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Background
The vocal cord vibrates to produce voice. Masses such as nodules, polyps, granulomas, 
or tumors near the vocal cord can induce various clinical symptoms such as hoarseness, 
breathiness, abnormal voice, pain in the ear or neck, and even laryngeal cancer [1]. Sev-
eral recent studies have reported the clinical effects of laryngeal masses, such as airway 
obstruction, tracheostomy, and reflux diseases [2–5]. When an individual visits a hos-
pital because of a voice disorder or pain, an otolaryngologist first examines their throat 
using a laryngoscope to check for any structural abnormalities or color changes on or 
near the vocal cord and larynx. If a mass is found on or near the vocal cord during the 
endoscopic diagnosis, further examinations such as additional imaging or pathological 
diagnosis are performed to identify the type and severity of the disease, that is, to verify 

Abstract 

Background:  Early detection of laryngeal masses without periodic visits to hospitals 
is essential for improving the possibility of full recovery and the long-term survival ratio 
after prompt treatment, as well as reducing the risk of clinical infection.

Results:  We first propose a convolutional neural network model for automated laryn‑
geal mass detection based on diagnostic images captured at hospitals. Thereafter, we 
propose a pilot system, composed of an embedded controller, a camera module, and 
an LCD display, that can be utilized for a home-based self-screening test. In terms of 
evaluating the model’s performance, the experimental results indicated a final valida‑
tion loss of 0.9152 and a F1-score of 0.8371 before post-processing. Additionally, the 
F1-score of the original computer algorithm with respect to 100 randomly selected 
color-printed test images was 0.8534 after post-processing while that of the embedded 
pilot system was 0.7672.

Conclusions:  The proposed technique is expected to increase the ratio of early detec‑
tion of laryngeal masses without the risk of clinical infection spread, which could help 
improve convenience and ensure safety of individuals, patients, and medical staff.

Keywords:  Laryngeal mass, Convolutional neural network, Deep learning, Patient 
safety

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Kim et al. BioMed Eng OnLine           (2021) 20:51  
https://doi.org/10.1186/s12938-021-00886-4 BioMedical Engineering

OnLine

*Correspondence:   
ch4oh@hanmail.net; 
marmera@gmail.com 
2 Department 
of Otolaryngology‑Head 
and Neck Surgery, Pusan 
National University Yangsan 
Hospital, Yangsan, South 
Korea
5 Department of Biomedical 
Engineering, School 
of Medicine, Pusan 
National University, 
49 Busandaehak‑ro, 
Mulgeum‑eup, Yangsan, 
Gyeongsangnam‑do 50629, 
South Korea
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-8378-8758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-021-00886-4&domain=pdf


Page 2 of 10Kim et al. BioMed Eng OnLine           (2021) 20:51 

whether the mass is benign (needs periodic observation) or malignant (needs microla-
ryngoscopic surgery).

Similar to other masses in various body parts that can worsen to cancers over time, it 
is essential to detect the generation of a laryngeal mass on or near the vocal cord early 
to improve the possibility of full recovery and the long-term survival ratio after medica-
tion treatment or surgery. However, unlike masses on the skin that are easy to identify 
at home using the naked eye, masses on or near the vocal cord are not easily observable 
at home for most individuals. Therefore, a healthy individual who would like to check 
the status around their vocal cord for preventive purposes would have to periodically 
visit a hospital for endoscopic diagnosis, which may cause inconveniences. Recently, the 
psychological repulsion to visit crowded hospitals for preventive inspection without any 
self-observable symptoms has been increasing owing to the spread of highly dangerous 
infectious diseases, such as COVID-19. Furthermore, there is a risk of clinical transmis-
sion of infectious diseases by unconscious virus carriers who do not require emergency 
medical treatment. To detect the generation of laryngeal masses early while preventing 
the risk of transmission of clinical infection, a reliable and easy-to-use technical tool for 
home-based self-screening inspection of laryngeal masses is required.

In this paper, we first propose a convolutional neural network (CNN)-based artificial 
intelligence (AI) model for automated laryngeal mass detection. Thereafter, we propose 
a pilot system, composed of an embedded controller, a camera module, and an LCD dis-
play, for a home-based self-screening test.

Results
Table 1 summarizes the performance of the implemented Mask RCNN model for vari-
ous augmentation strategies and confidence levels before additional post-processing. Of 
the total number of overall augmentation–confidence level combinations evaluated, the 
combination of a single augmentation–80% confidence level yielded maximal accuracy 
(0.7322) and F1-score (0.8371) for mass detection among the tested conditions.

Figure 1 presents the variations in the training/validation losses when the epoch value 
increases from 1 to 300. The validation loss was minimized (0.9152) when the epoch 
value was 260 in the [single augmentation–80% confidence level] condition, which 
exhibited the highest F1-score in Table 1.

Figure 2 demonstrates the effect of excluding the false mass cases using the post-pro-
cessing technique described in the methods section when the [single augmentation–80% 
confidence level] combination was applied in the implemented Mask RCNN model. The 
false cases were successfully excluded from the final prescreening output. Table 2 lists 
the quantitative performance parameters of the implemented prescreening algorithm 
before and after applying post-processing. The number of false-positive cases decreased 
from 34 to 26, and the F1-score increased from 0.8371 to 0.8534 after post-processing 
was applied as desired. Additionally, the number of false-negative cases reduced from 45 
to 41.

When evaluating the performance of the embedded pilot system for the home-
based self-screening test, the pilot system could successfully detect the vocal cords 
in 99 images (TP = 99, TN = 0, FN = 1, FP = 0; recall = 0.99, precision = 1.00, 
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accuracy = 0.99, F1-score = 0.99). Furthermore, the system successfully detected 
89 masses, did not detect 22 masses, and misdetected 32 clean tissues as masses 
(TP = 89, TN = 0, FN = 22, FP = 32, recall = 0.8018, precision = 0.7355, accu-
racy = 0.62, F1-score = 0.7672). When comparing these results with those from the 
original computer algorithm, the F1-score of the pilot system (0.7672) was lower than 
that of the original computer algorithm (0.8534). Additionally, the running time of the 

Table 1  Comparison of vocal cord frame detection results using two augmentation strategies and 
three confidence levels

Aug augmentation, Conf confidence level, TP true-positive, FP false-positive, TN true-negative, FN false-negative, Rec recall, 
Pre precision, Acc accuracy

Target Aug Conf (%) TP TN FN FP Rec Pre Acc F1-score

Vocal cord No-aug 80 231 0 11 0 0.9545 1.0000 0.9545 0.9767

85 237 0 5 1 0.9793 0.9958 0.9753 0.9875

90 229 0 13 0 0.9502 1.0000 0.9502 0.9745

Single 80 236 0 6 1 0.9752 0.9958 0.9712 0.9854

85 230 0 11 2 0.9544 0.9914 0.9465 0.9725

90 238 0 4 1 0.9835 0.9958 0.794 0.9896

Mixed 80 235 0 7 4 0.9711 0.9833 0.9553 0.9771

85 236 0 6 4 0.9752 0.9833 0.9594 0.9793

90 232 0 10 3 0.9587 0.9872 0.9469 0.9727

Mass No-aug 80 153 13 96 36 0.6145 0.8095 0.5570 0.6986

85 140 14 106 27 0.5691 0.8383 0.5366 0.6780

90 161 14 85 31 0.6545 0.8385 0.6014 0.7352

Single 80 203 13 45 34 0.8185 0.8565 0.7322 0.8371

85 207 14 43 48 0.8280 0.8118 0.7083 0.8198

90 175 13 73 26 0.7056 0.8706 0.6551 0.7795

Mixed 80 200 12 48 34 0.8065 0.8547 0.7211 0.8299

85 210 13 43 46 0.8300 0.8203 0.7147 0.8251

90 193 14 55 39 0.7782 0.8319 0.6877 0.8042

Fig. 1  Variations in the training and validation losses of the implemented Mask RCNN model for increasing 
epochs up to 300. The original graphs were smoothed using an adjacent averaging filter (n = 30) to improve 
comprehension a training loss and b validation loss
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model was approximately 40 s on the embedded pilot system, whereas it was within 
5 s on the computer.

Discussion
For image augmentation, four types of augmentation strategies—flip, rotation, addi-
tion, and affine—were selected considering realistic diagnosis circumstances as follows. 
First, in actual circumstances, patients have masses either on the left side, the right 
side, or both sides of their vocal cords. To reflect this positional variation while training 
the model, a horizontal flip option was included. Second, the vertical flip and rotation 
options were included to reflect variations in the handgrasping position of the handle 
and the entry angle and orientation of the endoscopic camera during diagnosis. Third, 
the hardware characteristics of commercial camera modules, such as image bright-
ness, resolution, and RGB color characteristics, are somewhat different from each other. 
Therefore, the addition option was included to reflect the variation in the RGB charac-
teristics of the camera module. Fourth, the affine option was included to reflect the vari-
ation in the distance between the camera and vocal cord during diagnosis.

Most previously reported endoscopic mass detection studies have targeted colon pol-
yps during screening for colon cancer. Before the era of AI, which can be represented 
by deep learning, researchers adopted manual or semi-automatic colon polyp detection 

Fig. 2  Two examples of ROI extraction for vocal cord and mass, presented in the following order: original 
image (left), ROIs from implemented Mask RCNN model (center), and ROIs after post-processing (right): a 
image for mass-included case and b image for no-mass case. ROI region-of-interest

Table 2  Mass detection results before/after post-processing to reduce the number of false-positive 
cases for the [single augmentation–80% confidence level] condition

Post-processing TP TN FN FP Rec Pre Acc F1-score

Before 203 13 45 34 0.8185 0.8565 0.7322 0.8371

After 195 13 41 26 0.8263 0.8824 0.7564 0.8534
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methodologies using handcrafted features that were determined by human researchers. 
For example, Tajbakhsh et al. [6] pre-processed colonoscopy images using their unique 
feature extraction and edge classification schemes and utilized context and shape infor-
mation to localize polyps. Silva et al. [7] extracted possible polyps within wireless cap-
sule endoscopic images using geometric shape features and evaluated candidate regions 
using a boosting-based method with textural features. Recently, owing to the rapid 
advances in AI technologies, researchers have reported several fully automatic colon 
polyp detection studies that applied colonoscopy images to a deep learning model [8–
12]. In the case of laryngeal masses, several studies using handcrafted features have been 
reported. For example, Wang et al. [13] proposed a method for throat polyp detection 
based on singular value decomposition and support vector machines using vowel voices 
of patients. Turkmen et  al. [14] proposed a machine learning algorithm that classifies 
laryngeal disorders into healthy, nodule, polyp, laryngitis, and sulcus vocalis. To the best 
of our knowledge, deep learning techniques have not been applied so far for the fully 
automatic detection of laryngeal masses, which forms the novelty of our study. Addition-
ally, in Wang’s study [13], the maximal correct rate of prediction was approximately 0.9, 
whereas in Turkmen’s study [14], the sensitivity of polyp detection was approximately 
80%. In our study, the value of recall for laryngeal mass detection was 0.8263 in the [sin-
gle augmentation–80% confidence level] condition, showing an almost equivalent per-
formance compared to results reported in previous studies. Moreover, previous studies 
could only estimate the possible existence of laryngeal polyps. In contrast, the proposed 
method can also indicate the suspected regions of the laryngeal mass from each image, 
which is more suitable for home-based self-screening purposes for non-experts.

Most previous studies have focused only on evaluating the performance of their own 
deep learning models using clinical diagnostic data; they have not attempted to expand 
their model to home-based self-screening. However, with the spread of COVID-19, the 
risk of clinical infection spreading from medical staff to patients or from one patient to 
others has increased. Therefore, to avoid unnecessary repetitive hospital visits for non-
serious patients or healthy individuals, the significance of contactless medical diagnosis 
and reliable self-screening at home has promptly increased. In this paper, we propose 
a pilot system for automated laryngeal mass detection that can be utilized as a tool for 
home-based self-screening. The experimental results indicated that the pilot system 
performed reasonably well (F1 score = 0.7672) for home-based self-screening consider-
ing the additional artifacts during the photographing, such as the characteristics of the 
color printer, effects of the environmental lights, and subtle vibration of the hand, which 
implied the possibility of home-based self-diagnosis of laryngeal masses using an inex-
pensive, portable, and easy-to-use embedded device. Using this self-diagnostic tool, it is 
possible to detect early laryngeal mass generation remotely without having to visit the 
hospital, which can improve convenience and ensure the safety of individuals by reduc-
ing the risk of clinical infection spread.

The proposed technique for automated laryngeal mass detection can be extended to 
various healthcare and medical applications. For example, we utilized Raspberry Pi as an 
embedded controller in the current study to ease implementation by Python code shar-
ing. However, if the proposed AI model is ported to operate on a smartphone platform, 
user accessibility and convenience can be improved; all an individual needs to do is buy 
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a commercial endoscope camera and download a phone app from the app library. If nec-
essary, contactless counseling from a doctor can also be made available by sharing the 
photographed image through a cloud counseling platform. Second, if the proposed AI 
model is modified to be able to track laryngeal masses in real time for streaming images, 
it can help doctors during clinical examination. For example, an AI-supporting device, 
such as a laptop, can be connected to the video-out port of an endoscope through a 
cable to obtain a livestream of the endoscopic images with the real-time results of laryn-
geal mass tracking displayed on the screen.

However, this study has certain limitations. First, during the evaluation of the model, 
the vocal cord was not detected in six images because of excessive deformation, and as a 
result, eight true-positives were also not detected. When such errors occur in an actual 
home-based self-screening situation, the individual can discard the result, adjust the 
position and angle of the camera tip, and re-perform the self-screening test to obtain 
appropriate screening results. Therefore, we identified such cases as non-serious errors 
(considered outliers) and excluded them from the statistical analysis. Second, because 
we received approval from the Institutional Review Board (IRB) for a retrospective study 
using diagnostic images from the PACS database rather than approval for performing 
actual subject tests using an endoscopic camera, we utilized color-printed images of 
the laryngeal mass and a conventional web camera to monitor the performance of the 
implemented pilot system. It may be necessary to perform further clinical trials in actual 
self-screening situations with fresh IRB approval to verify the clinical feasibility of the 
implemented pilot system.

Conclusions
In this study, a CNN-based automated laryngeal mass detection algorithm and an 
embedded pilot system for home-based self-screening were proposed. The experimental 
results indicated the performance and feasibility of these implementations as tools for 
home-based self-screening purposes. The proposed technique is expected to increase 
the early detection of laryngeal masses without the risk of clinical infection spread, 
which improves convenience and ensures the safety of individuals, patients, and medical 
staff.

Methods
Image preparation for model training and validation

This retrospective study was approved by the IRB of the Pusan National University Yang-
san Hospital (No. 05-2019-008) with the full cooperation of the Department of Otolar-
yngology-Head and Neck Surgery. To acquire the diagnostic images for model training, 
validation, and evaluation, we selected 1224 original images from the PACS database 
through full visual inspection by a qualified doctor (1153 images for mass-included cases 
[GRP_M] and 71 images for no-mass cases [GRP_C]). To acquire anonymous (no per-
sonal information in the image) DICOM images from the PACS database, we used a de-
identification option of the system while saving the JPG files for the retrospective study. 
The acquired images were randomly divided into three groups: training, validation, and 
test datasets. The ratio of images in the training, validation, and test datasets was set to 
3:1:1 (693 images from GRP_M and 43 images from GRP_C for training, 232 images 
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from GRP_M and 14 images from GRP_C for validation, and 228 images from GRP_M 
and 14 images from GRP_C for evaluation). Thereafter, the positions of the target area 
(vocal cord and mass for GRP_M and vocal cord for GRP_C) in each image were man-
ually marked by a trained expert. The annotation process for the detection target was 
performed using a popular web-based software (VGG Image Annotator (VIA) Version 
2.0.9; Visual Geometry Group, Oxford, UK) [15]. The condition for the annotation was 
set to “polygon” and the results of the annotation for the overall original images were 
stored in a single JSON file.

Model implementation for automated laryngeal mass detection

We utilized an NVIDIA Geforce RTX2060 board, Anaconda 3.7, Python 3.6.10, Tensor-
flow 1.13, Keras 2.0.8, and CUDA 10.0 on Ubuntu 18.04.4 LTS for model development. 
Figure 3 shows the structure of the implemented CNN-based laryngeal mass detection 
algorithm.

When an original image and its annotation information are input to the algorithm, 
the image is first augmented using a popular image augmentation library (Imgaug, ver. 
0.4.0) [16]. Considering the actual diagnosis circumstances, we applied five augmen-
tation options to each original image: vertical flip, horizontal flip, rotation (0°–330° at 
intervals of 30°), addition (+ 40/− 40), and affine (10% zoom in/out) (Fig. 4). Thereafter, 
the augmented images were transmitted to the input layer of the object-detection net-
work. We utilized a Mask RCNN model (Matterport; MIT) with ResNet-101, which was 
downloaded from GitHub as a backbone [17, 18]. Next, to improve the accuracy of target 
detection using the Mask RCNN model by reducing the possibility of model bias owing 
to the imbalance of image numbers between GRP_C and GRP_M in the private dataset, 
we downloaded COCO pre-trained weights for the Mask RCNN model from GitHub 
and applied the downloaded weights to the initial model. Subsequently, the model was 
trained using a private training dataset acquired from the PACS database. During trans-
fer learning, we trained the model for 300 epochs using stochastic gradient descent with 

Fig. 3  Structure of the proposed algorithm to detect vocal cords and masses near vocal cords from laryngeal 
endoscopic images. FC fully connected, Conv. convolution



Page 8 of 10Kim et al. BioMed Eng OnLine           (2021) 20:51 

100 training steps per epoch, a momentum of 0.9, and a learning rate of 0.001 by consid-
ering the general values of hyper-parameters in several previous works. We used a batch 
size of two on a single graphics processing unit.

During the model-based prescreening test, two types of errors can occur: (1) a clean 
tissue may be mistaken for a mass (false-negative), and (2) a mass may be mistaken as a 
clean tissue (false-positive). In the former case, an individual may go to the hospital and 
request a doctor to perform a secondary manual inspection of the suspected masses; 
thus, when an actual mass exists, it may be considered lightly. However, in the latter 
case, an individual who trusts the prescreening application may not go to the hospital, 
thus preventing early detection of the mass and inducing malignant laryngeal tumors. 
Because of this asymmetric risk, it is necessary to reduce the occurrence of false-positive 
cases and simultaneously improve the sensitivity of the algorithm.

During the evaluation of the implemented Mask RCNN model, clear tissues located 
far from the vocal cord with image characteristics similar to masses were mistaken as 
mass candidates in several test images, which led to an increased number of false posi-
tives (see Fig.  2). Further, the primary purpose of the proposed prescreening applica-
tion was to detect mass candidates located near the vocal cords. Therefore, to exclude 
false positives from the final prescreening results, additional post-processing was per-
formed on the output of the implemented Mask RCNN model as follows. First, suspect 
cases of the vocal cord and masses in the test image were extracted using the trained 
model under the [single augmentation–85% confidence level] condition (see Table  1). 
Second, the two-dimensional coordinates of the upper left and lower right corners were 
extracted from each of the rectangular suspect areas. Finally, suspected masses whose 
areas did not overlap with those of the vocal cord candidates were excluded from the list 
of suspected samples.

Implementation of pilot system for home‑based self‑screening test

To implement the embedded controller-based pilot system for the home-based self-
screening of laryngeal masses using the CNN model described above, a commercial 
embedded board (Raspberry Pi 4B; Raspberry Pi Foundation, Cambridge, UK; 4G RAM) 
was selected as a platform and Raspberry Pi OS with Python 3.7, Tensorflow 1.13.1, 
and Keras 2.0.8 were installed in a virtual environment. Thereafter, a camera module 
(C922 Pro Stream™; Logitech International S.A., Lausanne, Switzerland; 1920 × 1080 

Fig. 4  Example of image augmentation for each original image
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resolution, 30 frames/s), an LCD panel (Raspberry Pi3 Touchscreen Display; OKdo 
Technology Ltd., London, UK; 800 × 480 pixels, 7 in.), and a mouse were attached to the 
embedded board. Subsequently, a well-trained CNN model was ported to operate on the 
pilot system.

Performance evaluation

To verify the effects of the selection of the minimum detection level within the Mask 
RCNN model and the setting of the augmentation library on the performance of the 
implemented algorithm, we adjusted the minimum detection levels to 80%, 85%, and 
90%. We further adjusted the augmentation options as no-augmentation, single (i.e., a 
randomly selected augmentation is applied to the original image per epoch), and mixed 
(i.e., three randomly selected augmentations are simultaneously applied to the original 
image per epoch).

To verify the performance of the implemented pilot system for the home-based self-
screening test, 100 mass-included original images (GRP_M) were randomly selected 
from the evaluation dataset. Each selected image was color-printed for testing, and each 
image was photographed using the pilot system. Subsequently, the results of laryngeal 
mass detection obtained from the pilot system were compared with those obtained 
using the original computer algorithm (Fig. 5).
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