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Abstract 

Background:  Small-incision lenticule extraction (SMILE) is a surgical procedure for 
the refractive correction of myopia and astigmatism, which has been reported as safe 
and effective. However, over- and under-correction still occur after SMILE. The neces‑
sity of nomograms is emphasized to achieve optimal refractive results. Ophthalmolo‑
gists diagnose nomograms by analyzing the preoperative refractive data with their 
individual knowledge which they accumulate over years of experience. Our aim was to 
predict the nomograms of sphere, cylinder, and astigmatism axis for SMILE accurately 
by applying machine learning algorithm.

Methods:  We retrospectively analyzed the data of 3,034 eyes composed of four 
categorical features and 28 numerical features selected from 46 features. The multiple 
linear regression, decision tree, AdaBoost, XGBoost, and multi-layer perceptron were 
employed in developing the nomogram models for sphere, cylinder, and astigmatism 
axis. The scores of the root-mean-square error (RMSE) and accuracy were evaluated and 
compared. Subsequently, the feature importance of the best models was calculated.

Results:  AdaBoost achieved the highest performance with RMSE of 0.1378, 0.1166, 
and 5.17 for the sphere, cylinder, and astigmatism axis, respectively. The accuracies 
of which error below 0.25 D for the sphere and cylinder nomograms and 25° for the 
astigmatism axis nomograms were 0.969, 0.976, and 0.994, respectively. The feature 
with the highest importance was preoperative manifest refraction for all the cases of 
nomograms. For the sphere and cylinder nomograms, the following highly important 
feature was the surgeon.

Conclusions:  Among the diverse machine learning algorithms, AdaBoost exhibited 
the highest performance in the prediction of the sphere, cylinder, and astigmatism axis 
nomograms for SMILE. The study proved the feasibility of applying artificial intelligence 
(AI) to nomograms for SMILE. Also, it may enhance the quality of the surgical result 
of SMILE by providing assistance in nomograms and preventing the misdiagnosis in 
nomograms.
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Background
Small-incision lenticule extraction (SMILE) has been reported as safe and effective for 
correcting refractive errors [1, 2]. However, over- and under-correction still occur after 
SMILE [3, 4]. The surgical outcome of a refractive ophthalmic surgery is affected by vari-
ous factors, such as the surgeon, surgical process, type of laser used, patient demograph-
ics, and operation room environment [5]. The necessity of nomograms is emphasized 
to compensate for these sources of variability and achieve optimal refractive results [6]. 
Nomograms are considered as reliable and efficient tools for improving the predictabil-
ity of a refractive surgery by analyzing the preoperative and postoperative refractive data 
[6, 7].

Numerous studies suggesting nomograms for laser-assisted in  situ keratomileusis 
(LASIK) and SMILE have been conducted [5, 7–11]. Most previous studies focused only 
on the amount of the spherical or cylindrical refraction power to correct, excluding the 
astigmatism axis despite its influence on astigmatism and visual acuity after LASIK. 
[12]. Furthermore, the linear regression analysis was generally used to select significant 
parameters highly related to the postoperative results and develop an equation in most 
of the previous studies. In addition, the nomogram development for SMILE has not 
been broadly studied yet.

Applying artificial intelligence (AI) in medical fields has become mainstream with the 
digital clinical data storage expansion and related technology advances [13]. In ophthal-
mology, AI has been applied intensively to diagnose ophthalmological diseases, such as 
diabetic retinopathy, glaucoma, age-related macular degeneration, and cataract [14]. For 
nomograms of refractive surgery, a neural network was used to suggest the surgical laser 
parameter for photorefractive keratectomy [15]. Recently, Tong et  al. [16] applied the 
multi-layer perceptron (MLP) algorithm to train nomogram models for SMILE. How-
ever, there was no comparison with the other algorithms in their study.

In this study, an AI-based approach to develop nomograms for SMILE is proposed. 
Various machine learning algorithms were employed: multiple linear regression, deci-
sion tree, AdaBoost, XGBoost, and MLP. Furthermore, the feature importance was cal-
culated, which numerically expresses the effect of specific features on the nomogram 
decision. To the best of our knowledge, this study is the first to apply diverse machine 
learning algorithms extensively, other than linear regression or MLP solely, to nomo-
grams for SMILE.

Results
Figure 1 displays the root-mean-square errors (RMSEs) and accuracies of all the algo-
rithms for the nomograms of sphere, cylinder, and astigmatism axis. The results indicate 
that AdaBoost achieved the highest performance with RMSEs of 0.1378, 0.1166, and 
5.17 for the sphere, cylinder, and astigmatism axis nomograms, respectively. The corre-
sponding accuracies with a threshold of zero were 0.236, 0.728, and 0.583 for the sphere, 
cylinder, and astigmatism axis nomograms, respectively. The accuracies with a thresh-
old of 0.25 D for the sphere and cylinder nomograms and 25° for the astigmatism axis 
nomograms were 0.969, 0.976, and 0.994, respectively. The secondary best algorithm 
was the decision tree, for which the RMSEs were 0.1622, 0.1376, and 5.47 for the sphere, 
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cylinder, and astigmatism axis nomograms, respectively. The accuracies with a thresh-
old of zero were 0.257, 0.717, and 0.596 for the sphere, cylinder, and astigmatism axis 
nomograms, respectively. The accuracies with a threshold of 0.25 D for the sphere and 
cylinder nomograms and 25° for the astigmatism axis nomograms were 0.962, 0.958, and 
0.993, respectively. The results of the Mann–Whitney U tests display that the ground 
truths and the outputs from the best models of AdaBoost were not significantly different 
(p < 0.05) for all the sphere, cylinder, and astigmatism axis cases. The correlation of the 
ground truths and the model outputs is illustrated in Fig. 2. 

Figure  3 presents five features with a highly ranked feature importance of the best 
models of AdaBoost for the sphere, cylinder, and astigmatism axis nomograms. The 

Fig. 1  Results of RMSEs and accuracies of multiple linear regression (linear), decision tree (tree), AdaBoost, 
XGBoost, and MLP with hidden layer number of 1 (MLP_1), 2 (MLP_2), 4 (MLP_4), 8 (MLP_8), and 16 (MLP_16). 
Axis: astigmatism axis; Accuracy_0: accuracy with threshold of zero; Accuracy_25: accuracy with threshold of 
0.25 D for sphere and cylinder and 25° for astigmatism axis nomograms

Fig. 2  Ground truths vs. outputs from the best model of AdaBoost. Axis: astigmatism axis
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most important feature with a significantly high importance was the preoperative mani-
fest refraction for all the sphere, cylinder, and astigmatism axis cases. For the sphere and 
cylinder nomograms, the surgeon was the following highest important feature.

Discussion
To predict the nomograms for SMILE, various machine learning algorithms were 
applied: multiple linear regression, decision tree, AdaBoost, XGBoost, and MLP with dif-
ferent number of layers. The best performance was achieved with AdaBoost. The RMSE 
from the results of the multiple linear regression of the sphere and cylinder nomograms 
was similar to those of AdaBoost; however, the accuracy of the former was remarkably 
lower than AdaBoost. For the astigmatism axis, the multiple linear regression yielded an 
extensively high RMSE and low accuracy compared to those of AdaBoost. Comparing 
the decision tree, AdaBoost, and XGBoost, the decision tree exhibited comparable per-
formance to AdaBoost, whereas XGBoost did not. In addition, although deep learning 
based on MLP has recently exhibited high performance in other studies, it was not the 

Fig. 3  Five features with highly ranked feature importance of best model of AdaBoost for the sphere, 
cylinder, and astigmatism axis nomograms. Axis astigmatism axis, MR_SPH manifest refraction of sphere, 
CF_AXIS corneal front astigmatism axis, MR_CYL manifest refraction of cylinder, MR_AXIS manifest refraction 
of astigmatism axis, ARK_R2_AXIS axis of the steepest curvature, CB_ASTIG corneal back astigmatism, CB_ECC 
corneal back eccentricity, THINNEST_X x location at thinnest cornea, ARK_R1_AXIS axis of flattest curvature, 
CB_AXIS corneal back astigmatism axis
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case in this study. Summarizing the results, relatively simpler models, such as decision 
tree or AdaBoost, worked better compared to other complex and deep models to predict 
nomograms for SMILE with the data cohort that was used in this study.

Although deep learning is excellent in the domains of computer vision or natural lan-
guage processing, it has been reported that shallow models, such as gradient-boosted 
decision trees, exhibit good performance in problems with tabular heterogeneous data 
[17]. Although deep learning has garnered significant attention over the last years, gra-
dient boosting, such as XGBoost, is one of the most widely used algorithms in Kaggle 
competitions for applying machine learning to structured tabular data [18, 19]. Several 
studies have reported higher performance with AdaBoost compared to XGBoost despite 
the popularity of XGBoost [20–26].

Compared with the previous studies, this study proposes the following contributions. 
First, it is a novel approach to apply and compare the extensive range of data-driven 
machine learning algorithms for nomograms subject to SMILE. There has been no par-
ticular approach even for nomograms subject to other refractive surgery. Previous stud-
ies mainly applied multiple linear regression to nomograms. Although recently there 
was a research on applying machine learning to nomograms for SMILE [16], it only 
attempted shallow MLP.

Compared to the other studies, the number of the data used in this study was remark-
ably large: hundreds versus thousands. This approach was possible, because the center, 
i.e., the data provider, has endeavored to establish an enormous database considering 
the impact of big data and data-driven artificial intelligence technologies in the medi-
cal field. Moreover, the features considered to affect the nomograms in this study were 
extensive compared to other studies. Without an ideal criterion to determine the rel-
evance of the factors for the refractive outcomes, these factors were selected based on 
scientific studies, common sense, and even a feeling [5]. Although a large number of fea-
tures does not necessarily ensure a better performance of machine learning, we intended 
not to miss any relevance between the possible features and the nomograms.

Another contribution of this study was the consideration of the “surgeon” feature. In 
the results of the feature importance of the models, the surgeon feature had the second-
highest importance followed by the preoperative manifest refraction. Unlike LASIK, 
SMILE nomogram mainly depends on the personal experience of the surgeon [16], and 
it is essential that all the surgeons develop a nomogram to refine their results [27]. It 
is certain that the effect of a surgeon on a nomogram is strong. To our knowledge, all 
the previous studies for nomograms subject to refractive surgery only utilized the data 
cohort of one sole surgeon, which limits the feasibility of a general application. For 
example, Liang et al. [7] stated that the nomogram used in their study is not available 
for other surgeons. We believe that our novel approach could be referential for further 
enhanced nomogram development for SMILE considering surgeon effect.

The limitation of this retrospective study is the absence of clinical validation. It is nec-
essary to clinically verify that the proposed nomogram enhances the predictability for 
the postoperative surgical outcomes of SMILE. However, the positive clinical results are 
anticipated  considering the results of Cui et  al. [16]. They confirmed the comparable 
safety and predictability in the postoperative results of patients’ group that underwent 
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SMILE with nomograms from the machine learning model, which had no statistically 
significant difference compared to the surgeon nomograms.

Conclusions
To predict the sphere, cylinder, and astigmatism axis nomograms for SMILE, we applied 
various machine learning algorithms: multiple linear regression, decision tree, AdaBoost, 
XGBoost, and MLP. The best results were achieved with AdaBoost. The preoperative 
manifest refraction was the highest important feature for all nomogram cases. The sec-
ond-highest important features for the sphere and cylinder nomograms were the surgeon. 
We believe that the proposed novel approach can lead to further development of AI-
based nomograms for SMILE. It displayed the feasibility of applying AI to nomograms for 
SMILE. Although there was no clinical verification, we expect positive refractive results.

Methods
Data

The data used in this research were provided by B&Viit Eye Center (Seoul, Korea). We 
retrospectively analyzed the data of 2108 eyes from 1336 patients operated by expert 
ophthalmologist A and 1059 eyes from 546 patients operated by expert ophthalmolo-
gist B between 2014 and 2018. All the patients underwent SMILE. Each one was oper-
ated after being anesthetized with 0.5% proparacaine hydrochloride (Alcain®, Alcon, 
Purrs, Belgium). A Visumax laser (Visumax™ Femtosecond Laser, Carl Zeiss Meditec) 
was used to cut the lenticule. The spot energy used was 130 nJ with a spot distance of 
3 μm and a repetition rate of 500 kHz. The lenticule cut angle and the cut size were 145° 
and 2.0 mm, respectively. The lenticule diameter was 6.0–6.5 mm, the cap diameter was 
7.5 mm, and the cap thickness was 120 μm. When the patients were looking at a frontal 
green light, a corneal connector was placed in the middle of the cornea, and a contact 
surface was created through a tear. After the laser irradiation, the superficial and deep 
planes of the lenticule were dissected using a spatula inserted through the lenticule cut 
and the lenticule was extracted using forceps. The surgical procedure was finished after 
washing the intrastromal space with a balanced solution (BSS®, Alcon Laboratories, Inc. 
Fort Worth, TX, USA). After the surgery, the patients were instructed to apply moxi-
floxacin (Vigamox®, Alcon, Fort Worth, TX, USA) and Lotemax eye drops (Lotemax®, 
Bausch + Lomb, Inc., Bridgewater, NJ, USA) three times a day for 2 weeks.

All the subjects underwent preoperative evaluations, which consisted of the mani-
fest refraction test, corrected-distance visual acuity test, measurements of intraocular 
pressure (NT-530P, NIDEK, Japan), and refraction measurements conducted via auto-
mated keratometry (ARK-530A, NIDEK, Japan), Pentacam (Pentacam®, Oculus, Ger-
many), and topography (Topography, Oculus, Germany). The postoperative evaluations 
included uncorrected-distance visual acuity (UDVA) test by automated keratometry 
(ARK-530A, NIDEK, Japan) after 3 months from the procedure performed. The data 
inclusion criteria were postoperative logMAR UDVA of + 0.9 or better with no postop-
erative traumas. After excluding the data that does not satisfy the inclusion criteria and 
removing the missing values, the data of 3034 eyes were used.

The data consisted of 46 numeric features and four categorical features: age, gender, 
right or left of eye, and surgeon. Among 46 numeric features, 28 features that were 
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selected from each cluster among the hierarchical clusters by the Spearman rank-order 
correlations were used. The categorical features were discretized into integer classes and 
one-hot encoded for training. The nomograms for the sphere, cylinder, and astigmatism 
axis determined by expert ophthalmologists A and B served as the target output, i.e., 
ground truth. The names and the statistical characteristics of all the selected features 
and the nomograms of the experts are provided in Additional file 1.

Algorithms

To develop the nomogram models, various machine learning algorithms were employed: 
multiple linear regression, decision tree algorithm called classification and regression 
trees (CART) [28], AdaBoost [29], XGBoost [30], and MLP. In CART, a decision tree 
learns from the given training data by repeating a binary recursive partitioning, eventu-
ally building a tree structure. The conditional tests are conducted at the nodes, which 
are the partitioning points of trees with specific thresholds to achieve the largest vari-
ance reduction. The criterion used to split at the nodes was the mean-squared error. The 
depth of the tree model was seven for the sphere and cylinder and five for the astigma-
tism axis. The minimum number of samples in a node was set to one.

Boosting is a general method for improving the performance of any learning algorithm 
by running weak models on various distributions over the training data, and subsequently 
combining them into a single composite model [31]. In repetitive training process, Ada-
Boost allows model to focus on the “difficult” samples with high error, resulting in a better 
performance. A natural choice of weak learners for AdaBoost is realized as decision trees 
[20]. XGBoost is another boosting technique implementing gradient-boosted decision 
trees with advanced speed and performance [32]. Gradient boosting, which is a gradient 
descent method in function space capable of fitting non-parametric predictive models, 
has been empirically demonstrated to be accurate when applied to the tree models [19].

The parameters of AdaBoost and XGBoost were tuned experimentally: the best case 
was chosen among multiple cases with randomly selected parameters. For AdaBoost, the 
maximum depths of the base trees were set to 40, 50, and 41, respectively for the sphere, 
cylinder, and astigmatism axis. For the loss function, the exponential function was used for 
the sphere and astigmatism axis, whereas the linear function was used for the cylinder. For 
XGBoost, the maximum depths of the base trees were set to 34, 30, and 22, respectively for 
the sphere, cylinder, and astigmatism axis. The squared error was used as the loss function.

MLP, which is also called as an artificial neural network, comprises numerous layers of 
nodes and consists of an input layer, output layer, and multiple hidden layers in between 
[33, 34]. The strength of the connections between the interconnected nodes is expressed as 
weights, which are updated during the training process. The MLP models with the number 
of hidden layers of 1, 2, 4, 8, and 16 with 76 nodes were applied. The rectified linear unit 
activation function and the Adam optimizer were used. The learning rate was 0.001.

For each algorithm, three models for nomograms of sphere, cylinder, and astigma-
tism axis were trained, respectively. The process was performed using Scikit-learn 
[35]. We conducted a five-fold cross-validation. The overall data were divided into five 
groups randomly and the training and test process were repeated five times, where 
one group was used to test, whereas the other four groups were used to train. The 
test scores from the five repetitive processes were averaged. As scores to evaluate the 
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performance, RMSE and accuracy with specific two thresholds were calculated. For 
the sphere and cylinder nomograms, the accuracy was calculated as the ratio of the 
output whose absolute difference between the ground truths was zero or smaller than 
0.25 D. For the astigmatism axis, it was the ratio of the output whose absolute differ-
ence was 0 or smaller than 25°.

From the five trained models during five-fold cross-validation, the model with the 
lowest RMSE was selected as the best model. We correlated the ground truth, i.e., the 
nomograms of the expert ophthalmologist, and the output of the best models for all 
the data. We assessed the statistical significance of the correlations using the Mann–
Whitney U test and the coefficient of determination, which is also called r2.

The feature importance of the best models was calculated using Breiman’s algo-
rithm [36]. It was obtained by observing the increase in the mean absolute error when 
a specific feature was replaced with random noise. Subsequently, the obtained impor-
tance values were normalized between 0 and 1.
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