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Abstract 

Introduction:  The use of machine learning (ML) methods would improve the diagno-
sis of respiratory changes in systemic sclerosis (SSc). This paper evaluates the perfor-
mance of several ML algorithms associated with the respiratory oscillometry analysis to 
aid in the diagnostic of respiratory changes in SSc. We also find out the best configura-
tion for this task.

Methods:  Oscillometric and spirometric exams were performed in 82 individuals, 
including controls (n = 30) and patients with systemic sclerosis with normal (n = 22) 
and abnormal (n = 30) spirometry. Multiple instance classifiers and different supervised 
machine learning techniques were investigated, including k-Nearest Neighbors (KNN), 
Random Forests (RF), AdaBoost with decision trees (ADAB), and Extreme Gradient 
Boosting (XGB).

Results and discussion:  The first experiment of this study showed that the best 
oscillometric parameter (BOP) was dynamic compliance, which provided moderate 
accuracy (AUC = 0.77) in the scenario control group versus patients with sclerosis and 
normal spirometry (CGvsPSNS). In the scenario control group versus patients with scle-
rosis and altered spirometry (CGvsPSAS), the BOP obtained high accuracy (AUC = 0.94). 
In the second experiment, the ML techniques were used. In CGvsPSNS, KNN achieved 
the best result (AUC = 0.90), significantly improving the accuracy in comparison with 
the BOP (p < 0.01), while in CGvsPSAS, RF obtained the best results (AUC = 0.97), also 
significantly improving the diagnostic accuracy (p < 0.05). In the third, fourth, fifth, and 
sixth experiments, different feature selection techniques allowed us to spot the best 
oscillometric parameters. They resulted in a small increase in diagnostic accuracy in 
CGvsPSNS (respectively, 0.87, 0.86, 0.82, and 0.84), while in the CGvsPSAS, the best clas-
sifier’s performance remained the same (AUC = 0.97).

Conclusions:  Oscillometric principles combined with machine learning algorithms 
provide a new method for diagnosing respiratory changes in patients with systemic 
sclerosis. The present study’s findings provide evidence that this combination may help 
in the early diagnosis of respiratory changes in these patients.
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Introduction
Systemic sclerosis (SSc) is a chronic connective tissue disease characterized by thicken-
ing and fibrosis of the skin and internal organs such as the heart, lungs, kidneys, and 
gastrointestinal tract [1, 2]. Pulmonary complications are the most common causes of 
death in SSc, and pulmonary arterial hypertension has become the most crucial life-
threatening complication. The most common pulmonary manifestation is interstitial 
lung disease, associated with pulmonary fibrosis, where the lungs lose their compliance. 
This abnormality occurs in approximately 80% of cases and is associated with reduced 
survival [2].

The forced oscillation technique (FOT), also known as respiratory oscillometry, is a 
system identification method used to evaluate respiratory system resistance and reac-
tance. This method provides a detailed analysis of the respiratory system’s mechanical 
properties, addressing different properties from that evaluated by spirometry, the most 
traditional method of analyzing respiratory diseases. Indeed, oscillometry is likely com-
plementary to spirometry [3]. The measurement is based on applying low-pressure 
oscillations to the airway opening to stimulate the respiratory system and measure the 
associated flow response. Therefore, this technique requires minimal cooperation and 
no forced expiratory maneuvers and can be used in situations when standard measure-
ments of lung function by spirometry are difficult or not feasible, including children, the 
elderly, and patients in advanced stages of the disease [4].

Our laboratory successfully applied FOT to obtain a detailed description of the res-
piratory changes in sarcoidosis [5] and silicosis [6, 7]. Several other research groups also 
used FOT to diagnose respiratory mechanics changes associated with interstitial lung 
disease [8–11]. In general, these patients presented increased resistance and frequency-
dependency of resistance, as well as more negative reactance. Studies in rheumatoid 
arthritis showed reactance values and frequency-dependent behavior in resistance sig-
nificantly different from those of the healthy subjects [12]. Recent studies showed that 
respiratory reactance reflects fibrosis and restrictive ventilatory deficiency in idiopathic 
pulmonary fibrosis [13]. FOT allows a simple, not invasive, and detailed analysis of 
the respiratory system [4]. Taken together, these previous results and features indicate 
that FOT is a promising tool to facilitate the diagnosis of respiratory abnormalities in 
patients with SSc.

However, oscillometry is not currently widely used in pulmonary function tests, even 
with these important clinical advantages. This limitation arises because this method is 
based on concepts derived from the electrical engineering area, which are not easily 
interpreted in the clinical environment. Thus, although oscillometry exams are simple, 
the interpretation of resistance and reactance curves and the derived parameters is dif-
ficult for the busy untrained pulmonologist, requiring training and experience.

Machine learning (ML) algorithms have been offered an important contribution to 
improving lung function tests [4]. In the particular case of oscillometry, previous studies 
provided clear evidence that these algorithms simplify the interpretation of the results, 
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and therefore, the clinical use of oscillometry [14, 15]. There is also evidence that these 
algorithms’ use may help increase diagnostic accuracy [14, 16]. Despite the high poten-
tial of combining these two methods in lung diseases, there are no previous studies using 
oscillometry combined with ML methods to diagnose respiratory changes in SSc.

In this context, we hypothesized that using ML methods associated with respiratory 
oscillometry analysis would improve the diagnosis of respiratory changes in systemic 
sclerosis. This paper has two key aims. First, to evaluate several ML algorithms to aid in 
the diagnostic of respiratory changes in SSc. Second, to find out the best configuration 
for this task.

The next four sections of this paper initially provided a description of the patient 
groups and the measurement protocol in “Materials and methods” section. We also 
describe the investigated classifiers, the indexes used for performance evaluation, and 
the experimental design. The findings of the research are presented in the third section. 
These findings are discussed and criticized in the fourth section. Finally, the “Conclu-
sion” section summarizes this research’s primary outcomes, focusing on the two key 
proposed objectives.

Results
The biometric and spirometric features of the studied subjects are exhibited in Table 1. 
The three studied groups’ biometric features were similar, and there were no significant 
differences between the groups. As shown in Table 1, patients with SSc presented signifi-
cant reductions in the spirometric parameters (p < 0.05).

The bar charts in Fig. 1 show the characteristics of individuals from the control group 
(CG), patients with sclerosis and normal spirometry (PSNS), and patients with sclerosis 
and altered spirometry (PSAS). The mean values of each oscillometric parameter were 
calculated at a 95% confidence interval. Using the analysis of variance (ANOVA), all 
oscillometric parameters showed a significant difference in their respective mean values 
(p < 0.001). An increase was observed in the mean values of R0, Rm, and Zrs in patients 
with Systemic Sclerosis. Thus, disease carriers have higher resistance values (R0, Rm) and 
higher impedance values (Zrs). On the other hand, resonance frequency (fr) and the 
slope of the resistance curve (S) have close CG and PSNS group values. However, fr has 
higher values for PSAS, and more negative values for S. Cdyn has higher values for the 
CG and similar values in the PSNS and PSAS groups.

Figure 2 resumes the results of experiment 1. One can see that Cdyn is the best oscil-
lometric parameter (BOP) to discriminate SSc, presenting moderate diagnostic accu-
racy (AUC = 0.77) for the situation CGvsPSNS and presenting high diagnostic accuracy 
(AUC = 0.94) in the scenario CGvsPSAS. Tables and figures with more detail about these 
results can be found in the supplement (Additional file 1: Tables S1, S2, Additional file 2: 
Figures S1, and S2).

Figure 3 presents the AUCs of the BOP, the ML algorithms, and the MIL classifier 
obtained in experiment 2. One can see that the ML algorithms improved the AUC in 
the situation CGvsPSNS. KNN achieved the best result with AUC = 0.90. This result 
indicates that the algorithm provides a highly accurate diagnosis (0.9 ≤ AUC ≤ 1.0). 
The second-best performance was realized by the ADAB, with AUC = 0.88. The 
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AUCs’ comparison with the methodology proposed by Delong et al. [17] has shown 
that KNN, ADAB, RF, and XGB presented a statistically significant difference con-
cerning the BOP.

In the scenario, CGvsPSAS, ADAB, RF, and XGB could provide a small improvement 
in the AUC. RF and XGB exhibited a statistically significant difference regarding the 
BOP, while the RF classifier has achieved the best performance with AUC = 0.97. Table 2 
presents the five oscillometric parameters selected in these experiments.

Figure  4 shows the results of experiment 3, presenting the AUCs obtained by the 
following strategies: BOP, best ML algorithms with all seven oscillometric param-
eters (ML7), best ML algorithm with five oscillometric parameters selected by MIL 
(MIL5 + ML), and the best ML algorithm with five oscillometric parameters selected by 
RFE (RFE5 + ML).

Regarding MIL’s selection, when one compares obtained AUCs with those obtained in 
the second experiment, it is worth noting that there is only a small decrease in the sce-
nario CGvsPSNS. In the CGvsPSAS scenario, the obtained AUCs stay the same. In both 
situations, the AUCs’ comparison with the methodology proposed by Delong et al. has 
shown a statistically significant difference concerning the BOP. KNN achieves the best 
AUC in the scenario CGvsPSNS with feature selection done by MIL (AUC = 0.87), while 
in the CGvsPSAS, the best AUC was obtained by RF (AUC = 0.97).

The fifth and sixth experiments were designed to train ML algorithms with the selec-
tion of the three best features. Table 3 presents the selected features, and Fig. 5 resumes 
the results.

Table 1  Anthropometric spirometric characteristics of the studied subjects [mean ± SD and 
(minimal–maximal values)]

The last column describes the comparisons between groups, in which the dot means non-significant change, while the dash 
means significant change

FVC: forced vital capacity; FEV1: forced expiratory volume in the first second; FEF25–75%: forced expiratory flow between 25 
and 75%; Ns: not significant; %: percentile of the predicted values

Control
(1)
(n = 30)

Normal to the exam
(2)
(n = 22)

Altered to the exam
(3)
(n = 30)

Age (years) 49.7 ± 13.5
(27–78)

49.6 ± 14.5
(15–78)

46.1 ± 12.8
(21–68)

ns

Body mass (kg) 59.2 ± 68.7
(43.6–77.0)

60.8 ± 11.9
(34.6–88.4)

59.9 ± 13.1
(36.0–88.4)

ns

Height (m) 1.6 ± 5.3
(1.5–1.7)

1.6 ± 3.4
(1.5–1.7)

1.6 ± 6.3
(1.5–1.8)

ns

BMI (kg/m2) 23.5 ± 2.9
(18.7–28.6)

24.8 ± 3.9
(16.2–32.5)

24.1 ± 4.3
(16.0–32.8)

ns

Male/female 1/29 1/21 1/29 –

FVC (L) 3.4 ± 0.7 2.8 ± 0.7 2.0 ± 0.5 1–2–3–1

FVC (%) 111.9 ± 18.5 96.7 ± 12.5 64.3 ± 11.6 1–2–3–1

FEV1 (L) 2.8 ± 0.6 2.4 ± 0.6 1.7 ± 0.5 1–2–3–1

FEV1 (%) 112.5 ± 18.2 97.1 ± 11.6 66.4 ± 12.1 1–2–3–1

FEV1/FVC 92.5 ± 10.4 83.4 ± 4.0 86.6 ± 5.5 1–2.3–1

FEF25–75% (L) 3.6 ± 1.0 3.0 ± 0.9 2.5 ± 0.9 1.2–3–1

FEF25–75% (%) 117.4 ± 37.4 112.9 ± 27.2 88.6 ± 28.4 1.2–3–1

FEF/FVC 98.6 ± 28.1 110.0 ± 23.4 134.4 ± 47.8 1.2.3–1
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Even with only three features, AUCs’ comparison has shown a statistically signifi-
cant difference concerning the BOP in both cases. In CGvsPSNS, once again, there 
is a small decrease in the performance (AUC = 0.84). In the CGvsPSAS, the perfor-
mance was the same (AUC = 0.97). Figure  6 presents a 3D picture of the CG and 
PSNS.

For additional analysis of the ROC curves, Figs.  7 and 8 show, respectively, the Se 
observed at an Sp of 90% and at an Sp of 75% (representing bearable specificity). We 
included the 90% specificity level since it allows only 10% false positives, introducing the 
most difficult cases into the correct group. It is also noticeable that the sensitivities at 
90% Sp of the best ML classifiers were higher than those observed using the BOP in all 
performed experiments. Best ML classifiers invariably presented better results than BOP 
at 75% Sp.

The interested reader may find a detailed description of the results obtained in experi-
ments 2 to 6 in the supplement (Additional file  1: Tables S3 to S22, Additional file  2: 
Figures S3 to S22).

Fig. 1  Mean values ± 95% confidence interval of each FOT parameter. Control group (CG), patients with 
sclerosis and normal spirometry (PSNS), and patients with sclerosis and altered spirometry (PSAS). The analysis 
of variance (ANOVA) showed that all parameters presented a significant difference in their respective mean 
values (p < 0.001)
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Discussion
This is the first study on designing an automatic classifier to assist in diagnosing respira-
tory abnormalities in patients with SSc using respiratory oscillometry. It was shown that 
it could simplify lung function’s clinical evaluation and improve these exams’ diagnostic 
accuracy.

Fig. 2  Results of experiment 1, describing the diagnostic accuracy of oscillometry in sclerosis. fr: resonance 
frequency; Xm: mean respiratory reactance; R0: respiratory resistance extrapolated at 0 Hz; S: slope of the linear 
relationship of resistance versus frequency; Rm: mean respiratory resistance; Zrs: absolute value of respiratory 
impedance in 4 Hz; Cdyn: respiratory system dynamic compliance

Fig. 3  Comparative analysis of the diagnostic accuracy in experiment 2, considering the best oscillometric 
parameter (BOP) obtained without the use of classifiers), machine learning algorithms, and the MIL classifier. 
K-NN K-Nearest Neighbor, ADAB Adaboost with decision tree classifiers, RF Random Forests, MIL Multiple 
Instance Learning, XGB Extreme Boosting Gradient Classifiers, AUC​ area under the ROC curve. Also, “*” indicates 
that there a statistically significant difference comparing to BOP (p < 0.05) and “**” (p < 0.01)
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In the first experiment, the dynamic compliance (Cdyn) was the oscillometric param-
eter that obtained the best individual performance in both scenarios: CGvsPSNS and 
CGvsPSAS. These findings are in close agreement with the diffuse fibrosis that affects 
the interstitium and alveolar septa in SSc [1, 2]. They are also in line with the reduction 
in compliance observed by Greenwald et al. [18] using the esophageal balloon technique 

Table 2  Five oscillometric parameters selected by MIL and RFE

fr: resonance frequency; Xm: mean respiratory reactance; R0: respiratory resistance extrapolated at 0 Hz; S: slope of the linear 
relationship of resistance versus frequency; Rm: mean respiratory resistance; Zrs: absolute value of respiratory impedance in 
4 Hz; Cdyn: respiratory system dynamic compliance

Control group versus patients with sclerosis and 
normal spirometry (CGvsPSNS)

Control group versus patients with 
sclerosis and altered spirometry 
(CGvsPSAS)

MIL Xm, R0, S, Rm, Cdin fr, R0, Rm, Zrs, Cdyn

RFE fr, R0, Rm, Zrs, Cdin Fr, Xm, Rm, Zrs, Cdin

Fig. 4  Summary of Experiment 3 (MIL5 + ML: MIL as five feature selector) and Experiment 4 (RFE5 + ML: RFE 
as a five feature selector)—AUCs for the best oscillometric parameter (BOP), for the best ML algorithms in 
experiments 3 and 4, and the best ML algorithm with oscillometric parameters (ML7). The figure indicates 
the best oscillometric parameter and the best ML algorithm in each case. Also, “*” indicates that there a 
statistically significant difference comparing to BOP (p < 0.05) and “**” (p < 0.01)

Table 3  Three oscillometric parameters selected by MIL and RFE

R0: respiratory resistance extrapolated at 0 Hz; S: slope of the linear relationship of resistance versus frequency; Rm: mean 
respiratory resistance; Zrs: absolute value of respiratory impedance in 4 Hz; Cdyn: respiratory system dynamic compliance

Control group versus patients with sclerosis and 
normal spirometry (CGvsPSNS)

Control group versus patients with 
sclerosis and altered spirometry 
(CGvsPSAS)

MIL S, Rm, Cdyn R0, Zrs, Cdyn

RFE R0, Zrs, Cdyn Rm, Zrs, Cdyn
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and the increase in reactance area obtained by Aronsson et  al. [19] using impulse 
oscillometry.

In the first scenario, as expected, due to the small differences in the measured param-
eters (Fig.  1), it was challenging to separate the control group from the patients with 
sclerosis and normal spirometry, which yields an AUC = 0.77, indicating moderate diag-
nostic accuracy (Fig. 2). In the second scenario, the increase in physiological abnormali-
ties resulted in increased differences in the measured parameters (Fig. 1). This allowed 
Cdyn to easily separate the two groups and present an AUC = 0.94, which stands for high 
diagnostic accuracy (Fig. 2). These results are consistent with previous studies showing 

Fig. 5  Summary of Experiment 5 (MIL3 + ML: MIL as three feature selector) and Experiment 6 (RFE3 + ML: 
RFE as a three feature selector)—AUCs for the best oscillometric parameter (BOP), for the best ML algorithms 
in experiments 5 and 6, and the best ML algorithm with oscillometric parameters (ML7). The figure indicates 
the best oscillometric parameter and the best ML algorithm in each case. Also, “*” indicates that there a 
statistically significant difference comparing to BOP (p < 0.05) and “**” (p < 0.01)

Fig. 6  Representation of the dataset CGvsPSNS using three features: R0, Zrs, and Cdyn
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increased Cdyn diagnostic accuracy with physiological abnormalities in sarcoidosis [5], 
adults with sickle cell anemia [20], and COPD [21].

In the second experiment (Fig. 3), it is possible to note that the best result for the 
scenario CGvsPSNS was achieved by the KNN (AUC = 0.90). The use of the KNN, 
ADAB, RF, and XGB algorithms resulted in a significant improvement in diagnostic 
accuracy. KNN was followed by ADAB, RF, and XGB using all oscillometric param-
eters, with ADAB remarkably adjacent to high diagnostic accuracy (AUC = 0.88). 
In accordance with the present results, previous studies have demonstrated similar 
increase in accuracy in sickle cell anemia [22], the differential diagnosis of asthma 

Fig. 7  Summary of the experiments describing comparisons of the sensitivity at 90% Sp obtained using the 
best oscillometric parameter (BOP) and ML methods in all experiments. The sensitivity at 90% Sp presented is 
that of the best classifier

Fig. 8  Summary of the experiments describing comparisons of the sensitivity at 75% Sp obtained using the 
best oscillometric parameter (BOP) and ML methods in all experiments. The sensitivity at 75% Sp presented is 
that of the best classifier
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and restrictive respiratory diseases [23], and the early diagnosis of smoking-induced 
respiratory changes [16].

Similar to previous studies [23, 24], feature selection allowed the reduction of the 
used features without a significant reduction in performance (Fig.  4). In CGvsP-
SNS, feature selection helped spot the most relevant features. Although the meth-
ods selected a different set of features, there is a significant intersection (R0, Rm, and 
Cdyn), which agrees with what can be seen in Fig. 1. In the other scenario, CGvsP-
SAS, RF’s best results were achieved, followed by XGB and ADAB (Fig.  4). For this 
scenario, the feature selection has shown that the same results could be achieved 
using fewer oscillometric parameters. As mentioned in the Introduction, pulmonary 
manifestation in SSc is characterized by interstitial lung disease associated with pul-
monary fibrosis [2]. In this sense, one interesting finding was obtaining Cdyn between 
the most relevant features in the two studied scenarios (Table  2). This is in close 
accordance with pathophysiological fundamentals involved in this disease, in which 
the lungs lose their compliance [2].

Figure 5 summarizes all the results obtained in the fifth and sixth experiments and 
compares the results in experiments 1 and 2. In CGvsPSNS, the feature selection did 
not increase diagnostic accuracy, but it indicated important features R0, Zrs, and 
Cdyn, which agrees with Fig. 1. The use of the reduction of attributes was intended 
to reduce the complexity of the analysis. The current study found selected features 
consistent with the presence of lung fibrosis [1, 2]. This rather interesting result is 
consistent with clinically relevant abnormalities that are known to be associated with 
reduced survival in these patients [2]. The three selected main features allowed us to 
visually inspect the division between groups. These results further support the idea 
of a simple visual analysis to help the clinical use of FOT [23]. This optimized inter-
pretation allowed us to observe that the SSc presents smaller values for Cdyn and 
higher values for R0 and Zrs. Due to its direct physiological translation, this simple 
spatial description may help interpret the proposed medical decision support system’s 
results, contributing to its use in the clinical scenario.

Concerning the use of the MIL algorithm, it was efficient selecting attributes (Tables 2 
and 3), where it was able to achieve a better result for the control versus normal spiro-
metric analysis than the one obtained by the specialist selection. However, the MIL algo-
rithm was not as efficient as the traditional classifiers (Figs. 3, 4, 5, 7, and 8).

Recent studies have shown the importance of improving our respiratory system 
knowledge [25] and the non-invasive lung function tests [26–28]. Respiratory oscillome-
try has been widely perceived as the state-of-the-art lung function analysis [29], and one 
of the most promising emerging technologies in this area [3, 30]. However, although its 
advantages associated with a detailed and straightforward examination are particularly 
important, this method is not yet widely used. One of the main aspects limiting its wide 
routine application is that the obtained indexes’ interpretation is based on electric mod-
els, requiring training and practice. Previous research has established that diagnostic 
easiness is a fundamental attribute for occupied non-specialist clinicians [31]. The pre-
sent study supports previous evidence [14, 16] and contributes to this direction showing 
that ML algorithms can improve SSc patients’ medical services, simplifying the use of 
respiratory oscillometry and improving the diagnosis of the cited disease.



Page 11 of 18Andrade et al. BioMed Eng OnLine           (2021) 20:31 	

Early diagnosis of the abnormal respiratory changes in SSc could support early inter-
vention, thus possibly restricting the disease’s progression, mitigating adverse symp-
toms, improving general well-being, restraining complications and comorbidities, and 
early mortality. Artificial intelligence/machine learning methods have improved pul-
monary function analysis since the 1980s [4]. The current study extends these findings 
providing evidence that a combination of respiratory oscillometry and a clinical deci-
sion support system based on ML techniques might indicate early abnormal respiratory 
changes in SSc.

Finally, some important limitations need to be considered and clarified to the reader. 
First, the study was limited to the Brazilian population at a specific practice site. Thus, it 
is not possible to ensure its generalizability to a different population. It is suggested that 
multicenter data be investigated in future studies to expand the generalizability of the 
findings. It is worth mentioning that by examining the adopted inclusion and exclusion 
criteria and the present study’s biometric features, readers can easily evaluate whether 
they are likely to achieve similar findings in their patient population. It is also pertinent 
to mention that the experimental design of the present work enhances its generalizabil-
ity. Globally recognized inclusion and exclusion criteria were used, and the work was 
conducted under usual clinical procedures in a typical setting.

Second, SSc is a disease of low incidence, making it hard to obtain a high number of 
patients. As a result, the datasets available are relatively small, which requires care to 
control the complexity of the ML models. In addition to all the care taken in this study 
to avoid overfitting, such as controlling the hyperparameters, feature selection can also 
help control overfitting by diminishing the inputs. Another reason to employ feature 
selection is that a smaller number of features can help simplify the analysis. Moreover, 
if one uses only three features, it is possible to visualize the separation between groups, 
which can aid the diagnostic explanation.

Conclusion
We designed and tested various classifier methods to achieve a clinical decision support 
system to assist in detecting respiratory abnormalities in patients with systemic sclero-
sis. The respiratory oscillometry parameters alone can only reach moderate diagnostic 
accuracy (AUC = 0.77) in scenario CGvsPSNS. The ML classifiers’ use allowed us to 
enhance accuracy, reaching high accuracy (AUC ≥ 0.9) in this situation, representing the 
disease’s initial stages. In the CGvsPSAS, the oscillometric parameter alone could reach 
high diagnostic accuracy (AUC = 0.94); nevertheless, ML algorithms could provide a 
small enhancement (AUC = 0.97). The developed system may also help simplify oscil-
lometry use in detecting respiratory changes in patients with systemic sclerosis. Notably, 
the adoption of feature selection has spotted the most crucial oscillometric parameters, 
which simplify the analysis. Taken together, the results of the present study and these 
practical considerations provide clear evidence that respiratory oscillometry combined 
with machine learning classifiers’ may help to improve lung function tests in systemic 
sclerosis.

This study’s next steps include improving the understanding and management of sys-
temic sclerosis by integrating ML algorithms and telemedicine systems based on respira-
tory oscillometry.
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Materials and methods
Eighty-two volunteers were included in the study. Fifty-two presented SSc, and 30 were 
healthy, composing the control group. The patients with SSc were divided into two 
groups: (1) the normal spirometry group (n = 22), which included patients diagnosed 
with SSc and showing normal spirometry, and (2) the altered spirometry group (n = 30) 
that was composed of patients diagnosed with SSc and presenting altered spirometry, 
associated with restrictive ventilatory disorder [2].

The exams were conducted at the Pulmonary Function Testing Laboratory of the 
Pedro Ernesto University Hospital and the Biomedical Instrumentation Laboratory of 
the State University of Rio de Janeiro. The Hospital Ethical Committee approved the 
study (approval number 456 CEP/HUPE), and all subjects gave informed written con-
sent. This study is in agreement with The Declaration of Helsinki. The inclusion crite-
ria in the present study were a confirmed diagnosis of SSc according to the American 
College of Rheumatology [32], including volunteers from both genders. The exclusion 
criteria were a history of exacerbation of disease in the previous 90 days, smoking, and 
presence of tuberculosis or pneumonia, chronic lung diseases, presence of respiratory 
infections in the previous 30 days, chest trauma or surgery, inability to perform the tests, 
and chemotherapy and radiotherapy for cancer.

The control group was composed of healthy volunteers from both genders without a 
history of cardiovascular or lung disease or smoking. These individuals did not present 
respiratory infections and showed normal spirometry [33].

The main elements in this study are the respiratory oscillometry measurements, 
impedance estimation, and clinical decision support system development and per-
formance evaluation. The complete process is shown in Fig.  9. Each operation will be 
described in the next sections.

Respiratory oscillometry measurements and parameters

These analyses were performed using as input excitation small amplitude pressure 
oscillations (≤ 2 cmH2O), which were produced by a loudspeaker and applied during 
tidal breathing at the entrance of the individual’s airway through the oral cavity. The 
result of the exams was generated as the mean of three tests, each 16 s long. These 
tests were considered adequate if they were free of pauses and presented stable rate 
and tidal volumes. A pseudo-random noise signal between 4 and 32  Hz was used, 
and the exams are repeated until all analyzed frequencies presented the minimal 

Fig. 9  Simplified block diagram describing the main steps in this study. K-NN K-Nearest Neighbor, ADAB 
Adaboost with decision tree classifiers, RF Random Forests, MIL Multiple Instance Learning, XGB Extreme 
Boosting Gradient Classifiers
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coherence function of 0.9. We used a coefficient of variability ≤ 10% in the lowest fre-
quency (4 Hz) in the three used tests to avoid outlying values. The experiments were 
conducted using an impedance analyzer described previously [34].

Linear regression in the respiratory resistance values in the 4–16 Hz range was used 
to interpret the obtained results. This yielded resistance at 0 Hz (R0), the mean resist-
ance in this frequency range (Rm), and the slope of the relationship between the resis-
tive values and frequency (S). R0 describes the low-frequency range. This parameter 
integrates the Newtonian effects related to the airways, lung, and chest wall resist-
ance and the effect of gas redistribution [35]. The mid-frequency range is described 
by Rm, which reflects the resistance in the central airways [36]. S is associated with 
ventilation non-homogeneities [37].

The reactive results were interpreted using four indexes: the mean reactance (Xm), 
resonance frequency (fr), the impedance module (Zrs), and the dynamic compliance 
(Cdyn). Xm was calculated using the 4- to 32-Hz frequency range and describes ven-
tilation inhomogeneity. The fr occurs when the elastic and inertive properties cancel 
out, and the respiratory reactance becomes zero [38]. Cdyn was calculated based on 
the reactance at 4 Hz (Cdyn = 1/2πfX4) and reflects the respiratory compliance, com-
prising pulmonary, chest wall, and airway compliances. This parameter is also asso-
ciated with ventilation homogeneity [36]. Zrs includes the effects of resistance and 
elastic loads in 4 Hz, representing the respiratory system’s total mechanical load [39].

Data sets

In the present work, experiments were executed in a dataset that consisted of 246 
measurements acquired from the volunteers. Healthy volunteers contributed with 90 
measurements of the oscillometric parameters, patients with sclerosis and normal 
spirometry with 66, and patients with sclerosis and altered spirometry supplied 90 
measurements.

Machine learning algorithms

Machine learning algorithms can discover crucial relationships among the features in a 
data set [4, 40]. These models’ inference can be carried out with minimal user interven-
tion through several techniques such as linear models, graphic models, ensemble strate-
gies, hybrid approaches, and artificial neural networks, among others. In our previous 
research [14, 15, 24], we have experimented with a wide diversity of models and con-
cluded that ensemble strategies had outstanding performance. In this study, we want to 
investigate the Extreme Gradient Boosting (XGB) algorithm, a type of ensemble derived 
from gradient boosting. The final inference model is an assemblage of weak inference 
models, routinely decision trees. It builds the model in a stepwise mode, where its step 
is designed to model the error of the previous ones. XGB implements Gradient Boost-
ing, focusing on regularization to control overfitting, which gives it better performance. 
Besides, we also want to explore Multiple Instance Learning (MIL) to the early examina-
tion of respiratory changes in patients with systemic sclerosis. Therefore, in this study, 
the following ML algorithms were appraised:
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•	 K-Nearest Neighbor (KNN) [41];
•	 Adaboost with decision trees [42];
•	 Random Forest (RF) [43];
•	 Extreme Gradient Boosting (XGB) [44];
•	 Multiple Instance Learning (MIL) [45];

The first three algorithms have already been briefly described in the previous studies 
[14, 15, 24]; therefore, we will provide a condensed description of the two algorithms 
that have not been used in our studies before. A complete description of them can be 
found in the references.

The Extreme Gradient Boosting is a more efficient, regularized version of Gradient 
Boosting. In Gradient Boosting, one fits an additive model (ensemble) in a forward man-
ner. There is an introduction of a weak learner to cope with the previous weak learn-
ers’ shortcomings in each stage. These shortcomings can be described by the residuals 
(errors) left by the previous weak learners. Hence, the weak learner to be added must 
fit the residuals to the ensemble to produce better results. The relation of this algorithm 
with gradient descent (GD) is since the residuals can be seen as negative gradients, 
and the GD can employ them to locate the minimum value of the loss function. Com-
mon choices for the loss function are root mean squared error (regression) and log-loss 
(classification).

The multi-instance learning (MIL) paradigm was introduced by [45] focused on 
an application in biochemistry. MIL is considered an extension of supervised learn-
ing, where the labels are assigned to a set of instances, known as bags, and not to each 
instance individually. MIL’s central idea is related to the notion of bags: it is labeled as a 
negative bag (Bi−) if the total instances contained in it are negative and labeled as posi-
tive (Bi+) if, at best, one of the instances is positive. In this way, a bag can be defined as 
a collection of instances or regions. The Diverse Density (DD) algorithm was originally 
introduced by [46], where the algorithm is described as an assessment of the intersection 
of positive bags minus the union of negative bags. The algorithm’s central idea is to find a 
concept point in the feature space close to at least one instance of each positive bag and 
far from the negative bag instances.

Experimental design

This study executed a total of six experiments. The purpose of the first experiment was 
to investigate the proficiency of a single oscillometric parameter alone to correctly spot 
the airway obstruction level in patients with systemic sclerosis. We considered two dif-
ferent situations: the control group versus patients with sclerosis and normal spirometry 
(CGvsPSNS) and the control group versus patients with sclerosis and altered spirometry 
(CGvsPSAS). The remaining experiments also evaluate the two situations described.

The second experiment exploited ML algorithms and compared them with the results 
obtained by a single oscillometric parameter to reveal if the ML algorithms could 
achieve superior performance. The area under the ROC curve (AUC) was then chosen as 
the measurement of the performance since it is regularly employed in medicine [47–50] 
and yields a superior way to confront classifiers than accuracy [51]. We did not imple-
ment feature selection; thus, all of the oscillometric indexes were used. The classifiers 
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described previously were realized with Scikit-learn [52], a machine learning library 
written in python. On the other hand, Multiple Instance Learning was implemented by 
the library described in [53]. Since the dataset contains only 246 oscillometric measure-
ments, the k-fold validation procedure [54] is indicated to allow the valuation of the gen-
eralization proficiency in the whole dataset. Hyperparameter tuning is a crucial step in 
model selection. Scikit-learn possesses several strategies to allow hyperparameter fine-
tuning, such as grid search, which experiments with all possible combinations of the 
hyperparameters. Table J0 presents the classifiers and their respective chosen hyperpa-
rameters for tuning.

The third experiment evaluates the capability of MIL as a feature selector with the pur-
pose of complexity reduction and to gain knowledge about the importance of different 
oscillometric parameters [55]. Its role is to select five oscillometric parameters in a pre-
vious step before the classifier training. The fourth experiment employs the recursive 
feature selection (RFE) to select five oscillometric parameters before the classifier train-
ing. RFE is a wrapper strategy that can use several ML algorithms to assess the perfor-
mance. In this paper, the ML algorithm’s choice was the linear support vector machine 
classifier with L1 regularization. The fifth experiment uses MIL to select three oscillo-
metric parameters, and the sixth employs RFE to choose three oscillometric parameters.

The hypothesis test is a requisite for contrasting ML algorithms. There are a wide vari-
ety of parametric tests available, which are commonly based on the t-test [40, 56, 57]. 
Some of the nonparametric tests most used are McNemar’s and Wilcoxon’s [56, 58, 59]. 
In this work, the hypothesis test was carried out with AUCs by applying the methodol-
ogy specified in Delong et al. [17].
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