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Abstract 

Background:  Parkinson’s disease (PD) is a neurological disease that affects the motor 
system. The associated motor symptoms are muscle rigidity or stiffness, bradykinesia, 
tremors, and gait disturbances. The correct diagnosis, especially in the initial stages, is 
fundamental to the life quality of the individual with PD. However, the methods used 
for diagnosis of PD are still based on subjective criteria. As a result, the objective of 
this study is the proposal of a method for the discrimination of individuals with PD 
(in the initial stages of the disease) from healthy groups, based on the inertial sensor 
recordings.

Methods:  A total of 27 participants were selected, 15 individuals previously diagnosed 
with PD and 12 healthy individuals. The data collection was performed using inertial 
sensors (positioned on the back of the hand and on the back of the forearm). Different 
numbers of features were used to compare the values of sensitivity, specificity, preci-
sion, and accuracy of the classifiers. For group classification, 4 classifiers were used and 
compared, those being [Random Forest (RF), Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN), and Naive Bayes (NB)].

Results:  When all individuals with PD were analyzed, the best performance for sensi-
tivity and accuracy (0.875 and 0.800, respectively) was found in the SVM classifier, fed 
with 20% and 10% of the features, respectively, while the best performance for specific-
ity and precision (0.933 and 0.917, respectively) was associated with the RF classifier fed 
with 20% of all the features. When only individuals with PD and score 1 on the Hoehn 
and Yahr scale (HY) were analyzed, the best performances for sensitivity, precision and 
accuracy (0.933, 0.778 and 0.848, respectively) were from the SVM classifier, fed with 
40% of all features, and the best result for precision (0.800) was connected to the NB 
classifier, fed with 20% of all features.

Conclusion:  Through an analysis of all individuals in this study with PD, the best clas-
sifier for the detection of PD (sensitivity) was the SVM fed with 20% of the features and 
the best classifier for ruling out PD (specificity) was the RF classifier fed with 20% of 
the features. When analyzing individuals with PD and score HY = 1, the SVM classifier 
was superior across the sensitivity, precision, and accuracy, and the NB classifier was 
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superior in the specificity. The obtained result indicates that objective methods can be 
applied to help in the evaluation of PD.

Keywords:  Parkinson disease, Inertial sensors, Classifiers, Rest tremor

Background
Parkinson’s disease is the second most common neurodegenerative disease; however, the 
epidemiological data are not determined precisely [1]. This difficulty can be explained by 
the different criteria used across the different studies and the precision of the PD diag-
nosis [1, 2]. There is a common acceptance that PD possesses a prevalence of approxi-
mately 1–2% of the population over 65 years of age and 0.3% of the general population 
[1]. It was estimated that in 2020, PD affected more than 9 million individuals worldwide 
[3].

The cause of PD is unknown. However, various factors can be considered as being of 
risk for PD, which include gender (women are marginally more likely to be affected due 
to longevity), ethnicity (PD possesses greater prevalence in Europe and in North Amer-
ica), genetics, exposure to toxic substances, lethargic encephalitis sequelae, head trauma, 
and emotional stress [2]. Nevertheless, the main factor of risk is age [4], and as such, it 
is expected that there will be a drastic increase over the coming years due to the aging 
of the population [1]. The symptoms of PD can be non-motor or motor. The non-motor 
symptoms include neuropsychiatric characteristics, dysautonomia, sleep disorder, sen-
sory dysfunction, pain, and fatigue [1]. The motor symptoms that may appear are mus-
cle stiffness, bradykinesia, tremors, and postural imbalance [5], where resting tremor is 
presented as the main motor symptom (in around 70% of individuals) [6]. Therefore, PD 
can have serious impacts on the social and personal life of the patient, which can include 
incapacity of feeding oneself, drinking water, writing, walking, and even speaking [7].

The impact of PD on life quality, in the decrease in capacity when performing daily 
routine activities added to prevalence, makes the correct diagnosis of PD essential to 
outline treatment and measures that can alleviate symptoms, thus improving the ability 
of individuals to resume their normal daily activities [8]. The correct evaluation of PD 
can assist clinicians in corrective interventions and improve the life quality of individu-
als with PD [9], and thus, there are tools for assessing the current stage of PD through 
use of the Hoehn and Yahr scores [10]. The diagnosing of PD is not a simple task, as 
the diagnosis can suffer alterations due to the age of the individual and the evolution of 
symptoms [11]. The most commonly used tool for diagnosing PD is the Unified Parkin-
son’s Disease Rating Scale (UPDRS) [12]. The UPDRS combines a series of clinical scales 
and questionnaires that have the objective of evaluating the presence and progress of PD 
motor symptoms [13]. However, the use of UPDRS is more dependent on the profes-
sional and, as such, is performed at a certain expense of the patient, as the experience 
of the professional ends up being a decisive factor when presenting the symptoms at the 
moment of the diagnosis. In addition, the symptoms of PD can vary due to a number 
of factors, such as mood, diet, daily habits of patient, absence or not of medication for 
treating symptoms, and age [14]. One solution to these limitation found in UPDRS could 
be the use of objective methods [15].

The correct diagnosis of PD is vital for controlling the symptoms and improving the 
life quality of patients. Although being the most widely used, the UPDRS does have its 
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limitations, due to the time consumed in its application and its high degree of subjec-
tivity [12]. An example of the said subjectivity is presented in studies that show a ten-
dency of evaluators to underestimate the severity of the tremor on the least affected side, 
when the other side presents a severe tremor; this tendency is attributed to less attention 
being given to the least affected side [16]. The use of an objective method minimizes the 
need for an experienced professional being involved in the diagnosis process, as it is not 
always that the patients have such a professional at hand. The challenge takes on greater 
proportions when assessing individuals with PD in the initial stages of the disease, as is 
the case of the group of individuals with PD in this study. According to [17], UPDRS is 
not suitable for assessing PD in its early stages, as most items are related to the more 
advanced stages of PD.

Due to the aforementioned, there arises the need to discover methods capable of 
diagnosing PD in a more objective manner. In this sense, the literature presents some 
proposals using objective methods for the diagnosis of PD [18]. Among these methods, 
emphasis is placed on those related to the evaluation of movement. This preference 
is justified by the fact that the symptoms and results of the treatment are manifested 
through movement in the form of the tremor, bradykinesia, and dyskinesia [7]. The 
analysis of movement by means of inertial sensors (accelerometers, gyroscopes, and 
magnetometers) is quite widespread, due to their size and low cost, this allows such 
instruments to be easily assembled and positioned on different parts of the human body 
[7].

From the inertial data, one can extract features that will be used for the diagnosis of 
PD. Currently, there exists a number of studies that propose methods for a more objec-
tive diagnosis of PD, using inertial sensors and classifiers. The use of predictors, such 
as random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and 
Naive Bayes (NB), have helped to differentiate the PD tremor from the essential tremor.

These predictors have been applied to individuals with PD. Research conducted by 
Kuhner [12] proposes a method to objectively quantify the tremor in individuals with 
PD, using an RF classifier. The SVM classifier has been used in research to differenti-
ate tremor at rest and postural tremor in individuals with PD from essential tremor in 
healthy individuals, in addition to being used in research to differentiate the various 
types of tremor present in individuals with PD [19–21]. The authors in [22] used the 
KNN for the recognition of daily activities of individuals with PD and healthy individu-
als, by means of features extracted from inertial sensors. The study conducted in [23] 
used the NB classifier to diagnose PD, using a PD databank from the UCI machine learn-
ing repository.

The above-mentioned classifiers, used in the examples of application concerning indi-
viduals with PD, are fed with data that are collected from sensors positioned at strate-
gic points on the individual, through their performing of allocated tasks, but these can 
sometimes go on to be tiring and as such influence the classification. In this scenario, due 
to the challenges in diagnosing PD, mainly in the early stages, along with the subjectiv-
ity of the main diagnosis method, the introduction of an objective method using inertial 
sensors for the diagnosis of PD is an area worthy of investigation. Therefore, this study 
proposes the analysis of feature movements, extracted from inertial sensors, as a tool for 
diagnosing PD. Our proposal simply uses the hand at rest as a task. In addition, we aim 
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to test the performance of different classifiers (RF, SVM, KNN, and NB) to find suitable 
methods to differentiate the PD group, in the early stages, from the healthy group.

Results
Additional file 1, Figures S1–S3, illustrate the signals collected from the accelerometer, 
gyroscope, and magnetometer on the three axes (x, y and z) and the corresponding 
resultant signal.

The 18 features presented in Table 6 (see section “Methods”) were calculated from the 
signals originating from the sensors, in the same sequence that these are presented in 
Table 6. As such, a total of 108 features were calculated for the 6 sensors, distributed in 
the following way: 36 features for the accelerometers, 36 features for the gyroscopes, and 
36 features for the magnetometers [the system is composed of two inertial measurement 
units (IMUs), each IMU possesses an accelerometer, a gyroscope, and a magnetometer].

For all individuals with PD, the highest values for the metric of accuracy were achieved 
with 10% of the set of features, and the highest values of the metrics sensitivity, specific-
ity, and precision were achieved with 20% of the feature set. For individuals with PD 
and HY = 1, the highest values for the metric of specificity was achieved with 20% of the 
feature set, and the highest values of the metrics sensitivity, precision, and accuracy were 
achieved with 40% of the feature set. As such, Table 1 presents the features for 20% of 
the feature set used to feed the classifiers in the analysis of all individuals with PD (the 
highlight in bold represents 10% of the features used to feed the classifiers). In addition, 
Table 1 also presents the features for 40% of the set of features used to feed the classifiers 
in the analysis of individuals with PD and HY = 1 (the highlight in bold represents 20% 
of the characteristics used to feed the classifiers).

Noted on Table 1 is that according to the classification of the most important 20% of 
features, only two sensors (accelerometer and gyroscope) are sufficient to feed the classi-
fiers in the analysis of all individuals with PD.

Table 2 shows the results obtained by the classifiers KNN, SVM, RF, and NB in terms 
of sensitivity, specificity, precision, and accuracy for 10% of the feature set and 20% of 
features for all individuals with PD. The parameters of the classifiers were defined exper-
imentally and those that produced the best response in terms of sensitivity, specificity, 
precision, and accuracy were chosen. Hence, the classifiers were configured in the fol-
lowing way:

•	 KNN: K = 3;
•	 Random Forest: 120 trees;
•	 Naïve Bayes: kernel (normal);
•	 Support Vector Machine: polynomial kernel.

From Table 2, one notes that the highest accuracy and sensitivity were achieved with 
the classifier SVM, fed with 10% and 20% of all features, respectively. The highest speci-
ficity and precision were achieved with the classifier RF, fed with 20% of all features.

For individuals with PD and HY = 1, the highest values for the metrics sensitivity, pre-
cision, and accuracy were achieved with the classifiers fed with 40% of the feature set 
and the highest values for the metric of specificity was achieved with the classifiers fed 
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Table 1  Features for 20% and 40% of the feature set used to feed the classifiers in the analysis of all 
individuals with PD and individuals with PD and HY = 1, respectively

a 10% of the features in the analysis of all individuals with PD
b 20% of the features in the analysis of individuals with PD and HY = 1

Sensors Features

All individuals with PD (20% of the feature 
set)

Individuals with PD and 
HY = 1 (40% of the feature 
set)

Gyroscope 1 MAV

Zero crossing MAVFD

F80a MAVSDb

EnAp RMSb

EnFuzzy PICOb

SKEWa Zero crossing

KURTOSISa VARb

RANGEb

KURTOSIS

Gyroscope 2 Zero crossinga Zero crossingb

Fpicoa Fmediab

F80a F50

EnAp F80b

EnFuzzy EnApb

SKEW EnFuzzyb

KURTOSIS INTQ

Accelerometer 1 MAV

MAVFD

MAVSD

F80 PICOb

EnAp Fpicob

SKEWa RANGEb

KURTOSISa INTQb

SKEWb

KURTOSISb

Power3.5–7.5b

Accelerometer 2 MAV

MAVFD

MAVSDb

Zero crossing RMS

F80 Zero crossingb

EnApa F80

EnFuzzya EnAp

KURTOSISa EnFuzzy

INTQ

Power3.5–7.5b

Magnetometer 1 No feature F50b

F80

EnAp

EnFuzzy

VAR

INTQ

Magnetometer 2 No feature MAVFD

INTQb
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with 20% of the feature set. Table 3 shows the results obtained by the classifiers KNN, 
SVM, RF, and NB in terms of sensitivity, specificity, precision, and accuracy for 40% and 
20% of the feature set.

The comparison of the values found on Tables 2 and 3 shows that when only individu-
als with PD with HY = 1 are considered, the performance of the classifiers is better in 
relation to the metrics sensitivity and accuracy, but the metrics specificity and precision 
are lower in relation to the group that uses all individuals with PD.

Discussion
Evaluation of extracted features

The signal that produces the inertial sensor recordings, arising from Parkinson’s disease, 
possesses various proposals for its evaluation. The signal from inertial sensor recordings 
in PD can be evaluated through features related to frequency [24, 25], and other features 
related to amplitude, signal entropy, form of data distribution, and variability can also 
provide important features when analyzing the signal from inertial sensor recordings in 

Table 2  Evaluation of the classifiers KNN, SVM, RF, and NB of all individuals with PD

The highest values of the metrics are highlighted in bold

Classifiers Metrics Training 
accuracy

Sensitivity Specificity Precision Accuracy

10% of features

 KNN 0.833 0.667 0.800 0.769 0.810

 SVM 0.833 0.733 0.833 0.800 0.810

 RF 0.667 0.800 0.842 0.718 0.690

 NB 0.542 0.800 0.813 0.641 0.667

20% of features

 KNN 0.750 0.667 0.783 0.718 0.738

 SVM 0.875 0.600 0.778 0.769 0.738

 RF 0.458 0.933 0.917 0.641 0.690

 NB 0.500 0.867 0.857 0.641 0.667

Table 3  Evaluation of the classifiers KNN, SVM, RF, and NB of individuals with PD and with HY = 1

The highest values of the metrics are highlighted in bold

Classifiers Metrics Training 
accuracy

sensitivity Specificity Precision Accuracy

20% of features

 KNN 0.667 0.556 0.556 0.606 0.722

 SVM 0.733 0.611 0.611 0.667 0.639

 RF 0.600 0.444 0.474 0.515 0.722

 NB 0.533 0.833 0.727 0.697 0.583

40% of features

 KNN 0.733 0.556 0.579 0.636 0.778

 SVM 0.933 0.778 0.778 0.848 0.750

 RF 0.533 0.778 0.667 0.667 0.611

 NB 0.667 0.722 0.667 0.697 0.583
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individuals with PD [24]. Amplitude is linked to a scalar measurement (negative or posi-
tive) in the oscillation of a movement [26]. Additionally, some studies show the use of 
entropy can aid in the classification process of other diseases [27].

There were 18 features chosen that allow for the classification of individuals as healthy 
or with PD. We used 5 features related to amplitude (RMS, PEAK, MAV, MAVFD, 
and MAVSD), 6 feature related to frequency (Zero Crossing, Fmedia, Fpico, F50, F80, 
and Power3.5_7.5), 2 features related to signal entropy (ApEn and FuzzyEn), 3 features 
related to signal variability (VAR, Range, and IntlA), and 2 features related to data distri-
bution (Skewness and Kurtosis).

By analyzing all individuals with PD, the groups of features Amplitude and Variability 
were not considered important for the calculation of the metrics sensitivity, specificity, 
precision, and accuracy. The features of frequency, form of data distribution and entropy 
stood out in this differentiation in relation to sensitivity and accuracy. This observation 
was already expected to some extent, as participants with PD were in early stages and 
without any clear signs of tremor.

Evaluation of classifiers

This study compared the KNN, SVM, RF, and NB classifiers, KNN is currently used as 
a benchmark for this type of application, and the SVM, RF and NB classifiers are widely 
used today, which means that this comparison can aid the PD diagnosis in becoming 
more effective [28–30].

The study performed in [31] also used the inertial sensors of accelerometer and gyro-
scope, but applied to gait of those with PD alongside healthy individuals, to differentiate 
the relative parameters for gait between the two groups. The classifiers used were also, 
among others, the KNN, SVM, RF, and NB, and the parameter used for validating the 
result was accuracy, the classifier that presented the best general result was the KNN 
with an accuracy of 84.5%. The collaborators in [32] analyzed the gait of individuals with 
PD alongside healthy individuals, by means of a force platform. The classifiers used in 
the present study were also used, among others, in the study by [32]. The best accuracy 
obtained by the authors was with the SVM classifier of around 90%, followed by the 
methods RF and KNN with an accuracy around 87%.

Our study agrees with that in [32], as in our study, the best performance in relation to 
accuracy, in terms of the comparison between classifiers was presented by SVM in both 
analysis, when analyzing all individuals with PD, along with the analysis of individuals 
with PD and HY = 1 (80% and 85% respectively).

The four statistical metrics used (sensitivity, specificity, precision, and accuracy) pos-
sess the capacity of demonstrating the performance of the classifiers. Our study showed 
a better performance for SVM classifier in the sensitivity and accuracy metrics. When 
analyzing all individuals with PD, the best performance was found in the RF classifier 
in relation to the specificity and precision metrics. When analyzing individuals with PD 
and HY = 1, the best performance was found in the NB classifier in relation to specific-
ity and the best performance in relation to the precision metric was found in the SVM 
classifier.

The accuracy found in our study was similar that presented in the results of [31, 32]. 
Despite the metrics calculated in our work being close to the values found in [31, 32], it 



Page 8 of 18Peres et al. BioMed Eng OnLine           (2021) 20:50 

is important to highlight the statement of [33], where emphasis is placed in their work 
on the performance comparison of the classifiers among several studies, which must be 
carried out carefully, due to the differences involved in the calculation of the metrics, 
such as the parameters of the algorithms and the features used.

Percentage of features

Despite not being the objective of the article, the behavior of the classifiers in relation to 
the percentage of the features used was analyzed. Figure 1 shows the performance of the 
classifiers when all individuals with PD are analyzed. Figure 1 shows that when all indi-
viduals with PD were analyzed together, the best performance in relation to the metrics 
sensitivity and accuracy is presented by the SVM classifier, when using 20% and 10% 
of the feature set, respectively. Regarding the metrics specificity and precision, the best 
performance was presented by the RF classifier using 20% of the feature set, only features 
derived from the accelerometer and gyroscope sensors were needed for classification.

Figure 2 shows the performance of the classifiers with individuals suffering from PD 
with the score HY = 1 being analyzed. In this analysis, the best performance is presented 
by the SVM classifier in regards to the metrics sensitivity, precision, and accuracy, using 
40% of the feature set. The best performance in relation to specificity was the NB classi-
fier using 20% of the feature set, and all sensors were needed for classification (acceler-
ometers, gyroscopes, and magnetometers).

Evaluation of the results for the PD groups

Two groups of individuals with PD were evaluated in comparison to the healthy 
group, and the first group evaluated was composed of all individuals with PD (HY 
scores 1 and 2). The other group analyzed were individuals with PD with HY = 1. 
The results for the metrics sensitivity and accuracy were superior in the analysis of 
the group of individuals with HY = 1. This result can be explained by the presence of 

Fig. 1  Classifier performance in relation to the number of features of individuals with PD with score HY = 1 
and 2. Metrics: a sensitivity, b specificity, c precision, and d accuracy
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individuals with more evident tremor in the first analysis (HY = 2), these individuals 
possess features that are very much separate from the other participants in the PD 
group, leading to an approximation of the features between the healthy group and 
the individuals with PD that present lesser oscillations measured from the inertial 
sensors.

Noteworthy here is that the individuals in our sample showed signs of Parkinson`s 
in the early stages, usually stages that are difficult to diagnose. Success in differen-
tiation suggests that these classifiers are promising for differentiating between indi-
viduals with PD from healthy individuals. Therefore, we encourage future studies that 
investigate the success rate of classifiers to differentiate the groups (PD and healthy) 
with large samples, as well as their ability to classify bradykinesia.

Limitations

The main limitations of this study are the number of participants and the absence of 
a guideline to define the features used and the positioning of the IMUs. Furthermore, 
our work classified the groups of subjects with Parkinson’s disease and the group of 
healthy subjects based on inertial sensors. The group of subjects with Parkinson’s dis-
ease was in the early stages of the disease, so that 11 of the 15 subjects with Parkin-
son’s disease did not show visible signs of tremor. However, the signals collected by 
the inertial sensors had oscillations that allowed for the classification of the analyzed 
groups. Thus, although 70% of the subjects with PD experience tremors [6], there 
are a number of people with PD who do not experience tremor or it is not the first 
symptom presented, in these cases, the technique presented is not able to classify 
the groups. In addition, the only symptom analyzed was the oscillations present in 
the signal, and other symptoms should be considered to improve the accuracy of the 
method for the proper classification of the groups studied.

Fig. 2  Classifier performance in relation to the number of features of individuals with PD and HY = 1. Metrics: 
a sensitivity, b specificity, c precision, and d accuracy
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Conclusion
When we analyzed all patients with PD, our study suggests that for the calculation of 
accuracy in the evaluation of PD, only 11 features, comprising of accelerometers and 
gyroscopes, possess the best performance. When the objective of the evaluation is sensi-
tivity, specificity, and precision, the best performance was achieved using 20% of all the 
features calculated in this study. The results for the metrics sensitivity and accuracy in 
the analysis of individuals with PD and HY = 1 were superior to the results found when 
we used all individuals with PD in this study. The obtained result indicates that objective 
methods can be applied in the evaluation of PD. The statistical data from this study are 
in agreement with the literature. The use of computational and objective methods aids in 
evaluating the signal of the inertial sensors of the individual performing the hand at rest 
task, while mitigating the effect of the variations of the symptoms. The technique pro-
posed in this study allows for the automatic classification of individuals and can be used 
to aid in diagnosing patients with suspected PD, even in the initial stages of the disease.

Methods
Ethical aspects

This study was approved by the Human Research Ethics Committee (HERC—nº 270.782) 
of the Universidade Federal de Uberlândia, and by the National Ethics Research Com-
mittee (NERC—nº 361.526) of the National Health Council.

Participants

The subjects with Parkinson’s disease were recruited from the ambulatory facility of the 
Hospital de Clínicas of Uberlândia of the Federal University of Uberlândia (HCU-UFU), 
at the physiotherapy clinic of the Federal University of the Triângulo Mineiro (Uberaba), 
and at the Parkinson association of the Triângulo Mineiro in Uberlândia.

Twenty-seven individuals from both genders were enrolled in this study, across the 
age group of 50 years or over. From these, 12 individuals were healthy and 15 diagnosed 
with PD (Table 4), in the initial stage of PD (stages 1 and 2 of the Hoehn and Yahr score 
(HY) [10]). The participants were divided into 2 groups, with the first group being made 
up of individuals with PD (SPD ), and the second group of the healthy individuals ( SH = 12 
individuals).

In this study, two analyses were performed. Initially, the classification between groups 
was carried out with healthy individuals and all individuals with PD (SPD = 15 individu-
als). The second analysis consisted of the classification between healthy individuals and 
the group composed of individuals with PD with HY = 1 (SPD = 11 individuals). The data 

Table 4  Demographic characteristics of the participants of this study

M male, F female, R right, L left, SD standard deviation

Characteristics SPD SH

Number of subjects 15 12

Age (years) (mean ± SD) 65.3 ± 9.1 60.1 ± 6.1

Gender/number of subjects M/8—F/7 M/4—F/8

Hand Analyzed /number of subjects R/9—L/6 R/12
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collection was performed during the period “ON” of the individuals with PD. The sub-
jects with PD were diagnosed by a neurologist.

Table 5 shows the tremor score according to the UPDRS scale part 3 (motor section) 
item 20 (tremor at rest) and the HY score of all PD volunteers.

Data collection

Data collection was performed using the device TREMSEN (Precise Tremor Sensing 
Technology, INPI: BR 10 2014 023282 6) developed by researchers from the Center for 
Innovation and Technological Evaluation in Health [Núcleo de Inovação e Avaliação 
Tecnológica em Saúde (NIATS)] from the Federal University of Uberlândia. TREMSEN 
is composed of a gyroscope (L3GD20H, STMicroelectronics, Switzerland), an acceler-
ometer and a magnetometer. The sensibility of the gyroscope, accelerometer, and of the 
magnetometer was configured to ± 245°/s, ± 2 g and ± 2 gauss respectively, in accord-
ance with the studies of [29].

The signals collected were digitalized at 50  Hz, using a microcontroller (Atmel 
SAM3X8E ARM Cortex-M3) with a 12-bit resolution digital/analog converter. The data 
were stored on a laptop by means of serial communication, the software used was devel-
oped for TREMSEN in C# (Microsoft). The data were stored in text format and pro-
cessed by a custom code written in R-Studio.

Parkinson’s disease generates a complex set of movements, which is notorious for 
producing uncontrollable jerking movements of the forearm, wrist, and hand. Due 
to this fact, two sets of Inertial Measurement Unit (IMUs) were used. The IMU 1 was 
positioned on the back of the hand, the IMU 2 was positioned on the back of fore-
arm, between 3 and 4 cm from the wrist joint, with the direction of the axes oriented 
according to Fig. 3. On the healthy individuals and individuals with PD without showing 
obvious signs of tremor (all individuals with PD with HY = 1), the inertial sensor was 

Table 5  Score of UPDRS (part 3 item 20) and HY score of all PD volunteers across the study 
population

Volunteer UPDRS
(part 3, item 20)

Score HY

1 1 1

2 0 1

3 3 2

4 1 1

5 0 1

6 2 2

7 2 2

8 0 1

9 1 1

10 1 1

11 0 1

12 1 1

13 1 1

14 2 2

15 0 1
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positioned on the dominant hand (Fig. 3), while on the individuals with PD and tremor, 
the sensor was positioned on the hand most affected by the tremor (four individuals 
with PD with HY = 2).

The data were collected from the participants in accordance with [29]. The subjects 
maintained the wrist at rest and pendant for a short period, the forearm supported on 
a rest with the hand pendant, forearm in pronation, and the palm of the hand facing 
downwards. The measurements were collected three times, with intervals of 60 s, where 
each collection was comprised of 15 s.

Signal preprocessing

The signals were band-pass-filtered between 1 and 16 Hz to remove low- and high-fre-
quency artifacts [34].

The start and end of tasks were marked manually by pressing a push-button, generat-
ing a pulse of 15 s (manual pulse). Following this, the resultant of the 3 axes of the accel-
erometer, gyroscope, and magnetometer sensors were calculated, using Eq. (1):

where x, y, and z are the measurements from the sensors along their respective axes 
and R is the resultant.

For the removal of linear trends, the value of R was subtracted from its mean. The 
resulting signal was used to calculate the features.

Extraction of features

The features used in this study are described in Table 6.
108 features were extracted from each participant, considering 18 features for each 

sensor (accelerometers, gyroscopes and magnetometers from IMUs 1 and 2).

(1)R =

√

x2 + y2 + z2,

Fig. 3  Positioning of the subject and inertial sensor unit, as well as the orientation of inertial sensor axes
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Table 6  Features extracted from the signals

Feature Source of the 
features

Definition

Root mean square (RMS) [35–38]
RMS =

√

1
N

∑N
n=1 x(n)

2

where N is the number of elements of X  
( X = {x1, x2, . . . , xn}); x(n) is the n th element

Peak [35] Maximum value of the signal

Mean absolute value (MAV) [35, 36, 39] The patterns are organized into windows and the 
average value of each window is used as the 
value of the feature

MAV =
1
S

∑S
m=1| Xm|

S is the number of samples per window; Xm is the 
m-th sample of the window

Mean absolute value of the first differ-
ence (MAVFD)

[35, 40, 41] MAVFD =
1

N−1

∑N−1
n=1 |x(n+ 1)− x(n)|

Mean absolute value of the second dif-
ference (MAVSD)

[35, 40] MAVSD =
1

N−2

∑N−2
n=1 |x(n+ 2)− x(n)|

Mean frequency (FMEAN) [35, 36, 38, 42, 
43]

FMEAN =

∑N
n=1 (Pn(n)∗fn(n))
∑N

n=1 Pn(n)

where Pn is the Power spectrum; fn is the vector 
frequency of Pn ; N is the number of samples

Zero crossing (ZC) [35–37, 39] Computes how many times the signal crosses zero

Peak frequency (FPEAK) [42–44] FPEAK is a frequency at which the maximum power 
occurs

FPEAK = maximum(Pn)

Median frequency (F50) [35, 36, 38, 
42–44]

∑F50
n=1 Pn(n) =

∑N
F50 Pn(n) =

1
2
∗
∑N

n=1 Pn(n)

Frequency for which 80% of the total 
power of Pn is below this value (F80)

[43, 45] ∑F80
n=1 Pn(n) = 0.8 ∗

∑N
n=1 Pn(n)

Power in frequency band 3.5–7.5 Hz 
(Power3.5_7.5)

[46] Power3.5_7.5 =
∑fn=7.5

fn=3.5
Pn(n)

Approximate entropy (ApEn) [35, 37, 45, 47, 
48]

According to [48]:
• For a time series of sample N {u(1), u(2), u(3)…u(N)} 

given m, forms sequences of vectors x(1) through 
x(N-M + 1), defined by x(i) = {u(i), u (i + 1),…, u 
(i + m—1)}, i = 1,…, N—m + 1;

• Compute the distance between the vectors x(i) 
and x(j) defined as the maximum difference 
between each element of the vectors (d[x(i), x(j)]);

• For each i ≤ N-m + 1, com-
pute Cm

i (r) , which is defined as: 
( numberofjsuchasd[x(i), x(j)] ≤ r)/(N −m+ 1);

• Define: Cm(r) = (N −m+ 1)−1
∑N−m+1

i=1 lnCm
i (r);

• The approximated entropy is defined by:
ApEn(m, r ,N) = Cm(r)− Cm+1(r)
where m is the length of the comparative window; 

r is the tolerance; ln is the natural logarithm
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Features selection

The features used to feed the classifiers were selected using the software R package, 
CORElearn, and the attrEval function using the ReliefF estimator and with k = 1. The 
classifiers were fed with 10% of the most important features, then 20% of the most 
important features, and so on, in incremental steps of 10% until all the features are 
added for calculating the metrics (sensitivity, specificity, precision, and accuracy).

Classifiers

After the extraction of the features, the data were normalized using the Z-score tech-
nique. This technique is used in order that each feature is presented on the same scale 
in a dimensionless form. The equation for the Z-score is given by Eq. (2):

where µ is the mean of the features and σ its standard deviation.
The classifiers used were:

•	 KNN;
•	 SVM;
•	 RF;

(2)ZS =

(

value− µ

σ

)

,

Table 6  (continued)

Feature Source of the 
features

Definition

Fuzzy entropy (FuzzyEn) [35, 37, 49] According to [50, 51]:
• For a time series of sample N {u(1), u(2), u(3)…u(N)} 

given m, forms sequences of vectors x(1) through 
x(N-M + 1), defined by x(i) = {u(i), u (i + 1),…, u 
(i + m—1)}, i = 1,…, N—m + 1;

• Compute the similarity degree between the 
vectors x(i) and x(j) defined by a fuzzy function: 
dm
[x(i),x(j)] = µ(dmij , r ), where dmij  is the maximum 

difference between each element of the vectors;
• For each vector x(i) average all the similarity 

degree of its neighboring vectors (i ≠ j);
• For each i ≤ N-m + 1, com-

pute Pmi (r) , which is defined as: 
Pmi (r) = (N −m+ 1)−1

∑N−m
j=1,j �=i d

m
[x(i),x(j)];

• Define: Pm(r) = (N −m)−1
∑N−m

i=1 Pmi (r) and 
Pm+1(r) = (N −m)−1

∑N−m
i=1 Pm+1

i (r);
• The fuzzy entropy is defined by:
FuzzyEn(m, r ,N) = lnPm(r)− lnPm+1

(r)

Variance (VAR) [35–37] VAR = σ 2
=

1
N−1

∑N
n=1(x(n)− x)2

x–average of the samples

Range (RANGE) [35, 52] Difference between the maximum and minimum 
value of the signal

Range interquartile (IntlA) [35, 53, 54] IntIA = Q3 − Q1

Q3—third quartile;
Q1—first quartile

Skewness (Skewness) [41, 45, 55]
Skewness =

1
n

∑N
n=1 (x(n)−x)3

σ 3

Kurtosis (Kurtosis) [41, 45, 55]
Kurtosis =

1
n

∑N
n=1 (x(n)−x)4

σ 4



Page 15 of 18Peres et al. BioMed Eng OnLine           (2021) 20:50 	

•	 NB.

These classifiers were chosen due to their use in various studies [56, 57].
Simulations were performed to identify the best parameters for the classifiers. In the 

KNN method, there exist proposals in the literature for the adoption of the K value, as 
being the square root of the size of the training set, but in our simulations, the value of 
k = 3 offered the best results. In regard to the remaining classifiers, the best results for 
Random Forest were obtained using 120 trees, for the SVM, the polynomial kernel will 
be used, and for the classifier Naive Bayes, the kernel (normal) predictor will be used.

Statistical analysis

To evaluate the performance of a classifier, a confusion matrix (Table 7) was built consid-
ering the true positives (TP), false positives (FP), true negatives (TN), and false negatives 
(FN). Metrics for performance, sensitivity, specificity, precision, and accuracy (Eqs. 3–6, 
respectively), were computed for each classifier

The data from the subjects were randomly divided into training (about 50%) and test-
ing (about 50%) sets. Thus, the data from the 14 subjects were allocated to training and 
the data from the remaining 13 subjects were reserved for testing. We used tenfold 
cross-validation to evaluate the classification performance. The R Project for Statistical 
Computing was used to conduct data analyses.

Abbreviations
PD: Parkinson disease; RF: Random forest; SVM: Support vector machine; KNN: K-nearest neighbor; NB: Naive Bayes; 
UPDRS: Unified Parkinson’s Disease Rating Scale; IMU: Inertial measurement unit; HERC: Human Research Ethics Commit-
tee; NERC: National Ethics Research Committee; HCU-UFU: Hospital de Clínicas of Uberlândia of the Federal University of 
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True positives; FP: False positives; TN: True negatives; FN: False negatives; RMS: Root mean square; MAV: Mean absolute 
value; MAVFD: Mean absolute value of the first difference; MAVSD: Mean absolute value of the second difference; FMEAN: 

(3)Sensitivity =
TP

TP+ FN

(4)Specificity =
TN

TN+ FP

(5)Precision =
TP

TP+ FP

(6)Accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

Table 7  Confusion matrix

Positive result Negative 
result

Actual positive TP FN

Actual negative FP TN
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Mean frequency; ZC: Zero crossing; FPEAK: Peak frequency; F50: Median frequency; Power3.5_7.5: Power in frequency 
band 3.5–7.5 Hz; ApEn: Approximate entropy; FuzzyEn: Fuzzy entropy; VAR: Variance; IntlA: Range interquartile.
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