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Abstract 

Background:  Coronary plaque vulnerability prediction is difficult because plaque 
vulnerability is non-trivial to quantify, clinically available medical image modality is not 
enough to quantify thin cap thickness, prediction methods with high accuracies still 
need to be developed, and gold-standard data to validate vulnerability prediction are 
often not available. Patient follow-up intravascular ultrasound (IVUS), optical coher-
ence tomography (OCT) and angiography data were acquired to construct 3D fluid–
structure interaction (FSI) coronary models and four machine-learning methods were 
compared to identify optimal method to predict future plaque vulnerability.

Methods:  Baseline and 10-month follow-up in vivo IVUS and OCT coronary plaque 
data were acquired from two arteries of one patient using IRB approved protocols 
with informed consent obtained. IVUS and OCT-based FSI models were constructed 
to obtain plaque wall stress/strain and wall shear stress. Forty-five slices were selected 
as machine learning sample database for vulnerability prediction study. Thirteen key 
morphological factors from IVUS and OCT images and biomechanical factors from FSI 
model were extracted from 45 slices at baseline for analysis. Lipid percentage index 
(LPI), cap thickness index (CTI) and morphological plaque vulnerability index (MPVI) 
were quantified to measure plaque vulnerability. Four machine learning methods (least 
square support vector machine, discriminant analysis, random forest and ensemble 
learning) were employed to predict the changes of three indices using all combina-
tions of 13 factors. A standard fivefold cross-validation procedure was used to evaluate 
prediction results.

Results:  For LPI change prediction using support vector machine, wall thickness was 
the optimal single-factor predictor with area under curve (AUC) 0.883 and the AUC 
of optimal combinational-factor predictor achieved 0.963. For CTI change prediction 
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using discriminant analysis, minimum cap thickness was the optimal single-factor pre-
dictor with AUC 0.818 while optimal combinational-factor predictor achieved an AUC 
0.836. Using random forest for predicting MPVI change, minimum cap thickness was 
the optimal single-factor predictor with AUC 0.785 and the AUC of optimal combina-
tional-factor predictor achieved 0.847.

Conclusion:  This feasibility study demonstrated that machine learning methods could 
be used to accurately predict plaque vulnerability change based on morphological and 
biomechanical factors from multi-modality image-based FSI models. Large-scale stud-
ies are needed to verify our findings.

Keywords:  Vulnerable plaque, OCT, IVUS, Morphological index, Patient-specific model, 
FSI

Background
Plaque rupture is a main cause of arterial thrombosis which could lead to stroke or 
heart attack [1]. Early detection of rupture-prone plaques will be an important advance 
in atherosclerotic disease prevention. American Heart Association (AHA) published a 
series of reports on the definitions of different lesions of atherosclerosis [2, 3]. The AHA 
plaque classification scheme based on qualitative histology has been considered as the 
standard and guideline for plaque research for decades. Burke et al. and Arbustini et al. 
indicated that a fibrous cap thickness < 65 μm was an important threshold to identify 
vulnerable plaques [4, 5]. A more quantitative classification of atherosclerotic plaques 
was given based on a large number of histological data and analysis [6, 7]. Kolodgie et al. 
pointed out that plaque prone to rupture (also called thin-cap fibroatheroma) had three 
main characteristics: large lipid-rich necrotic core, higher prevalence of macrophage 
infiltration in fibrous cap, and a fibrous cap with thickness < 65 μm [8]. Naghavi et al. 
indicated that the quantitative characteristics of vulnerability could contribute to assess-
ment of vulnerable plaques [9].

In addition to morphological characteristics, researchers have also been investigating 
plaque vulnerability from biomechanical point of view. Richardson et  al. first studied 
the relationship between plaque wall stress (PWS = plaque maximum principal stress) 
and lesion morphology through biomechanical analysis [10]. Subsequently, 2D cross-
sectional plaque model was employed to study the relationship between plaque rupture 
and stress, particularly the peak circumferential stress [11–14]. These studies established 
that a peak circumferential stress of 300 kPa was the threshold for plaque rupture, and 
this value has been widely used as the threshold stress value for plaque vulnerability. 
It was commonly believed that the peak circumferential stress in cap would exceed 
300  kPa when the cap thickness was < 65  μm, which was confirmed by the results of 
3D coronary model using ex vivo computed tomography (CT) images [15]. In order to 
obtain better quantification of plaque vulnerability, Tang et  al. proposed the morpho-
logical plaque vulnerability index (MPVI) based on morphological characteristics of 
plaque, and found that MPVI was significantly correlated with mechanical factors [16]. 
Considering mechanical factors for vulnerability, many studies utilized wall shear stress 
(WSS) to predict plaque vulnerability behavior [17, 18]. Corban et al. constructed com-
putational fluid dynamics (CFD) based on 20 patients and performed statistical analysis, 
showed that combining WSS and plaque burden at baseline could contribute to more 
accurate prediction of the change of plaque vulnerability from baseline to follow-up [19]. 
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A study from Wang et al. calculated morphological and mechanical vulnerability indi-
ces of human coronary plaques using coronary fluid–structure interaction (FSI) models 
based on intravascular ultrasound (IVUS) images. Their correlation analysis using linear 
mixed-effects (LME) model suggested that both morphological and mechanical factors 
should be considered for better assessment of plaque vulnerability [20]. The idea that 
integrating mechanical and morphological factors in plaque vulnerability research has 
also been employed in the studies on predicting future plaque vulnerability. Another 
plaque vulnerability study using IVUS data from 40 patients at baseline and 12-month 
follow-up showed that PWS and WSS were largely independent of each other (P = 0.001) 
and interplay of PWS and WSS would govern the changes of plaque [21]. The LME 
model was also used in their study, and all statistical analyses were completed both in 
SPSS and Wang et al. used generalized linear mixed regression model (GLMM), support 
vector machine (SVM) and random forest (RF) method and stress/strain data computed 
from IVUS-based FSI models to predict changes of plaque vulnerable indices using [22]. 
Their results showed that combining morphological and mechanical factors could lead 
to higher prediction accuracy, but optimal predictors for different methods varied.

Although IVUS image is currently extensively used in coronary plaque research 
and clinical practice, its resolution (150–200  μm) limited its ability to detect vulner-
able plaque with thin cap. Optical coherent tomography (OCT) has high resolution 
(~ 10 μm) and is able to detect thin fibrous cap of vulnerable plaque and quantify cap 
thickness [23]. We proposed a 3D-FSI modeling approach combining IVUS and OCT 
(called IVUS + OCT model) for more accurate morphological and mechanical quanti-
fications [24]. By merging IVUS and OCT together (overlapping segmented IVUS and 
OCT contours), we can obtain whole vessel morphology from IVUS and superior reso-
lution from OCT and provide better accuracy for fibrous cap quantifications. Models 
based on IVUS + OCT images could provide more accurate stress/strain calculations for 
better plaque vulnerability assessment. The IVUS + OCT model with accurate cap thick-
ness quantification and mechanical prediction could be very helpful for plaque research 
advancement.

Lack of patient follow-up data with high resolution (< 65  µm) to quantify plaque 
cap thickness, well-accepted plaque vulnerability indices to monitor vulnerability 
changes, and methods to predict future vulnerability behaviors with high prediction 
accuracies remain as challenges for researchers in this field. In this paper, patient fol-
low-up IVUS, OCT and angiography data were acquired from two coronary arter-
ies of one patient (f; age: 80). The 3D-FSI model based on IVUS and OCT follow-up 
data was constructed to obtain accurate coronary atherosclerotic plaque morphologi-
cal and plaque stress/strain data, which in turn were used to investigate their rela-
tionships with plaque vulnerability. Thirteen key morphological factors from IVUS 
and OCT images and biomechanical factors from FSI models were extracted from 
45 slices (with lipid cool and cap) at baseline for statistical analysis. Three morpho-
logical indices including lipid percentage index (LPI), cap thickness index (CTI) 
and morphological plaque vulnerability index (MPVI) based on lipid size and cap 
thickness were calculated and used as the quantitative measures for plaque vulner-
ability. The changes from baseline to follow-up of the three indices were treated as 
plaque vulnerability changes. Four machine learning methods: random forest (RF), 
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discriminant analysis (DA), least square support vector machine (SVM) and ensemble 
learning (EL) were tested using all combinations of morphological and mechanical 
factors to predict the changes of plaque vulnerability indices. Prediction accuracies 
and specificities from the four methods were compared to identify optimal predictors 
and prediction methods for plaque vulnerability prediction. While this paper is only 
a pilot study, optimal predictors and prediction methods are the long-term goals of 
researchers and clinicians in the vulnerable plaque study field.

Results
Among 13 single-factor predictors, wall thickness had the optimal prediction for LPI 
change (ΔLPI), minimum cap thickness was the optimal single-factor predictor for 
CTI change (ΔCTI) and MPVI change (ΔMPVI). Comparing prediction results of 
all combinations of 13 risk factors, it was found that combinational-factor predictor 
combining mechanical and morphological risk factors provided better predictions of 
ΔLPI, ΔCTI and ΔMPVI for all four prediction methods.

Prediction of morphological indices using single‑factor predictor

Using ΔLPI, ΔCTI and ΔMPVI as plaque vulnerability change, respectively, 13 key 
risk factors at baseline were used as predictors to feed four machine learning meth-
ods. Optimal single-factor predictors with the highest area under curve (AUC) for 
three morphological indices are listed in Table 1.

For ΔLPI prediction, baseline critical plaque wall strain (critical PWSn), plaque 
area, wall thickness and plaque area were the optimal single-factor predictor for RF, 
DA, SVM and EL with AUC 0.856, 0.875, 0.883 and 0.776, respectively. Although 
SVM had the best AUC, RF had the highest sum of sensitivity and specificity (1.677). 
In addition to that, its AUC is close to that of SVM (< 5%). For ΔCTI prediction, 
minimum cap thickness (MinCT) was the optimal single-factor predictor for all four 
machine learning methods (see Fig. 1). DA had the best AUC (0.818) and highest sum 
of sensitivity and specificity (1.481). For ΔMPVI prediction, MinCT was also the opti-
mal predictor for all machine learning methods. RF had the best AUC (0.785) and 
highest sum of sensitivity and specificity (1.519). Definitions and calculation formu-
las for prediction accuracy and specificity are given in the Methods section. For each 
machine learning method, the AUC of ΔLPI were better than ΔCTI and ΔMPVI.

Table 1  The optimal single-factor predictors with AUC, sensitivity and specificity for three 
morphological indices using four machine learning methods

Bold indicates that AUC value is the largest in this columns

Sen sensitivity, Spe specificity

Index ΔLPI ΔCTI ΔMPVI

Method Factor AUC (Spe, Sen) Factor AUC (Spe, Sen) Factor AUC (Spe, Sen)

RF Critical PWSn 0.856 (0.928, 0.749) MinCT 0.749 (0.858, 0.555) MinCT 0.785 (0.863, 0.656)

DA Plaque area 0.875 (0.872, 0.677) MinCT 0.818 (0.868, 0.613) MinCT 0.752 (0.830, 0.646)

SVM Wall thickness 0.883 (0.947, 0.653) MinCT 0.697 (0.853, 0.334) MinCT 0.727 (0.866, 0.404)

EL Plaque area 0.776 (0.927, 0.767) MinCT 0.719 (0.852, 0.530) MinCT 0.766 (0.864, 0.654)
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Prediction of morphological indices using combinations of risk factors

All combinations of baseline 13 risk factors were used as predictors for three vulner-
ability indices using four machine learning methods. The optimal combination of risk 
factors with the highest AUC was identified. The optimal predictors of four machine 
learning methods for three vulnerability indices are shown in Table 2.

For ΔLPI prediction, the combination of lipid percentage (LP), critical WSS, PWS in 
fibrous cap (cap PWS), plaque wall strain in fibrous cap (cap PWSn) and WSS in fibrous 
cap (cap WSS) using SVM gave the best AUC (0.963). DA with the combination of 
LP, wall thickness, critical PWS and cap PWSn had the highest sum of sensitivity and 
specificity (1.855) within an AUC close to the optimal (< 5%). For ΔCTI prediction, the 
combination of MinCT, mean cap thickness (MeanCT), critical PWS, cap PWS and cap 
PWSn using DA gave the best AUC (0.836) and highest sum of sensitivity and specific-
ity (1.499). For ΔMPVI prediction, the combination of MinCT, plaque area and critical 
PWS using RF achieved optimal AUC (0.847) and highest sum of sensitivity and speci-
ficity (1.438) (see Fig. 2). For each machine learning method, the AUC of ΔLPI were bet-
ter than ΔCTI and ΔMPVI.

According to Tables 1 and 2, SVM has the optimal performance for ΔLPI prediction 
among the four machine learning methods. DA and RF show optimal prediction results 
for predicting ΔCTI and ΔMPVI among the four methods, respectively.

Prediction difference between four machine learning methods

For vulnerability index change prediction using optimal single-factor predictor (see 
Table 1), the four machine learning methods could be ranked by AUC as follows: ΔLPI 

Table 2  The optimal combinational-factor predictors with AUC, sensitivity and specificity for three 
morphological indices using four machine learning methods

Bold indicates that AUC value is the largest in this columns

Sen sensitivity, Spe specificity

Index ΔLPI ΔCTI ΔMPVI

Method Predictor AUC (Spe, Sen) Predictor AUC (Spe, Sen) Predictor AUC (Spe, Sen)

RF LP
MeanCT
Critical WSS
Cap PWS

0.931 (0.971, 
0.642)

MinCT
Critical PWSn
Critical WSS
Cap WSS

0.826 (0.923, 
0.555)

MinCT
Plaque area
Critical PWS

0.847 (0.855, 
0.583)

DA LP
Wall Thickness
Critical PWS
Cap PWSn

0.957 (0.935, 
0.920)

MinCT
MeanCT
Critical PWS
Cap PWS
Cap PWSn

0.836 (0.823, 
0.676)

MinCT
MeanCT
Critical PWSn
Cap PWSn
Cap PWS

0.812 (0.831, 
0.511)

SVM LP
Critical WSS
Cap PWS
Cap PWSn
Cap WSS

0.963 (0.974, 
0.777)

MinCT
Lumen area
Plaque area
Critical PWSn

0.731 (0.926, 
0.320)

MeanCT
MinCT
Plaque area
Critical PWS
Critical PWSn

0.773 (0.862, 
0.436)

EL LP
MeanCT
Lumen area
Critical WSS
Cap PWSn

0.861 (0.972, 
0.607)

MeanCT
MinCT
Cap WSS

0.781 (0.915, 
0.464)

MinCT
Plaque area
Critical PWSn

0.794 
(0.870,0.508)
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prediction: SVM > DA > RF > EL; ΔCTI prediction: DA > RF > EL > SVM; for ΔMPVI pre-
diction: RF > EL > DA > SVM.

For ΔLPI and ΔCTI predictions, the AUC rankings of four methods are the same in 
both optimal combinational-factor predictors and optimal single-factor predictors, 
respectively. For ΔMPVI prediction with optimal combinational-factor predictors, the 
ranking of four methods using AUC is RF > DA > EL > SVM.

Discussion
Significance of high‑resolution OCT image and multi‑modality image‑based models

The changes of coronary plaque wall thickness and fibrous cap thickness between base-
line and follow-up were normally under 200 μm. The well-known cap thickness thresh-
old value (65 μm) for vulnerable plaques is usually treated as an important standard for 
classification of morphological indices [7]. IVUS image resolution (150–200 μm) is not 
sufficient to measure cap thickness and plaque vulnerability changes accurately. OCT 
with its high resolution and IVUS with strong penetration could complement each other 
to give more accurate plaque morphology assessment, especially for cap thickness and 
lipid area. These improvements in turn could provide better stress/strain calculations 
[24]. Table  1 shows that most of the optimal single-factor predictor for three indices 
and four machine learning were associated with cap thickness. For ΔCTI and ΔMPVI, 
MinCT is the most important single-factor predictor. Even though ΔLPI is defined using 
lipid area, the optimal single-factor predictor is critical PWSn which is closely linked 
to cap thickness. Cap thickness and cap stress/strain are significant predictors for 
plaque vulnerability. IVUS + OCT-based FSI models led to more accurate vulnerability 
predictions.

Errors in co‑registration of IVUS and OCT data

The IVUS + OCT slices used for model construction were made by using lumen con-
tours and plaque components from OCT and the vessel out-boundary from IVUS. Mol-
ony et al. used a dynamic programming algorithm to co-register IVUS and OCT data 
and reported that the co-registration to be accurate within 18º circumferentially and 
0.64 mm longitudinally [24].

Combination of morphological and mechanical factors could lead to more accurate 

predictions for three indices

A large number of vulnerable plaque studies concentrated on plaque morphology and 
hemodynamic factors, which provided better understanding and evaluation for the 
relationship between local fluid mechanics and plaque vulnerability. Corban et al. used 
IVUS-based CFD models and found that plaque locations with plaque burden > 40% and 
low WSS (defined as < 10 dynes/cm2) had significantly greater change in plaque area at 
follow-up [19]. In addition to hemodynamic risk factor WSS, PWS as structural risk 
factor was also used to predict plaque vulnerability. Costopoulos et al. extracted PWS 
from IVUS-based 2D structural mechanical models and WSS from CFD models to study 
changes of vulnerable plaque between baseline and 12-month follow-up [21]. Changes 
in plaque area, plaque burden, necrotic core (NC), fibrous tissue (FT), fibro-fatty tissue, 
and dense calcium were calculated for each co-registered frame [21]. By establishing a 
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series of sophisticated FSI models, Tang et al. demonstrated that structural stress/strain, 
especially critical stress/strain may play an important role in plaque progression and vul-
nerability change [16, 28]. Despite the limitation of IVUS image resolution, some vulner-
able plaque studies based on IVUS demonstrated that baseline mechanical risk factors 
improved prediction accuracy of vulnerability index change [20, 22]. Wang et  al. con-
structed IVUS-based 3D-FSI coronary plaque models to obtain PWS, PWSn and WSS 
for correlation analysis and vulnerability prediction. The results indicated that critical 
PWS correlated with MinCT, CTI, MPVI with r = − 0.6414, 0.7852, and 0.7411, respec-
tively (p < 0.0001) [20]. The combination of wall thickness, LA, plaque area, critical PWS, 
and MPVI was the best predictor using RF with the highest prediction accuracy 91.47% 
[22]. The FSI model with follow-up IVUS and OCT data could provide more accurate 
morphology and precise structure/fluid mechanics calculations [24, 25], which would 
improve the quantification of the plaque morphology change from baseline to follow-
up and the prediction of plaque morphological indices. Because acquisition of baseline 
and follow-up IVUS + OCT data is difficult and the construction of 3D IVUS + OCT 
image-based FSI model is complicated and time-consuming, prediction study based on 
IVUS + OCT is rare in the existing literature. By comparing Tables  1 and 2, we could 
find that best combination of morphological and mechanical risk factors provided 
higher AUC and higher sum of sensitivity and specificity than optimal single-factor pre-
dictors. The AUC of optimal combinational-factor predictor is 8.5% higher than that 
of optimal single-factor predictor using ΔLPI and EI method. Using ΔLPI, the AUC of 
optimal combinational-factor predictor using SVM method achieved up to 96.3%. Com-
bining morphological factors, fluid dynamics factors and structural mechanical factors 
demonstrated great ability in morphological indices prediction.

Vulnerability indices and prediction methods

Three indices showed different morphological insights of plaque vulnerability changes. 
The changes of lipid area and cap thickness from baseline to follow-up were not com-
pletely consistent. Hence, the imbalances slice classes (‘index increase’ class vs. ‘index no 
increase’ class) for the three indices were not the same. There are differences in generali-
zation ability, class imbalance, training speed between different machine learning meth-
ods. According to prediction results given in Tables 1 and 2, SVM was the best machine 
learning method for the prediction of ΔLPI; DA was the best method for the prediction 
of ΔCTI while RF was the best for ΔMPVI. For prediction using single-factor predictors, 
the maximum absolute error of prediction results achieved 12% between four machine 
learning methods for each index. For prediction using combinational-factor predictors, 
the maximum absolute error of prediction results achieved 10% between four machine 
learning methods for each index. The training speed of EL is the lowest among four 
machine learning methods because of serial processing of EL with boosting algorithm.

Limitations

(a) Sample size: the sample size was small in our studies since it is challenging to obtain 
follow-up image data including IVUS, OCT and angiography. Only two arteries from 
one patient were used to make the follow-up FSI models. To compensate for this limita-
tion, IVUS + OCT slice rather than artery was used as the prediction unit in our analysis 
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to demonstrate the procedure of multi-modality image-based prediction analysis, and 
preliminary results were presented. (b) Neither IVUS nor OCT is ECG-gated, so it is 
likely that co-registered images were acquired at different time points in the cardiac 
cycle. That is a common problem in extensive OCT imaging and modeling. (c) Modeling 
limitation: many modeling conditions and assumptions could affect model stress/strain 
calculations, such as pressure conditions, patient-specific material properties, residual 
stress, cardiac motion and others. Our modeling procedure will be improved when data 
become available. Some parts of the complicated process in this study were performed 
manually including image co-registration, contour extraction, modeling procedure, etc., 
which were very time-consuming. (d) Prediction methods: only four machine learning 
methods were utilized in this study. In fact, different methods could affect the predic-
tion analysis in many ways, such as prediction accuracy, reliance of imbalanced sample, 
operating time, loading space, etc. We can search for more appropriate methods includ-
ing deep learning methods when large sample size of data could be obtained. This is a 
feasibility study to show that combining multi-modality image-based FSI model and 
machine learning method could potentially predict changes of vulnerability index more 
accurately. Large-scale patient studies are needed for further validation.

Conclusion
IVUS + OCT data provided accurate cap thickness and better plaque morphology which 
led to better stress/strain calculations using IVUS + OCT-based FSI models and more 
accurate vulnerability prediction using machine learning predictive methods. Combina-
tion of 13 morphological and mechanical factors could lead to higher accuracy for vul-
nerability change predictions.

Methods
IVUS and OCT data acquisition and processing

This is a prospective study. Baseline and 10-month follow-up in vivo IVUS/OCT/angi-
ography data were acquired from left circumflex coronary artery and right coronary 
artery (RCA) of one participant (female; age: 80) at Cardiovascular Research Founda-
tion (CRF) using protocol approved by the local institute and informed consents were 
obtained from the patient. This patient was selected for our biomechanical and machine 
learning methodology preliminary study from a CRF data set where patients were with 
stable angina pectoris undergoing percutaneous coronary intervention (PCI). Patients 
with acute coronary syndrome, severe calcified lesion, chronic total occlusion or chronic 
kidney disease (Cr > 1.5 mg/dl) were excluded. The IVUS/OCT/angiography data were 
acquired at baseline and follow-up following the same procedures. IVUS catheter (Bos-
ton Scientific/SCIMED Corporation) with an automatic pullback speed of 0.5  mm/s 
was performed to acquire IVUS images. Then, OCT catheter (St. Jude, Minnesota, MN, 
USA) was also traversed to same region of interest and an automatic pullback at 20 mm/s 
was performed. The catheters’ positions were tracked by angiography and aortic pres-
sure were recorded with pressure sensor in catheter. As IVUS and OCT images were not 
recorded using the same catheter in one pullback, they must be co-registered. That is, 
the IVUS and OCT images acquired from the same plaque locations were paired. Ves-
sel branches were used as the first landmarks, and features common and visible in both 
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IVUS and OCT (lumen area and eccentricity, lumen narrowing, lipid core, catheter posi-
tion and calcifications) were used as the second landmarks for matching IVUS and OCT 
slices. At the same segment between landmarks, the frequency ratio of image genera-
tion between OCT and IVUS was ~ 12. Furthermore, the merged IVUS + OCT data at 2 
time points (baseline and follow-up) also were registered for plaque progression meas-
urements between baseline and follow-up. Co-registration was performed manually and 
independently by three experts based on relevant branches and landmarks described 
above [24]. The average was taken when the results from experts were inconsistent. 
After longitudinal and circumferential registration, a total of 105 paired IVUS and OCT 
images denoted as IVUS + OCT data were obtained at both baseline and follow-up. 
Forty-five slices with lipid core and fibrous cap were selected as machine learning sample 
database for vulnerability prediction study. IVUS + OCT data at baseline and follow-up 
were further matched one-by-one to quantify the change of plaque morphology. Three 
plaque compositions were considered in segmentation for IVUS + OCT data: lipid-rich 
necrotic core (short for lipid), calcification and other vessel tissue (fibrotic, fibro-fatty, 
etc.). Segmentation was performed by ImageJ 1.52v software. Small-size plaque compo-
nents were neglected for simplification. Figure 3 gives samples of paired IVUS and OCT 
images at baseline and follow-up and corresponding segmented IVUS + OCT contours. 
Paired IVUS and OCT contours were merged together to make IVUS + OCT slices with 
IVUS providing out-boundary contours, and OCT providing lumen and plaque compo-
nent contours.

3D coronary plaque geometry reconstruction

3D coronary plaque geometries were reconstructed by integrating the segmented 
IVUS + OCT contours and the corresponding angiography images. The 3D centerline of 
coronary geometry was extracted from angiography images and IVUS + OCT slices were 
stacked on it perpendicularly (see Fig.  4). Figure  4 shows the angiography images and 
stacked contours of 3D vessel segment with minimum centerline curvature at baseline and 
follow-up. Coronary arteries have cyclic bending caused by cardiac contraction/expan-
sion. Hence, coronary movement extracted from angiography movie was applied in the FSI 
model to recover its cyclic movement. Aortic pressure measurements (max, min pressure: 
136, 88 mmHg) were obtained at aortic ostium by the pressure sensor. Pulsating pressure 

Fig. 1  ROC obtained by optimal single-factor predictors and machine learning method with best 
performance for prediction of three morphological indices. a ROC of wall thickness predictor using SVM for 
ΔLPI prediction. b ROC of MinCT predictor using DA for ΔLPI prediction. c ROC of MinCT predictor using DA 
for ΔMPVI prediction
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conditions were prescribed at the inlet and outlet of the vessel segment (see Eq. (4) below). 
Axial shrinkage was set at 5% in our models since atherosclerotic vessels were stiffer than 
healthy vessels. More details of our model reconstruction are provided in our previous 
papers [24, 25].

The complete 3D‑FSI model

For our FSI model, blood was assumed to be Newtonian and incompressible. The Navier–
Stokes equations with arbitrary Lagrangian–Eulerian (ALE) formulation were employed as 
the governing equations. No-slip conditions were assumed at the interface between fluid 
and structure. Natural traction equilibrium conditions were assumed at all interfaces. The 
governing equations and boundary conditions for the FSI model are as follows:

(1)ρ
(

∂u/∂t +
((

u − ug

)

· ∇
)

u
)

= −∇p+ µ∇2
u,

(2)∇ · u = 0,

(3)u|Ŵ = ∂v/∂t, ∂u/∂n|inlet,outlet = 0,

(4)p|inlet = pin(t), p|outlet = pout(t),

(5)ρvi,tt = σij,j , i, j = 1, 2, 3, sum over j,

(6)εij = (vi,j + vj,i + vα,ivα,j)/2, i, j = 1, 2, 3,

(7)σ r
ij · nj|interface

= σ s
ij · nj|interface

,

(8)xcenter = xbending(t),

Fig. 2  ROC obtained by optimal combinational-factor predictors and machine learning method with best 
performance for prediction of three morphological indices. a ROC of combinational-factor predictor (LP, 
critical WSS, cap PWS, cap PWSn and cap WSS) using SVM for ΔLPI prediction. b ROC of combinational-factor 
predictor (MinCT, MeanCT, critical PWS, cap PWS and cap PWSn) using DA for ΔLPI prediction. c ROC of 
combinational-factor predictor (MinCT, plaque area and critical PWS) using DA for ΔMPVI prediction
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where u is fluid velocity, p is pressure, ug is the mesh velocity, µ is the dynamic viscosity, 
ρ is density, t stands for time, Ŵ stands for vessel inner boundary, f*j stands for derivative 
of f* with respect to the jth variable, σ is the stress tensor (superscripts indicate different 
materials), ε is the strain tensor, v is the solid displacement vector, superscript letters r 
and s were used to indicate different materials, xcenter is the position of vessel center line, 
and xbending is the imposed cyclic bending condition derived from patient angiography 
movie.

Constitutive material models for vessel tissue and plaque components

Coronary vessel material (fibrous tissue) was assumed to be hyperelastic, anisotropic, 
nearly incompressible and homogeneous. Plaque components (lipid core and calcifi-
cation) were assumed to be hyperelastic, isotropic, nearly incompressible and homo-
geneous. The Mooney–Rivlin material models were used to describe the mechanical 
properties of vessel, fibrous tissue and plaque components. The following formulas are 
the strain energy density functions for isotropic and anisotropic Mooney–Rivlin materi-
als, respectively:

where I1 =
∑

Cii, I2 = 1
/

2
[

I21 − CijCij

]

 I1 and I2 are the first and second invariants of 
right Cauchy–Green deformation tensor C = [Cij] = XTX, X = [Xij] = [∂xi/∂aj], (xi) is cur-
rent position, (ai) is original position, I4 = Cij(nc)i(nc)j, nc is the unit vector in the circum-
ferential direction of the vessel, J is the Jacobian of the deformation gradient tensor, K is 
the Lagrange multiplier for the incompressibility, c1, c2, D1, D2, K1 and K2 are material 
parameters [24, 26]. Material constants of isotropic Mooney–Rivlin model from exist-
ing literature were used [24, 27]: lipid: c1 = 0.5  kPa, c2 = 0  kPa, D1 = 0.5  kPa, D2 = 1.5; 
calcification: c1 = 92 kPa, c2 = 0 kPa, D1 = 36 kPa and D2 = 2; vessel/fibrous tissue: c1 = − 
278.7 kPa, c2 = 24.35 kPa, D1 = 133.7 kPa, D2 = 2, K1 = 7.19 kPa, K2 = 23.5 [27].

3D‑FSI model solution method

The FSI models were solved by a finite element software ADINA 9.0 (Adina R&D, Water-
town, MA, USA) following our established procedures [24]. ADINA uses unstructured 
finite-element methods for both fluid and solid models. Mesh analysis was performed by 
refining mesh density by 10% until changes of solutions became < 2%. Nonlinear incre-
mental iterative procedures were used to solve FSI model. Three cardiac cycles were 
simulated for our FSI model and the solution in the third period was taken as the final 
result since the solutions for the second and third cycles became almost identical. Fig-
ure 5 shows distributions of PWS and fluid velocity in RCA under maximum pressure 
conditions at baseline and follow-up.

(9)Wiso = c1(I1−3) + c2(I2−3) + D1[ exp (D2(I1−3))−1]+ K (J − 1),

(10)Waniso = Wiso + (K1/K2)

{

exp
[

K2(I4 − 1)2
]

− 1
}

,
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Data extraction and plaque measurements

Out of 105 IVUS + OCT slices matched at baseline and follow-up, 45 slices containing 
lipid/fibrous cap were selected for subsequent prediction analysis. Morphological and 
mechanical factors of 45 matched slices (2 × 45 = 90 slices in total) were extracted from 
IVUS + OCT data and 3D-FSI models, respectively. Each slice contained 100 evenly 
spaced nodal points taken on the lumen. The lumen nodal point was connected to a cor-
responding point on vessel out-boundary (see Fig. 6). The length of the connecting line 
is defined as the wall thickness. If the line passes through a lipid or calcification region, 
the distance between lumen nodal point and the point that the line first time meets the 

Fig. 3  One sample of paired IVUS and OCT images at baseline and follow-up with segmented contours. 
Upper row: IVUS and OCT images were obtained at baseline; Lower row: IVUS and OCT images were 
obtained at follow-up. All images are from the same location of RCA. From left to right: (a-*) OCT image, 
(b-*) IVUS image, (c-*) IVUS image is overlaid with the paired OCT image, (d-*) OCT image with segmented 
contours, (e-*) Segmented IVUS + OCT contours. The symbol asterisk represents 1 and 2. Blue: lumen contour; 
green: out-boundary; red: lipid contour

Fig. 4  Angiography images and stacked contours of 3D RCA segment with minimum centerline curvature 
at baseline and follow-up. a The angiography image with minimum pressure at baseline. b Stacked contours 
plot with minimum centerline curvature at baseline. c The angiography image with minimum pressure at 
follow-up. d Stacked contours plot with minimum centerline curvature at follow-up. Contour color: red, lipid; 
black, calcification; blue, lumen and out-boundary
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lipid or calcification is defined cap thickness. The average and minimum values of cap 
thickness from one slice were obtained and recorded as mean cap thickness (MeanCT) 
and minimum cap thickness (MinCT), respectively.

The area bounded by the lipid contour in a slice was recorded as lipid area. The area 
enclosed by lumen contour was denoted as lumen area. The area between lumen and 
out-boundary was defined as plaque area. Lipid percentage (LP) and the plaque burden 
were defined by the following formulas:

Therefore, seven morphological risk factors used as predictors in this study included 
wall thickness, MeanCT, MinCT, LP, lumen area, plaque area, plaque burden.

Considering plaque rupture closely associated with mechanical conditions on lumen, 
wall shear stress (WSS), plaque wall stress (PWS) and plaque wall strain (PWSn) values 
at 100 lm nodal points of all slices were extracted from 3D-FSI model. Many studies have 
shown the significance of maximum cap stress for plaque vulnerability and rupture [28–
30]. In our study, the maximum WSS, PWS and PWSn in cap of each slice were called 
as critical WSS, critical PWS and critical PWSn, respectively. The mean WSS, PWS 
and PWSn in the fibrous cap of each slice were denoted as cap WSS, cap PWS and cap 
PWSn, respectively. Hence, six mechanical risk factors used as predictors in this study 
included cap WSS, cap PWS, cap PWSn, critical WSS, critical PWS and critical PWSn.

(11)Lipid percentage (LP) = (lipid area/plaque area)× 100%,

(12)Plaque burden = [(plaque area)/(plaque area+ lumen area)] × 100%.

Fig. 5  Distribution of PWS and fluid velocity from FSI model of RCA at baseline and follow-up. The 
mechanical state of vessel is displayed by band plot of PWS on longitudinal cross-section. Blood flow is 
shown by vector plot of fluid velocity on longitudinal cross-section. a Distribution of PWS and fluid velocity at 
baseline; b distribution of PWS and fluid velocity at follow-up; c color legend
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Definition of morphological plaque vulnerability indices

Morphological characteristics including lipid and fibrous cap are commonly used to 
evaluate the plaque vulnerability according to previous histological analysis [7, 8, 31, 32]. 
Virmani et al. and Kolodgie et al. revealed the importance of LP in plaque stability [6–8]. 
It is also established that 65 μm is the key characteristic of plaque rupture, 200 μm is the 
threshold of the thickness of the thin fibrous cap, and 300 μm is a vague speculation [33, 
34]. Therefore, LP and cap thickness were considered as measures for plaque vulnerabil-
ity. Then the lipid percentage index (LPI) and cap thickness index (CTI) were assigned to 
each slice at both baseline and follow-up based on the values of LP and MinCT, respec-
tively. The criteria for the indices assignment are provided in Table 3.

Taking both LPI and CTI into our consideration, morphological plaque vulnerability 
index (MPVI) is defined as follows:

For 45 paired slices, the change of LPI, CTI and MPVI from baseline to follow-up were 
used to measure the change of plaque vulnerability:

boundary conditions for the FSI model

(13)MPVI = min (LPI, CTI).

(14)△ LPI = (LPI at follow-up) − (LPI at baseline).

(15)△ CTI = (CTI at follow-up) − (CTI at baseline).

Fig. 6  Morphological and mechanical factors are extracted from one sample slice. a Contours. Color: red, 
lipid; blue, lumen and out-boundary. b Thickness definition. Wall thickness and cap thickness were extracted 
from the connected lines. c PWS distribution on the circumferential cross-section paired with the slice (unit: 
kPa)

Table 3  The classifications of lipid percentage index (LPI) and cap thickness index (CTI) for 
vulnerable plaque

LPI The range of lipid percentage CTI The range of Min cap thickness

0 LP = 0% (no lipid) 0 No lipid

1 0% < LP < 5% 1 MinCT > 0.3 mm

2 5% ≤ LP < 15% 2 0.20 mm < MinCT ≤ 0.3 mm

3 15% ≤ LP < 25% 3 0.065 mm < MinCT ≤ 0.2 mm

4 25% ≤ LP < 100% 4 MinCT ≤ 0.065 mm
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Each morphological index could be treated as the prediction target in turn. For the 
sake of simplification, plaque slices were classified into two classes according to the 
change of each morphological index. Use ΔLPI as an example, if ΔLPI > 0, that means 
vulnerability index increase, then this slice would be labeled 1 (‘Label 1’ Class). Con-
versely, ΔLPI ≤ 0, it would be labeled -1 (‘Label-1’ Class). Similar rule was applied to 
labeling all selected slices were labeled for ΔCTI and ΔMPVI.

Prediction for the change of plaque vulnerability indices

Four different machine learning methods were employed for the prediction of each 
plaque vulnerability index including least squares support vector machine (SVM), 
ensemble learning (EL), discriminant analysis (DA) and random forest (RF). Least 
squares SVM used Gaussian radial basis function as the kernel function and steepest 
descent method for searching optimal parameters. SVM and RF were performed by LS-
SVMlab toolbox and RF toolbox, respectively. The DA method used the Classification 
Discriminant object which encapsulates a  discriminant analysis  classifier. EL used the 
Adaptive Boosting algorithm and the number of ensemble learning cycles was set to 100. 
EL employed the fitensemble function of MATLAB2015a (MathWorks, Inc.) with Ada-
BoostM1 algorithm. MATLAB2015a were used to compile and run all programs of four 
machine learning methods.

Due to the small sample size (45 slices), synthetic minority  oversampling  technique 
(SMOTE) was employed to extend the sample size in the class with fewer samples [35]. 
Then, the new sample after oversampling was used to train and test the four machine 
learning methods for predicting each plaque vulnerability index. A standard fivefold 

(16)△ MPVI = (MPVI at follow-up) − (MPVI at baseline).

Table 4  Summary of input parameters used in FSI models and prediction methods

Image Resolution (μm) Image size Field of view (mm2) Pixel size (mm)

Image

 IVUS 150–200 512*512 9*9 0.01752

 OCT 10–20 704*704 7.01*7.01 0.00996

 Angiography  > 200 512*512 152*152 0.29688

Model parameters c1 (kPa) c2 (kPa) D1 (kPa) D2 K (kPa) K1 (kPa) K2

Material

 Tissue − 278.7 24.35 133.7 2 13,157 7.19 23.5

 Lipid 0.5 0 0.5 1.5 1250 – –

 Calcification 92 0 36 2 164,000 – –

Pressures Maximum = 136 mmHg, Minimum = 88 mmHg

Prediction 
methods

Setting Data processing Validation

SVM Kernel function: Gaussian radial 
basis function

Synthetic minority oversam-
pling technique (SMOTE)

Fivefold cross-validation

RF Number of tree: 20

EL Number of ensemble learning 
cycles: 100

DA Discriminant type: linear
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cross-validation procedure was performed using all selected slices. This procedure was 
repeated 100 times to stabilize the prediction results. The input parameters used in 
prediction methods are listed in Table  4. For each machine learning method, all pos-
sible combinations of 13 morphological and mechanical factors at baseline were fit to 
the method as predictors to determine the prediction accuracies. The optimal combina-
tion with highest prediction accuracy was identified for each plaque vulnerability index 
using each method. Receiver operating characteristic (ROC) analysis was used to evalu-
ate the prediction performance among different methods, and area under curve (AUC), 
sensitivity and specificity were calculated. Defining vulnerability index change > 0 to be 
positive and ≤ 0 to be negative, sensitivity of prediction of prediction event (the given 
vulnerability index increased) using a given predictor is defined as the proportion of the 
true positive (TP) outcomes that are predicted to be positive. Similarly, specificity of 
prediction is defined as the proportion of the true negative (TN) outcomes that are cor-
rectly predicted to be negative. The formulas used in our calculations are given below:

where FN = false negative, FP = false positive, respectively.
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