data from GR biomedical 
signals.

A study by Xia et al. [47] carried out feature extraction from GR signals in five time 
series records, based on statistical analysis. Features such as mean value, standard 
deviation, maximum and minimum value, skewness, and kurtosis were computed and 
defined. The authors also proposed the extraction of three more features using the Lem-
pel–Ziv complexity, fuzzy entropy, and Teager–Kaiser energy operator statistical meth-
ods. Furthermore, Xia et al. [47] executed an approach of selecting a subset of features 
based on three procedures, with the first being a statistical analysis of the features, fol-
lowed by a performance evaluation of classification algorithms and ultimately the appli-
cation of the hill-climbing optimization algorithm to find out and define the optimal 
subset of features.

After selection, a series of experiments with ML algorithms was performed consid-
ering the optimal subset as the input data for four classifiers: SVM, RF, a feedforward 
ANN with sigmoid activation function, and KNN. The dataset used for the experiments 
included data from 16 healthy subjects, 13 with ALS and 35 with OD. All classifiers 
showed good performance in the binary classification between HC and ALS, and HC 
and OD (neurodegenerative) in addition to ALS. The most satisfactory performance was 
obtained by the SVM technique, with 96.55%.

Ren et al. [48] performed a strategy to extract and select features from five time series 
of GR signals. For this, the researchers proposed an approach that utilizes the empirical 
mode decomposition (EMD) method to extract features from the partitioning of the GR 
signal time series, therefore producing six components—five of which are used and one 
discarded—that were promptly submitted to statistical analysis using Kendall’s Coef-
ficient of Concordance method. With this, the purpose is to measure the significance 
and relationship of the features. Next, a calculation that employed the amplitudes of the 
components was made through the procedure of Ratio for Energy Change. Such a pro-
cess comprehends to a dimensionality reduction technique based on principal compo-
nent analysis (PCA) is applied to define the final set of features.

The strategy proposed by the authors was evaluated in five classifiers: Naïve Bayes, 
SVM, RF, Multilayer Perceptron (MLP) and Simple Logistic Regression. Unlike the 
performance evaluation of the ML models considered in Table 5, in this study the area 
under the ROC curve (AUC) is used for performance assessment. The most significant 
results for classifying subjects between HC and ALS (16 and 13 subjects, respectively) 
were presented by the feedforward MLP model, with an AUC value of 0.934. The average 
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value of the AUC considering the five classifiers was 0.898 and, in general, the approach 
indicates promising results.

Differently from other researches developed for diagnostic, in the study of Khorasani 
et al. [49], a generalization of the Hidden Markov Model (HMM) and the classification 
model named the factorial hidden Markov model (FHMM), the recognition of patterns 
and the classification of subjects in HC or ALS from GR time series is proposed. After 
preprocessing the signal to remove outliers, the GR signal is segmented into fifty time 
series. And some features, such as mean or variance, are extracted to feed the FHMM. 
The method was assessed with data from 16 subjects with HC and 13 with ALS. Further, 
its performance was compared to the traditional HMM model and the Least-Squares 
SVM (LS-SVM) algorithm with Gaussian kernels. With an Acc value of 93.1%, the 
FHMM classification model displayed superior performance in HC or ALS recognition.

Scarcely explored in the context of diagnosing patients with ALS, strategies based 
on neuroimaging and ML are still challenging. In 2013, Welsh et  al. [50] proposed an 
approach when implementing the SVM algorithm to classify subjects in HC or ALS 
through the analysis of data from functional magnetic resonance imaging (fMRI). The 
fMRI time series data were preprocessed and underwent a set of robust procedures for 
the extraction and selection of features, including the consecutive execution of strate-
gies, such as PCA and Independent Components Analysis (ICA), as well as the creation 
of maps (or vectors) of correlation coefficients from different brain regions. After that, 
the data were provided to the linear kernel SVM algorithm, and its performance was 
evaluated. For the experiments, data from 32 patients diagnosed with ALS and 31 people 
from HC were provided. Welsh et al. [50] indicated the values were modest (71.5% Acc) 
in the classification of diseases as ALS using fMRI at rest.

A few years after the fMRI study by Welsh et  al. [50], Ferraro et  al. [51] developed 
a method for classifying individuals with motor neuron diseases, including ALS, based 
on the multimodal structural MRI with an ML algorithm. The MRI data were divided 
into distinct regions of interest and underwent analysis using literature and statistics 
software. The evaluation of the proposed diagnosis approach was performed in an RF 
model. The performance of the algorithm in classifying individuals in HC and ALS, spe-
cifically with the combined MRI model, was expressive. For the experiments, data from 
78 individuals from HC, 123 subjects with ALS, and 64 subjects with OD were used. The 
model developed showed an Acc of 91% concerning the classification of subjects with 
ALS and subjects from HC. The results of both studies [50, 51] typically indicate that 
only data from MRI-based strategies are insufficient to obtain good performance in the 
classification. Studies with neuroimaging and ML for ALS are yet restricted. Neverthe-
less, the results are promising for the development of a system capable of assisting in 
ALS diagnosing.

Communication improving studies

As a result of the progressive degeneration of the upper and/or lower motor neurons in 
the brainstem region, people diagnosed with ALS lose the ability to speak and interact 
with the environment. Technological resources developed for communication are cru-
cial to ensure the well-being of those patients. About 22% of the studies included in this 
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review [52–55], have developed artifacts that promote the communication improvement 
class of this SLR, exclusively through the EEG biosignal.

In a study conducted by Sorbello et al. [52], a framework was proposed through the 
operation of a brain–computer interface (BCI) system to control a humanoid robot and 
promote minimal autonomy to patients with ALS. Generally, the system structure, called 
brain–computer robotic interface (BCRI), is composed of a BCI system, EEG and eye-
tracking devices, and a network system to connect the BCI system to the robotic system. 
The ML LDA algorithm is used after preprocessing and EEG feature extraction to cor-
rectly classify and translate the user action into control commands for the humanoid 
robot. The authors evaluated the proposal by conducting experiments on four subjects 
at the HC and four subjects with ALS. The results were satisfactory, and the proposed 
framework for enabling communication for patients with ALS was validated after all 
participants were able to control the humanoid robot.

Liu et  al. [53] developed an approach by applying the concepts of fractal dimension 
(FD) and Fisher’s criterion to optimize the selection of EEG channels and the charac-
terization of the data obtained from the signal. In this manner, the authors aimed at 
improving the classification capacity of an ML algorithm in a BCI system for patients 
with ALS. Two methods for estimating FD, Grassberger-Procaccia (GPFD) and Higu-
chi (HFD), were implemented. The key features of 30 EEG channels were extracted and 
concatenated into a single vector to serve two algorithmic models: KNN and LDA. After 
tests performed on five subjects with ALS, the results were satisfactory and the GPFD 
method surpassed the HFD. The performances of the two algorithms, KNN and LDA, 
were significant and similar, with 95.25% Acc, when compared with the input data con-
taining the 30 EEG channels.

The existence of a simple interface with an accurate and fast information transfer rate 
is essential to maintain communication efficiency in a BCI system based on EEG sig-
nals for people with ALS. For addressing such matter, Mainsah et al. [54] developed a 
data-driven Bayesian early stopping algorithm, called DS, to optimize the feature selec-
tion process of an ERP-based P300 BCI speller, in which ERP stands for event-related 
potentials. Besides, a variation of the DS is proposed with the application of statistical 
modeling through Bayesian inference for language predictability, called DSLM. Features 
correlated with the user’s interest were extracted from the EEG signal to train the step-
wise LDA classifier. In the research, the designated online tests were performed with 10 
subjects with ALS. Both DS and DSLM algorithms proved to be efficient in minimizing 
the character selection time and with an average accuracy of 75.40% and 76.39%, respec-
tively. There was no statistical difference between the algorithms.

In the same context of Mainsah et al. [54] and Miao et al. [55] proposed an ERP-based 
BCI display approach using as strategy a new speller paradigm with peripherally distrib-
uted stimuli with the possibility of feedback in the center of the display. The EEG signals 
were recorded and analyzed using preexisting software from the BCI platform. The fea-
tures were extracted from data acquired offline from 16 electrodes to train the Bayesian 
LDA (BLDA) classifier and subsequently utilization of the trained model in an online 
system test. The proposed method was evaluated concerning the conventional matrix 
speller paradigm. The experiments were carried out on 18 subjects with ALS. Even 
obtaining an Acc of 90% in its most efficient performance, the results presented by the 
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BLDA algorithm do not reveal any significant difference between the proposed approach 
and the conventional approach. However, patients with ALS were able to operate the 
system effectively.

Survival prediction studies

The survival prediction of patients with ALS is empirically defined based on, generally, 
the analysis of clinical data. Only one of the studies included in this review is dedicated 
to such a prediction. In the study developed by van der Burgh et al. [56], a model for 
predicting survival (short, medium, or long) of patients with ALS is proposed by com-
bining clinical data, neuroimaging, and a robust ANN-based ML technique named 
Deep Learning Networks (DLN). Four scenarios were defined for the application of the 
DLN algorithm. Finally, the first situation was based only on clinical data. The second 
and third scenarios utilized MRI images and included structural connectivity and brain 
morphology data. The latter situation included a combination of the previous three. To 
each of those, a model was implemented. Furthermore, the performance of algorithms 
was evaluated through a database that contained data of 135 subjects with ALS. The 
model that combined clinical and MRI data revealed superior performance (84.4% of 
Acc value) and was presented as a viable strategy for predicting the survival of patients 
with ALS. The remaining models displayed intermediate results, although they indicated 
promising approaches.

Discussions
This systematic literature review explored approaches based on computational intel-
ligence. Besides, to process biomedical signals considering the scope of ALS, it func-
tioned in a synergistic and complementary manner. A set of 18 articles was included and 
reviewed, and three major classes of applications were found: aid to diagnostic, com-
munication enabling, and survival prediction. The most adequate algorithmic models 
and the respective biomedical signals responsible for providing data were identified and 
quantified (see Fig. 6).

Based on the analysis of the 13 articles that addressed the support to the diagnosis of 
patients with ALS, regardless of the biomedical signal or ML algorithm used, it is possi-
ble to define a standard methodological scheme (a pipeline) general to all studies, which 
is broadly depicted in Fig.  7. Except for Khorasani et  al. [49], who investigated a new 
classification algorithm, the studies suggest approaches or methods for the data treat-
ment process that may enhance the training stage and, consequently, the classification 
stage. This data treatment process, which includes the feature extraction and selection 
phases, for instance, is important to eliminate noise, redundancy, and reduce the data 
dimensionality, in addition to maximizing the performances of the algorithms through 
the provision of refined and consistent data [57]. The various ML models implemented 
were presented as techniques for evaluating and validating the proposals of the studies. 
However, they were elementary techniques in the diagnosis process that are present in 
all articles.
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The studies [39, 41–48, 51] about diagnosis support, in addition to ALS, also tested 
approaches for binary or multi-label classification considering other neurological 
conditions, such as myopathy, Parkinson’s disease, Huntington’s disease, predomi-
nantly upper motor neuron disease, and ALS-mimic disorders.

Regarding the four articles belonging to the communication class, two distinct 
categories can be observed in the analyzed studies. The first one is that of the study 
conducted by Sorbello et al. [52], which aims at complementing and adapting a BCI 
system with a humanoid robot to provide not only communication but also a mini-
mum of autonomy. In the second identified category, the studies [53–55] suggest 
alternative approaches that include ML to optimize character selection time in a BCI 
system. These approaches range from the optimization of EEG electrodes to intel-
ligent customization of the interface. The importance of BCI systems in promoting 
communication is evident. These systems are widely utilized in research to establish a 
communication pathway between the human brain and external devices, recognizing 
voluntary changes in the brain activity of their users [58–63].

Despite the research focused on the development of BCI systems, there are limita-
tions regarding their home use. One of the primary reasons why BCI have not been 

Fig. 6  Quantitative of the best algorithmic models and the respective biomedical signals

Fig. 7  Generic pipeline: generalized scheme for solving classification problems
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introduced into the domestic environment is the character selection time. Specifi-
cally, the time still is considered slow and inaccurate when it comes to approaches 
that do not use brain signals, and also the need for electrodes connected to the head 
of the patient [47, 54, 64]. Other approaches to human–computer interaction systems 
that do not necessarily involve brain signals by EEG can be seen in Pinheiro et al. [65], 
Hori et al. [66], Fathi et al. [67], Harezlak et al. [68], Villanueva et al. [69], Królak e 
Strumiłło [24], Zhao et al. [70], Liu et al. [71] and Aharonson et al. [22].

The only survival prediction study with ALS patients analyzes how challenging it is 
to develop systems for such a purpose. The study [56] indicates that MRI and the DLN 
technique are promising for survival prediction and suggests a more significant explo-
ration of the field of neuroimaging. Also, the research reveals the importance and 
benefits of patients’ clinical data in the process of predicting survival at the three lev-
els of ALS. This observation, in combination with the analysis made thus far, reveals 
both the absence and the possibility of using clinical data for diagnosis. Correlated 
with the survival aspect, recent studies indicate it is possible to apply ML approaches 
with digital biomarkers using the speech signal to monitor the progression of ALS 
[72], including applications for automatic classification of the ALS Functional Rating 
Scale (ALSFRS) [73, 74].

Regarding ML algorithms, it is observed that they are specifically supervised in all 
studies. The type of biomedical signal varies only in the diagnosis studies, with EMG 
being the most used signal, followed by GR and MRI. The EEG signal is applied solely for 
communication enabling applications. The MRI-based biomedical signal is used both in 
diagnosis and survival prediction applications. Schuster et al. [75] affirm that MRI-based 
biomarkers are currently seldom used for aiding the identification of ALS. This observa-
tion is complemented by the results presented in this SLR, which also reports the limited 
number of neuroimaging-based studies aimed at diagnosis support applications and sur-
vival prediction of the ALS disease, despite the potential mentioned by van der Burgh 
et al. [56]. In addition to these biomedical signs mentioned so far, studies show the feasi-
bility of using the speech biosignal for the early diagnosis of ALS, as indicated by Wang 
et al. [76], Suhas et al. [77], An et al. [78], Vieira et al. [79], and Wisler et al. [80], and 
tracking changes in individuals with bulbar ALS [81].

The 18 studies carried out experimental tests with datasets of healthy subjects and 
subjects with ALS or other neurological diseases. 50% of the studies used local or pro-
prietary datasets. The other 50% of the investigations collected data from public online 
repositories. In some cases, like those for diagnosis and communication, except in the 
study carried out by Ferraro et  al. [51], the limitation in the number of patients with 
ALS is evident (see Fig. 4). These results suggest that it is still challenging to develop and 
validate a robust study with a more considerable number of subjects with ALS or in an 
outpatient setting.

Conclusion
This article introduces an SLR protocol to investigate relevant studies from the last ten 
years (2009–2019) that address ML techniques and biomedical signal processing. It may 
contribute to the advancement of research within the context of ALS. Based on 18 pri-
mary studies, the results exhibit strategies to minimize problems and/or promote means 
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for diagnosis support, communication, and survival prediction. Considering the ana-
lyzed studies, 88.89% of those report the importance of treating biomedical signals for 
providing robust and consistent data for ML algorithmic models.

Furthermore, it can be observed that there is a predominance in the type of biomedi-
cal signals used by studies in the categories of communication and prediction of survival, 
being exclusively and respectively the EEG signals and MRI images. For the diagnosis 
class, in particular, three types of raw data are reported, namely EMG (61.54%), GR 
(23.08%), and MRI (15.38%). Regarding ML algorithmic models and analyzing the most 
satisfactory performances, SVM is the most used, followed by LDA and ANN tech-
niques. Even though the 18 articles selected use ML, except for one study that proposed 
a new algorithm. In general, limited to the objectives of this SLR, the literature suggests 
and dedicates itself to the treatment of biomedical signals.

The studies are promising, but there are, nonetheless, significant aspects to be 
explored. When it comes to the diagnosis, the studies may be applied in outpatient 
clinics for practical assistance, in cases that have yet been unconfirmed of ALS, or 
even so in the early stages of the disease. Moreover, the use of big data approaches 
with patient’s clinical data might contribute to the conclusive results and remains 
open for investigations. That includes the field of survival prediction. Concerning the 
approaches for communication improvement, there are unanswered questions about 
the use of BCI in the domestic environment, considering its aspects, costs, as well 
as efficient interfaces that prevent fatigue, discomfort, and optimization of the elec-
trodes for EEG signals acquisition.
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