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Abstract 

Background:  Infertility is a significant problem of humanity. In vitro fertilisation is 
one of the most effective and frequently applied ART methods. The effectiveness IVF 
depends on the assessment and selection of gametes and embryo with the high-
est developmental potential. The subjective nature of morphological assessment of 
oocytes and embryos is still one of the main reasons for seeking effective and objective 
methods for assessing quality in automatic manner. The most promising methods to 
automatic classification of oocytes and embryos are based on image analysis aided by 
machine learning techniques. The special attention is paid on deep neural networks 
that can be used as classifiers solving the problem of automatic assessment of the 
oocytes/embryos.

Methods:  This paper deals with semantic segmentation of human oocyte images 
using deep neural networks in order to develop new version of the predefined neural 
networks. Deep semantic oocyte segmentation networks can be seen as medically 
oriented predefined networks understanding the content of the image. The research 
presented in the paper is focused on the performance comparison of different types 
of convolutional neural networks for semantic oocyte segmentation. In the case study, 
the merits and limitations of the selected deep neural networks are analysed.

Results:  71 deep neural models were analysed. The best score was obtained for one 
of the variants of DeepLab-v3-ResNet-18 model, when the training accuracy (Acc) 
reached about 85% for training patterns and 79% for validation ones. The weighted 
intersection over union (wIoU) and global accuracy (gAcc) for test patterns were 
calculated, as well. The obtained values of these quality measures were 0,897 and 0.93, 
respectively.

Conclusion:  The obtained results prove that the proposed approach can be applied 
to create deep neural models for semantic oocyte segmentation with the high accu-
racy guaranteeing their usage as the predefined networks in other tasks.

Keywords:  IVF, Human oocyte, Semantic segmentation, Image analysis, Artificial 
intelligence, Deep neural networks
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Background
Infertility is a wide medical and social problem. The World Health Organization (WHO) 
defines infertility as a failure to achieve clinical pregnancy after 12 months or more of 
regular (3-4 times per week) unprotected sexual intercourse [1]. Infertility is considered 
a disease requiring regular medical care and it constitutes a major problem not only 
for a given individual, but also for all society. 10–18% of reproductive age partners are 
affected by infertility worldwide. It is estimated that in Poland, 10–15% or approximately 
1.2 million couples struggle with the problem of infertility, with 24000 of them requir-
ing specialist treatment. In Poland there are no detailed statistical studies covering this 
subject [2–4]. Once infertility is diagnosed, the treatment process involves the tech-
niques of ART (Assisted Reproductive Technology). ART is a group of methods aiming 
at achieving pregnancy, where a single stage or multiple stages occurring during natural 
conception are omitted or replaced, depending on the diagnosis and causes of infertility 
[5]. One of the most effective and frequently applied ART methods is intracytoplasmic 
injection of sperm (ICSI) [6, 7]. The ICSI method, similar to IVF (In Vitro Fertilization) 
consists of multiple stages i.a. controlled ovarian hyperstimulation, oocyte retrieval from 
ovarian follicles, in  vitro fertilization of mature oocytes under laboratory conditions, 
embryo culture and their transfer to the uterine cavity. The procedure results in obtain-
ing one to several dozen oocytes. The condition allowing further stages of the procedure 
to be carried out is the adequate maturity and quality assessment of the oocyte’s mor-
phological structure. The obtained oocytes are found at various stages of their meiotic 
maturity. Approximately 80% of the collected oocytes are during the stage of metaphase 
II meiotic division (MII), remaining 20% are oocytes at the stage of metaphase I (MI), 
prophase I meiotic division (PI), degenerated cells (DEG) and dysmorphic cells (DYS). 
Due to low capability of embryonic development, oocytes MI and PI are usually rejected 
in the process of selection or made to undergo in vitro maturation [8, 9]. The degree of 
oocyte maturity is determined on the basis of presence of first polar body (FPB) and ger-
minal vesicle (GV) [8, 10].

The quality assessment of oocyte is primarily based on its morphological features 
observed in a light-microscope. Oocyte quality, and at the same time its development 
potential, is one of the essential factors determining the success of ART [11, 12]. What 
is taken into account when assessing the morphological structure of the oocytes is the 
shape and appearance of cytoplasm, zona pellucida (ZP), perivitelline space (PVS) and 
FPB. These features are important in terms of a successful fertilization, embryo develop-
ment and achieving pregnancy and their description and assessment is subjective and 
depending on the experience and knowledge of the clinical embryologist. One of the 
biggest problems during oocyte selection is the fact that even a normal looking oocyte 
can be a carrier of aneuploidy, therefore the research for new methods to simplify the 
selection oocytes with the highest development potential is in progress [13]. Computer 
image analysis and the use of artificial intelligence algorithms can be used to solve the 
problem of optimal selection of oocytes and embryos. Methods of frame-by-frame anal-
ysis of embryo culture are commonly used, in which embryo pictures are taken at appro-
priate time intervals (time-lapse). Basing on the changes found in the appearance of 
embryos on particular culture days, clinical embryologists are able to assess the develop-
ment potential. Another research also relates to the appearance of oocytes. For instance, 
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Cavalera et al. [14] combine time-lapse analysis with image anemometry and with use of 
artificial neural network to determine the movement of cytoplasm in maturing mouse 
oocytes, thus determining also their development potential with 91.03% accuracy. 
Research studies are also underway to develop a method for detecting embryos in the 
image. For this purpose - a circle detection algorithm based on a modification of Hough 
transform with Particle Swarm Optimization. Embryo pictures taken directly after car-
rying out the oocyte fertilization procedure have been tested [15]. Automatic circle 
detection has been applied to analyze the images of day three embryos. The method has 
been applied for automatic detection of blastomers [16]. Raudonis et al. [17] propose an 
automated detection human embryo using a Haar feature-based cascade classifier, the 
radiating lines and the technique of deep learning obtaining accuracy for embryo detec-
tion around 90%. In the paper Singh et al. [18], automatic segmentation of blastomers 
with the use of ellipsoidal model has been applied, using day one and day two pictures 
obtained with the use of Hoffman Modulation Contrast. Hierarchical Neural Network in 
ZP segmentation in human blastocysts was used in subsequent studies [19]. Khan et al. 
[20] focused on methods of monitoring the developmental stage of the embryo based 
on the analysis of the image sequence of time-lapse microscopy. The methods made it 
possible to predict the number of cells with an efficiency of over 90%. Dirvanauskas et al. 
[21] combined different classifiers to improve the prediction of the development stage 
of embryos. The best results were achieved after when combining the Convolutional 
Neural Network (CNN) and Discriminant classifiers. Manna et  al. [22] developed the 
method including a search for patterns in images of oocytes and embryos which could 
be useful in assessing the development potential. For this purpose, digital images of 269 
oocytes and embryos obtained from them have been analyzed, with exclusive focus on 
the analysis of image covering cytoplasm and blastomers.

The number of oocytes subjected to the procedure depends mainly on the law and 
patient’s clinical picture. In Poland, a maximum of six oocytes can be fertilized and 
no more than two embryos can be transferred. The remaining oocytes and obtained 
embryos are subjected to cryopreservation. An additional question, besides the optimal 
selection of oocytes for fertilization, is the assessment and classification of development 
potential of embryos in culture phase and their selection for transfer to the uterine cav-
ity [23, 24]. In some countries the selection of embryos is not possible due to regulations 
of the law. In Italy it is allowed to create up to three embryos which must be applied 
during a single transfer procedure into the uterine cavity. Embryo cryopreservation is 
prohibited except for situations when the implantation is temporarily impossible due to 
transient health issues [25]. Due to a legal act on embryo protection, the German law 
prohibits selecting or storing embryos. Transfer of created embryos takes place in the 
zygote stage on culture day one. Cryopreservation is only allowed in special medical 
cases [26, 27].

In case of retrieving a big number of oocytes it is important to make the appropri-
ate selection of oocytes to be fertilized. Choosing adequate-quality oocytes constitutes a 
major medical problem which determines the success of fertilization and further appro-
priate development of embryos and finally achieving pregnancy.

The subjective nature of morphological assessment of oocytes and embryos is one 
of the main reasons for seeking non-invasive and— above all—objective methods for 
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assessing quality. Better understanding of the development potential of oocytes and 
embryos and obtaining new indicators for their selection can increase efficiently the 
effectiveness of ART treatment [28].

Results
Bearing in mind state-of-art deep learning models for semantic image segmentation it 
was decided to exam the major architectures of deep neural networks such as:

•	 DeepLab v3+ convolutional neural networks
•	 Fully convolutional neural networks
•	 SegNet convolutional neural networks
•	 U-Net convolutional neural networks

Transfer learning technique was adopted due to the small number of learning pat-
terns. In the case of DeepLab v3+ models base networks were specified as ResNet-18, 
ResNet-50, Xception, or Inception-ResNet-v2. Fully and SegNet convolutional models 
were initialized using VGG-16 and VGG-19 pretrained networks. U-Net models were 
used for comparison purposes to verify the case in which a predefined network is not 
given. Therefore, their convolution layer weights were formed applying the weight ini-
tialization method.

One of the problems to be solved during development of the deep neural network 
for semantic oocyte segmentation is to find the best structure of the neural model, as 
well as the best parameters of its training process. This task was carried out by using 
the systematic search procedure. In this way different configurations of the network and 
training process were examined. For instance, DeepLab v3+ models were modified by 
changing network parameters, as follows:

•	 The input image size was chosen from three variants: 300 x 300px, 400 x 400px, 561 
x 561px;

•	 Downsampling factor was set to 8 or 16;

In addition, in the case of fully convolutional models, upsample factor was chosen as 8, 
16 or 32, in SegNet models filter size was set to [3 7] or [5 13], whereas in U-Net mod-
els encoder depth and number of output channels for first encoder were set to default 
values.

The stochastic gradient descent with momentum update (Eq. 5) was selected to train 
neural models. The final result of the training process strongly depends on the values of 
the behavioural parameters of the training algorithm. Therefore, several variants were 
examined:

•	 Momentum coefficient γ was equal to 0.8, 0.85, 0.9 , 0.95;
•	 Maximum number of epochs N was set to 50, 100, ..., 500 , 1000;
•	 L2 regularization parameter κ was set to 1E−4 or 1E− 3;
•	 Learn rate drop factor was set to 0.95 or 0.99;
•	 Normalization weight factor K was equal to 25E+3 , 35E+3 , 45E+ 3 , 55E+3;
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The values of other parameters of the algorithm were set as follows: initial learn rate α 
= 1E−2 , learn rate drop period = 5, verbose frequency = 8, validation frequency = 10, 
learn rate schedule was set to ’piecewise’ and shuffling option was set to ’every-epoch’. 
The underline text indicates values of the behavioural parameters of the learning algo-
rithm for which the best deep neural model has been created in the task of semantic 
oocyte segmentation.

The whole data set was divided into three separate subsets: T - training data (80%), 
V - validation data (5%) and TT - test data (15%). Augmentation on the fly technique 
was applied in order to prevent over-fitting effect. The following image data augmenta-
tion operations were used: random rotation, reflection around the X or Y axis, as well as 
horizontal and vertical translation.

The outcomes of deep learning trials for each deep neural model are shown in Table 1 
for training phase and Table  2 for test phase respectively. The orders of the results in 
the tables are sorted according to weighted intersection over union evaluation metric 
(wIoU) calculated for test patterns (TT).

Table 1  Final results of the experiment of selecting the optimal deep neural network architecture 
and the values of the training process parameters (training phase)

No. DNN Acc Loss

T [%] V [%] T V

1 DeepLab-v3-ResNet-18 (15) 85 79 0.14 0.33

2 DeepLab-v3-ResNet-50 (7) 85 80 0.13 0.40

3 DeepLab-v3-Inception-... (10) 86 80 0.19 0.35

. . . . . .

7 DeepLab-v3-Xception (8) 81 80 0.16 0.34

. . . . . .

56 fcnLayers (8) 74 77 0.39 0.36

57 SegNetLayers (4) 72 72 0.64 0.77

. . . . . .

71 SegNetLayers (7) 50 69 1.82 0.79

Table 2  Final results of the experiment of selecting the optimal deep neural network architecture 
and the values of the training process parameters (test phase)

No. DNN wIoU gAcc mAcc mIoU mBFS

Avg Min Max Std

1 DeepLab-v3-ResNet-18 (15) 0.897 0.93 0.79 0.97 0.03 0.74 0.62 0.80

2 DeepLab-v3-ResNet-50 (7) 0.891 0.93 0.74 0.97 0.03 0.75 0.63 0.79

3 DeepLab-v3-Inception-... (10) 0.891 0.93 0.72 0.97 0.04 0.72 0.54 0.79

. . . . . . . . . .

7 DeepLab-v3-Xception (8) 0.883 0.92 0.74 0.97 0.04 0.73 0.56 0.77

. . . . . . . . . .

56 fcnLayers (8) 0.825 0.88 0.66 0.96 0.05 0.64 0.52 0.61

57 SegNetLayers (4) 0.825 0.88 0, 65 0.96 0.06 0.49 0.36 0.66

. . . . . . . . . .

71 SegNetLayers (7) 0.749 0.82 0.58 0.95 0.08 0.32 0.22 0.50
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The best score was obtained for the 15th variant of DeepLab-v3-ResNet-18, when the 
training accuracy (Acc) reached about 85% for training patterns (T) and 79% for valida-
tion ones (V). As it was mentioned above, the best configuration of the network struc-
ture and its training options and parameters were marked by the underlined text in the 
previous subsection. Moreover, the smallest value of the categorical cross-entropy loss 
(Loss=0.33) could be achieved for such a structure of the network, training options and 
values of parameters. More importantly, it was observed that the given training results 
allowed to get the very high values of other semantic segmentation quality metrics such 
as the average boundary F1 contour matching score, as well as ratio of correctly classi-
fied pixels to total pixels, regardless of class (gAcc).

The more detailed analysis was needed to determine the performance of the DeepLab-
v3-ResNet-18 (15) model as an automatic tool for semantic oocyte segmentation. For 
this reason, the confusion matrix was calculated and charted in Fig. 1. In this way, it was 
possible to investigate the accuracy of the model taking into account pixel-level classifi-
cation results for all images. Diagonal and off-diagonal cells of the chart correspond to 
correctly and incorrectly classified pixels, respectively. The table of confusion was sorted 
according to the true positive rate.

Pixels belonging to areas such as CPM_DC, CPM_CC, ZP, CCC, PVS and CPM_DCG 
were segmented without significant mistakes as confirmed by high values of the true 
positive rate (from 79.4 to 99.2% ) and small values of the false discovery rate (from 1.4 to 
24.5% ). Equally good true positive and false discovery rates were achieved for GV area. 
Interestingly, CPM_CGA area was identified ambiguously with high value of the positive 
predictive value (71.6% ) and the false negative rate (46.1% ). Not very good segmentation 
results were obtained for CPM_VAC and PB_FFPB areas for which the probability of 
pixel detection is less than 50% . The accuracy of the segmentation of CPM_SERC and 
PB_MPB areas was not possible to investigate because of the usage of all images includ-
ing these pixels in the training stage.

Table 3  Comparison of the accuracy of selected deep neural models in the segmentation task

DNN DeepLab-v3-ResNet-18 (15) DeepLab-v3-ResNet-50 (7) DeepLab-v3-Inception-.

Area name DSC Acc IoU mBFS DSC Acc IoU mBFS DSC Acc IoU mBFS

CPM_CC 0.92 0.96 0.92 0.89 0.85 0.94 0.89 0.86 0.88 0.94 0.91 0.89

CPM_DCG 0.46 0.79 0.75 0.64 0.46 0.70 0.53 0.63 0.29 0.85 0.61 0.64

CPM_CGA​ 0.35 0.54 0.44 0.27 0.28 0.76 0.55 0.43 0.39 0.85 0.60 0.20

CPM_SERC − − − − − − − − 0.10 0.11 0.09 0.56

CPM_VAC 0.16 0.43 0.21 0.96 0.20 0.11 0.11 0.56 0.03 0.08 0.07 0.13

CPM_DC 0.49 0.99 0.75 0.84 0.58 0.95 0.93 0.80 0.49 0.99 0.89 0.85

PB_FPB 0.43 0.55 0.37 0.64 0.56 0.62 0.54 0.67 0.57 0.66 0.54 0.74

PB_MPB − − − − − − − − 0.00 − 0.00 −

PB_FFPB 0.28 0.43 0.31 0.61 0.27 0.62 0.37 0.67 0.32 0.50 0.40 0.62

PVS 0.79 0.83 0.69 0.93 0.76 0.81 0.70 0.90 0.78 0.86 0.70 0.90

ZP 0.88 0.90 0.82 0.82 0.87 0.92 0.82 0.78 0.84 0.90 0.81 0.76

CCC​ 0.68 0.86 0.71 0.67 0.70 0.87 0.73 0.65 0.73 0.89 0.75 0.64

GV 0.54 0.70 0.55 0.33 0.46 0.81 0.47 0.53 0.22 0.86 0.33 0.66

Background 0.98 0.98 0.96 0.93 0.98 0.97 0.96 0.92 0.98 0.97 0.96 0.91
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The similar accuracy of semantic oocyte segmentation was observed in training and 
test phases for other DeepLab v3+ convolutional neural structures which have been cre-
ated basing on ResNet-50 and Incpetion-ResNet-v2 predefined networks. The values of 
quality metrics such as gAcc, mAcc, mIoU and mBFS were very close to those in the 
best solution. For this reason, the additional analysis was needed. The attention was paid 
to the accuracy of the model corresponding to each segmented area. Table 3 includes 

Table 4  Visual comparison of semantic segmentation results for selected deep models
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outcomes of the accuracy comparison of selected deep neural models in the segmenta-
tion task. As one can see, it is not easy to select the best neural model for semantic seg-
mentation of any areas. However, it is possible to answer the question what is the most 
relevant model for specified area. For instance, it can be stated that the best deep neu-
ral model for classification of pixels belonging to CPM_CC is DeepLab-v3-ResNet-18 
(15), to CPM_DCG is DeepLab-v3-Incpetion-ResNet-v2 (10), ..., to ZP is DeepLab-
v3-ResNet-50 (7) and so on.

Deep learning experiments were carried out employing the personal computer station 
with Intel®Core™i7-3930K CPU @ 3.20 GHz, 64 GB RAM, 512 GB SSD, 2 TB HDD, 
NVIDIA™RTX 2080 equipped with 8 GB RAM.

Discussion
For deeper assessment, it is essential to analyse directly segmentation results obtained 
for the best and worst deep neural networks. Some examples of segmentation results 
achieved for test patterns are shown in Table 4. The left part of the table (cells a, d) 
includes two images of oocytes classified as MII (collected from patient No. 133 and 

Table 5  Selected results of semantic oocyte segmentation obtained for DeepLab-v3-ResNet-18 (15) 
model on test data set (TT)

No. Oocyte image Expert reference 
segmentation

DNN segmentation Differences between 
expert and DNN 
segmentation 
outcomes

1 (PI, patient No. 52)

2 (MII, patient No. 64)

3 (PI, patient No. 30)

4 (MII, patient No. 169)
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179, respectively) which have been segmented by clinical embryologist. Whereas, the 
right part of the table contains a few segmented images of oocytes obtained by means 
of deep neural networks (cells b, c, e, f ). In this part of the table there are included 
graphical visualisations of differences for both oocyte segmentation methods (human 
and automatic). The first result of automatic segmentation represents one of the 
best case obtained by using DeepLab-v3-ResNet-18 (15). Comparing segmentation 
made by a specialist and segmentation obtained with a deep network it is very hard 
to observe any differences directly in segmented images. These are only noticeable 
when we display the diff area of human and automatic segmentation results (the last 
column of the table). For the first deep network (b) it can be seen that the white and 
grey pixels cover a very small area of the black image. This looks similar at first sight 
to the second network (c). However, the diff area exposes discrepancies correspond-
ing to differences between manually and automatically segmented areas, especially in 
cases such as first polar body FB_FPB, clear cytoplasm CPM_CC, zona pellucida ZP 
and cumuluse/corona cells CCC. This observation was confirmed for other cases. The 
least accurate segmentation results were obtained for SegNetLayers network. Images 
presented in figures (e) and (f ) are used to visualise the differences between the deep 
oocyte segmentation with and without predefined networks. As one can observe, 
deep neural model created from scratch without predefined network could not guar-
antee correct results, it means that even straight and easily segementable areas of pix-
els were portioned into ragged and distorted parts.

To understand better the significance of the obtained results the next part of analy-
ses was done taking into account the embryologist’s perspective. Table  5 includes a 
graphical visualization of segmentation errors. The first column presents the pictures 
of oocytes. The second column presents manual segmentation carried out by clinical 
embryologist. The third and fourth column present the result of automatic segmenta-
tion and the differences between manual and automatic segmentation.

It should be emphasized that the problem of oocyte segmentation is a multi-state 
problem. Basic areas of the oocyte occurring at each developmental stage such as 
ZP, PVS, CPM_CC and CCC are correctly classified (89.9, 83.4, 95.9 and 85.9%). The 
obtained results indicate the correct recognition of the area of interest and give a very 
good prognosis for future works related to the classification of oocytes to specific devel-
opment stages.

Fig. 2  Example of human oocyte images with CPM_CC, CPM_CGA and CPM_DC areas
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Globally, the efficiency of segmentation for selected networks is high, nevertheless 
there are areas where the recognition efficiency is not very good. Having performed the 
confusion matrix based analysis, one can observe that the error rate for the CPM_CGA 
areas is higher. This area has been classified improperly with CPM_CC, CPM_DC, 
CPM_VAC and GV areas, with the largest share in the cumulative error belonging to 
CPM_CC and CPM_DC areas, which account for 43.2% out of 46.1% of errors. Figure 2 
presents 3 images of cells with CPM_CC, CPM_CGA and CPM_DC area. The first fig-
ure (2a) presents a cell with pure cytoplasm area. Pure cytoplasm is smooth and bright, 
whereas the CPM_CGA area presented in the second figure (2b) is darker and has a 
granular structure. This area is visually similar to area shown in figure three (2c) show-
ing CPM_DC area, while CPM_CGA area occurs only on one fragment of cytoplasm but 
CMP_DC area covers entire cytoplasm.

Wrong classification of CPM_CGA area as CPM_CC area is not critical for medical 
reasons, CPM_CGA areas may occur in various sizes and most often centrally located in 
cytoplasm area. Errors in detecting that area may be a result of mistakes in preparing the 
training examples. The first example in Table 5 (patient No. 52) shows that the part of 
region marked by embryologist as CPM_CGA, DNN marked like CPM_DC. The errors 
could be caused by the locally similar structure of the cytoplasm in both cases, or the 
darkening of this region due to the presence of CCC.

CPM_VAC is an area with error rate of 56.7% . This error is mainly related to the failure 
to recognize small vacuoles (Table 5, patient No. 64) in the cytoplasm or incorrect seg-
mentation of CPM_VAC in the GV structure. Figure 3a presents an oocyte with vacuole, 
Figure 3b presents an oocyte in PI class with GV.

The vacuole interior background is visually similar to the GV area. This similarity 
may be the reason for the segmentation error that occurs. The GV structure occurs 
in and is typical for immature oocytes at PI stage. The lack of vacuole segmentation is 
related to small areas. Errors generated during segmentation can be related to a small 
learning set. The test set included four images with vacuoles. On two images the seg-
mentation was correct.

The GV area has been correctly classified in 69.6% . The area was sometimes marked 
as CPM_CC, CPM_ CGA, CPM_VAC, CPM_DC and PB_FPB. Incorrect segmen-
tation in the cytoplasm area of the oocyte, may be caused by the unclear boundary 

Fig. 3  Example of human oocyte images with CPM_VAC and GV areas
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between the GV region and cytoplasm. An example of mistakes in these region is 
shown in Table 5, patient No. 30.

Another analysed areas were PB_FPB and PB_FFPB. True positive rate for these 
regions are 55.3 and 43.2% respectively. PB_FPB is to the largest rates segmented 
wrongly as CMP_CC and PVS due to the location of PB_FPB in the cell. Moreover, 
there are also errors in segmentation concerning images where the PB_FPB is hardly 
visible due to the presence of CCC, or hidden under the cytoplasm. There is also a 
problem connected with correct distinguishing between both areas. The example of 
double segmentation of first polar body is presented in Table 5, patient No. 169. It is 
planned to unify the PB_FPB and PB_FFPB areas and identify as one area of interest 
in future research.

It should be noted that the research presented in this paper concerns the segmenta-
tion of oocytes in MII, MI, PI, DYS and DEG classes. In this study, the segmentations 
task concerned 13 different areas, which makes the undertaking very complicated. 

Table 6  Comparison of the accuracy with other results presented in literature

DSC [%] PPV [%] TPR [%]

CPM_CC Proposed method 98.49± 0.78 98.38± 1.68 98.61± 0.56

Ooplasm Firuzinia et al. [31] 98.84± 0.23 98.72± 0.61 98.97± 0.40

PVS Proposed method 85.01± 4.82 83.26± 6.41 87.06± 4.70

Firuzinia et al. [31] 89.99± 2.86 89.81± 2.12 90.17± 2.10

ZP Proposed method 92.35± 2.31 91.27± 5.00 93.70± 2.77

Firuzinia et al. [31] 93.45± 0.78 92.82± 0.52 94.08± 0.68

Kheradmand et al. [30] - 80.3 80.8

Table 7  Selected results of semantic segmentation MII oocytes with 5 regions of interest obtained 
for DeepLab-v3-ResNet-18 (15) model on test data set (TT)

No. Oocyte image Expert reference 
segmentation

DNNsegmentation Results DSC [%]

MII P39 CPM_CC 99.04

PB_FPB 93.28

PVS 90.85

ZP 95.52

CCC​ 44.47

MII P66 CPM_CC 98.84

PB_FPB 85.97

PVS 86.21

ZP 93.45

CCC​ 69.30

MII P124 CPM_CC 98.68

PB_FPB 80.57

PVS 88.32

ZP 94.68

CCC​ -
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To the best of the authors’ knowledge, this is the first such a comprehensive study. 
Other researchers chose to focus on three or four areas. Zhao et  al. [29] perform 
segmentation of day-1 embryos focusing on cytoplasm, ZP and pronuclei. Kherad-
mand et  al. [30] present the segmentation of ICM, TE, cavity and ZP human blas-
tocyst structures. Firuzinia et  al. [31] perform segmentation only on mature MII 
oocytes (Ooplasm, ZP and PVS). In the hereby paper the CPM cytoplasm is divided 
into sub-areas (CPM_CC, CPM_CGA, CPM_DC, CPM_DGA) and additional struc-
tures (CPM_VAC, CPM_SERC, GV). In addition to PVS and ZP areas, the images of 
oocytes show other important areas such as PB and its sub-areas PB_FPB, PB_MPB 
and PB_FFPB as well as an additional area of CCC. Due to large disproportions in 
the number of analyzed areas (3-4 areas vs. 13 areas) it is very hard to submit a direct 
comparison. In order to obtain the approximate comparison of results, ten images of 
MII oocytes containing 5 main regions of interest (CPM_CC, PVS, ZP, PB_FPB and 
CCC) have been selected from the test set. The results of segmentation obtained for 
these images are presented in Table  6. Moreover, Table  7 presents selected results. 
Although the network has been designed to recognize 13 areas, it can be seen that the 
results are comparable to 3-areas segmentation task.

It should be noted that the hereby paper is a part of a project aimed at classification 
and optimal selection of oocytes and embryos for the IVF procedure. Therefore select-
ing those many structures has been essential. The ongoing research focuses on the tasks 
such oocyte classification and the study of impact of the presence of specific structures 
and their features in correlation with treatment outcomes.

Finally, it was decided to study the complexity of selected deep models, as well. The 
most important measures such as computational complexity metric (CCM), total learna-
bles, training and inference time were taken into consideration. According to Table 8, it 
can be noticed that the DeepLab-v3-ResNet-18 architecture, due to the lowest complex-
ity, has faster inference and training speed. Moreover, the inference speed of this type 
of the model is higher than in the method proposed by Firuzinia et al. [31]. DeepLab-
v3-ResNet-50 and DeepLab-v3-Inception-ResNet-v2 models need much more comput-
ing resources. However, the inference time of all selected models is definitely acceptable 
from a practical point of view. Hence, it may be concluded that, analysing an oocyte 
image can be done by means of such models in real-time, even on a personal laptop 
computer.

Table 8  Comparison of the selected deep neural networks in terms of computational complexity, 
the number of learnable parameters and training/inference speed

Deep model CCM Total learnables Training-Time Inference-Time

[GFLOPs] [millions] [s/epoch] [ms]

DeepLab...ResNet-18 (15) 3.637 ∼ 17.5 35 36

DeepLab...ResNet-50 (7) 8.2164 ∼ 43 376 105

DeepLab...Incpetion...v2 (10) 22.227 ∼ 71 623 179
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Conclusion
This paper is focused on a method of semantic segmentation of human oocytes by 
means of deep neural networks. The performance comparison of different types of con-
volutional neural networks for semantic oocyte segmentation was carried out. The mer-
its and limitations of the selected deep neural networks were discussed. As a result, it 
has been proved that the proposed approach can be used to create deep neural mod-
els for semantic oocyte segmentation with high accuracy. In effect, such models can be 
employed as the predefined networks in other tasks. To the best of the authors’ knowl-
edge, this research is the largest study to date in the context of semantic segmentation of 
human oocytes using deep neural networks. The data set of 334 pictures of oocytes has 
been used in this paper (segmented by a clinical embryologist). It should be emphasised 
that, 13 areas of interest typical for cells at various stages of their development have been 
identified. The main purpose of the paper was to recognize deep neural networks opti-
mal for the task of segmenting human oocytes. This paper involves the examination of 
71 deep neural models and it has been found by wIoU  that the best global results were 
achieved using the DeepLab-v3-ResNet-18 model. Computational complexity and com-
parative analysis for selected neural networks were performed.

Due to a relatively small number of training examples and significant differences in 
numbers of pixels representing particular areas of the cell structure, some areas were 
prone to bigger prediction error. What is a very big advantage of the proposed meth-
odology is the fact that thanks to automatic segmentation it will be possible to analyse 
automatically particular areas and estimate their typical statistical features, it will be 
possible to analyse absolute measures such as the size of the surface of a specific area, 
as well as relative measures. In the next stages of the study, the authors will examine this 
problem hypothesizing that these features might be a carrier of diagnostic information.

This study is a part of a wider research on the development of an optimal selection sys-
tem for oocytes to be subjected to in vitro fertilization. In the next step the system will 
be expanded with optimal embryo selection module. Classification of oocytes is a com-
plex task and the authors have assumed that better classification results will be achieved 
with the use of deep neural networks which recognize and properly segment the areas 
visible in the image of the oocytes.

The results presented in the hereby paper can be employed to build an advisory sys-
tem used to support the work of a clinical embryologist, as well as to develop a training/
educational system which provides the possibility to verify the correct determination/

Fig. 4  Methodology of selecting optimal oocytes and embryos
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marking of particular structures. It has to be emphasized that the proposed method is 
classified to the group of soft computing approaches. The well-known and often prac-
tised validation technique was used to assess how the model will generalize to an inde-
pendent data set. However, this does not guarantee the proposed method will work 
correctly on all new data.

Methods
The suggested methodology for optimal choice of oocytes and embryos is schematically 
presented in Fig. 4. In compliance with the presented methodology, oocyte pictures are 
taken directly after the denudation process. The pictures are pre-edited (scaled, centred, 
resampled). Properly prepared digital images and remaining medical data collected dur-
ing treatment and standard diagnostic tests constitute the input of the algorithm for 
optimal selection of oocytes to be successively subjected to ICSI procedure.

The obtained embryos are subjected to observation throughout the next culture days 
(1-6) and their appearance is registered. The sequence of embryo pictures along with 
medical data is evaluated, similarly to oocytes. The algorithm indicates optimal embryos 
which reveal the best development potential.

In compliance with the methodology, the first stage is the optimal selection of oocytes. 
The hereby work focuses on the use of deep learning methods. Approaches to automatic 

Fig. 5  Method of segmentation of oocyte images

Fig. 6  Image of oocyte in stage MII (1—Cytoplasm (CPM), 2—First polar body (FPB), 3—Zona pellucida (ZP); 
4— Perivitelline space (PVS); 5—Cumulus/corona cells (CCC))



Page 16 of 26Targosz et al. BioMed Eng OnLine           (2021) 20:40 

classification of oocytes and embryos involving this kind of methods are known in the 
literature [14, 22, 32, 33]. This approach consists of providing a picture to the network 
which then classifies and assigns the picture to a given quality group. One can assume 
that the network is not taught to recognize particular morphological structures.

On the contrary to the presented works, it has been assumed that the classifying net-
work will be pre-trained in terms of recognition and segmentation of human embryos. 
It has been hypothesized that training the classification network will be more effective if 
the network “understands” the content of the picture. What is an additional advantage of 
such approach is the possibility to use segmented pictures to determine various meas-
ures and statistical features of the analyzed areas. The analysis of particular areas will 
be relatively easier if e.g. the shape, surface area of the zones of interest, etc. are known. 
Figure 5 is a schematic presentation of the methodology of conduct in automatic seg-
mentation of oocytes.

Oocyte–morphological structures in microscopic image

Figure  6 presents an image of an oocyte in MII class. The total diameter of a mature 
oocyte is approximately 150 µm . A mature oocyte consists of oolemma-surrounded 
cytoplasm (CPM) (1) with a diameter of about 110− 115 µm , first polar body (2), 
15− 20 µm wide pellucid zone (3), perivitelline space (4), the remains of granulosa cells 
Cumulus/corona cells (CCC) (5) are usually visible in the pictures of oocytes [24, 34].

Table 9  Segments of oocytes

Clear cytoplasm Diffuse cytoplasmic 
granularity

Cytoplasmic granular 
area

Smooth endoplasmic 
retculum cluster

Dark cytoplasm

CPM_CC CPM_DCG CPM_CGA​ CPM_SERC CPM_DC

Vacuoles First polar body Multi polar body Fragmented first 
polar body

Perivitelline space

CPM_VAC PB_FPB PB_MPB PB_FFPB PVS

Zona pellucida Cumulus/corona cells Germinal vesicle

ZP CCC​ GV
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The assessment of maturity and morphological structure quality is performed after the 
process of denudation, that is the purification of oocytes from the surrounding cumu-
lus, which is a cumulus-oocyte complex (COC) [10]. Oocytes occur at different stages 
of their development (MII, MI, PI, DEG, DYS) and contain different morphological 
structures. Table 9 presents the images of 13 morphological identified structures. The 
occurrence of specific structures and the assessment of their morphology is the basis for 
oocyte qualification and assessment of its development potential.

Five areas have been distinguished in the cytoplasm group. Pure CPM_CC cytoplasm 
with a smooth and homogeneous surface. CPM_DCG dispersed granularity cytoplasm, 
characterized by significant and even granularity in the image. CPM_CGA cytoplasm 
granularity area in which a distinct, darker granularity zone can be distinguished, with 
the rest of cytoplasm being smooth. Smooth endoplasmic reticulum cluster CPM_SERC, 
which has a smooth and oval surface with a clearly visible edge in the cytoplasm area. 
Dark cytoplasm CPM_DC - an area typical for degenerated cells of a clearly dark color, 
without visible depth. The last area identified in the cytoplasm are the Vacuoles CPM_
VAC, which form clearly visible oval craters. The next cell structure is the PB (polar 
body). In terms of morphology and quantity, three types of polar body have been iden-
tified. The polar body is located between the ZP and the cytoplasm. First Polar Body 
PB_FPB has a smooth, homogeneous surface, most often it has an ellipsoidal shape. The 
occurrence of fragmentation in first polar body determines it to be qualified for the area 
called PB_FFPB. There may be more polar bodies in the oocyte—this is referred to as the 
Multi polar body PB_MPB.

There is a PVS perivitelline space between the oolemma and the zona pellucida. There 
may be some granularity in its area. Oocyte is surrounded by zona pellucida. ZP has a 

Fig. 7  Graphical description of the learning data set
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porous, homogenous surface. There might be spherical structures and granullity CCC on 
the ZP surface. The last identified structure is the GV present in oocytes in the PI phase. 
GV occurs in cytoplasm area, it is a circle with a smooth structure and clear edges, con-
taining a clearly visible spherical nucleus on its surface.

Data set preparation

Oocytes have been collected from 60 patients (average age of 32 ± 10 years) subjected to 
ICSI procedure. In total 334 pictures of oocytes have been used, including 236 pictures 
of oocytes classified as MII, 21 as MI, 48 as PI, 8 as DYS and 23 as DEG. The patients 
were subjected to hormonal stimulation. The ovarian stimulation protocol was chosen 
based on the clinical picture. After collection, the COC were incubated for 2− 5 hours 
in culture medium (SAGE 1-Step™, Origio CooperSurgical Companies) in an incubator 
at 37◦ C, 6% CO2 . Oocytes were subjected to denudation of granular cells by exposure to 
80 IU/ml hyaluronidase (GM501 Hyaluronidase; Gynemed Germany) for 1 minute and 
mechanically cleaned.

Pictures were taken with use of an inverted light-microscope (Olympus®, IX51/IX70) at 
x200 magnification, using a camera (Oosight CCD Camera Module) and Oosight®Meta 
software (Hamilton Thorne, Inc.). The recorded image may contain one or more oocytes 
and micromanipulation needles, on condition it did not affect the individual shape of 
each oocyte. The recorded images were pre-edited, which resulted in obtaining 561 x 
561 pixels dimensions, saved as .bmp files in greyscale. In order to prepare learning pat-
terns, each image underwent manual segmentation. The segmentation was carried out 
employing Image Labeler application available as part of MATLAB®R2019b software. 
With use of the application, each of the 334 images was manually segmented.

In the next step, the entire data set including manually segmented images was ana-
lysed in detail to obtain statistical description of the set of deep learning patterns. The 
most important parameters of the data set are summarised in Fig. 7. This chart shows 
values of the frequency of pixels calculated for different areas of the image resulting from 
morphological structure analysis of the oocyte. This parameter is very important in the 
context of the automation of segmentation process by means of deep neural networks.

It should be noted here that there is a lot of learning examples in the collected data 
set containing the group of areas of interest such as CPM_CC, PVS, ZP, CCC as well as 
undefined pixels (from 280 to 334 images). As one can see, in average undefined pixels 
cover nearly the half of each image. However, the value of the frequency of pixels for 
significant areas in this group is relatively high. The next group of areas such as CPM_
DCG, CPM_CGA, CPM_VAC, CPM_DC, PB_FPB, PB_FFPB and GV appears on several 
different images (from 24 to 178 images). The part of this group includes areas where the 
value of the frequency of pixels is larger then 1 % , but it has also areas where this value 
is smaller or significantly smaller then 1 % . The most problematic areas in this case study 
are CPM_SERC and PB_MPB. There is only one image for each case and, in effect, the 
value of the frequency of pixels is extremely low.
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Deep semantic oocyte segmentation method

Semantic oocyte segmentation is the task of labelling every pixel in an oocyte image 
with a pre-defined area category and it must be usually solved when the detailed 
understanding of such image is required. In other words, the term suggests this is 
the process of dividing an oocyte image into multiple segments such as cytoplasm, 
first polar body, zona pellucida, etc. Semantic oocyte segmentation task can be done 
in automatic manner by means of deep neural networks which have yielded a new 
generation of image segmentation models with remarkable performance improve-
ments. In this section, the main issues of deep semantic oocyte segmentation 
method are discussed.

Applied deep segmentation models

As one can see in [35], there are several major types of deep neural architectures 
for image segmentation such as: fully convolutional networks [36, 37], convolutional 
networks with graphical models i.e. the combination of convolutional neural net-
works and fully connected conditional random fields [38], encoder-decoder models 
for general segmentation [39] or for medical image segmentation [40, 41], multi-
scale and pyramid network based models [42], dilated convolutional models and 

Fig. 8  Fully convolutional image segmentation network [36]

Fig. 9  SegNet—fully convolutional network [39]
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DeepLab family [43], and many others. In this paper it was decided to apply and 
compare four different architectures which are described below.

Fully Convolutional Network
A fully convolutional network presented in Fig.  8 includes convolutional and 

pooling layers. Long et  al. [36] modified existing CNN architectures (i.e. VGG16) 
by replacing all fully-connected layers with the fully-convolutional layers to obtain 
mapping from pixels to pixels, without extracting the region proposals. Such net-
work takes an image of arbitrary size and produces a segmentation map of the same 
size.

Fig. 10  U-net architecture [40]

Fig. 11  DeepLabv3+ with a encoder-decoder structure [43]
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Moreover, authors [36] proposed the skip connections to combine semantic infor-
mation from deep, coarse layers and appearance information from shallow, fine lay-
ers to produce accurate and detailed segmentations. This structure of a network is 
considered a milestone in image segmentation.

SegNet SegNet was proposed by Badrinarayanan et  al. [39] as a convolutional 
encoder-decoder architecture for semantic pixel-wise segmentation (Fig. 9). In this 
type of a network, the trainable part of SegNet is composed of an encoder network 
(similar to the 13 convolutional layers in the VGG16 network), as well as a corre-
sponding decoder network followed by a pixel-wise classification layer.

SegNet is less complex than other competing architectures in the context of the 
number of trainable parameters. This network is more efficient since it only stores 
the max-pooling indices of the feature maps and uses them in its decoder network to 
achieve good performance [39].

U-Net
U-Net (Fig. 10) is inspired by FCNs and encoder-decoder models, and it was ini-

tially developed for medical/biomedical image segmentation. Specifically, Ron-
neberger et al. [40] elaborated this architecture for segmenting biological microscopy 
images. The structure of the network consists of a contracting path to capture con-
text and a symmetric expanding path that enables precise localization.

DeepLab3v+
There is a DeepLab family of networks developed by Chen et al. One of the newest 

models of this type is known as Deeplabv3+ (Fig. 11). This network uses an encoder-
decoder architecture, including atrous separable convolution which is composed of a 
depthwise convolution and pointwise convolution.

Deep learning algorithm

Different kinds of learning algorithms can be used for updating the network parameters 
(weights and biases) in order to minimize the loss function. In this paper, the loss function 
with the regularization term is formulated as follows:

where � is the network parameters vector, � is the regularization factor (coefficient) 
responsible for emphasizing the regularization function which is needed to reduce over-
fitting problem. The regularization term is proposed as weight decay and it is given in 
the form of the formula:

where ω is the weight vector.
The main formula component E(�) is the weighted cross-entropy function given by the 

following equation:

(1)ER(�) = E(�)+ �κ(ω)

(2)κ(ω) =
1

2
ω
T
ω
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where N is the number of training patterns, C is the total number of categories, Xi,j is 
the network response for a given category, Ti,j is the target value of that category, cj is 
the weight of the j-th category. This form of the cross-entropy loss is necessary in classi-
fication problems with an imbalanced distribution of classes. In this paper, the values of 
weights cj are determined using the frequencies of pixels in the image data set. Heuristic 
rule is applied to compute the values of frequency class weights:

where K is the normalization weight factor, fj is the frequency of occurrence of pixels for 
the j-th area in the whole data set of images, f mj  is the value of the frequency of occur-
rence of pixels for an area including the largest number of pixels.

The stochastic gradient descent with momentum rule [44] is applied to find minimum 
of the loss function (Eq. 1). In this algorithm, values of network parameters are updated, 
at each iteration in the direction of the negative gradient of the loss, as follows:

where n is the iteration number, α is the learning rate, γ determines the contribution of 
the previous gradient step to the current iteration.

Transfer learning

Transfer learning is one of the machine learning techniques to speed up training and 
improve the performance of a deep learning model. In this method pre-trained neural 
models are used as the starting point for further improvements in the context of the 
new task. Different generally available deep neural models can be used as a network 
backbone. This study makes use of the following pre-defined networks: ResNet-18 and 
ResNet-50 [45], Xception [46], Inception-ResNet-v2 [47], VGG-16 and VGG-19 [48].

Data augmentation

Data augmentation is a data processing technique used to increase the number of labeled 
samples, especially when learning from limited data sets, such as those in medical image 
analysis (in classification and segmentation tasks). This serves to increase the number of 
training samples by applying a set of transformation to the images (i.e., both the input 
image and the segmentation map. Using this technique frequently leads to faster conver-
gence, decreasing the chance of over-fitting, and enhancing generalization [35]. Various 
transformation operators can be applied such as translation, reflection, rotation, warp-
ing, scaling, color space shifting, cropping, and projections onto principal components. 
A survey on image data augmentation for deep learning is given by Shorten and Khosh-
goftaar [49].

(3)E(�) = −
1

N

N
∑

i=1

C
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j=1
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)

log
(
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)]
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[

K
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m
j

]

(5)�n+1 = �n − α∇ER(�n)+ γ (�n −�n−1)
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Estimation of deep model accuracy

The quality of semantic segmentation results against the ground truth segmentation can 
be evaluated using various metrics [50]. In this paper, the following semantic segmenta-
tion metrics are taken into account:

•	 Accuracy (Acc) - for each class, accuracy is the ratio of correctly classified pixels to 
the total number of pixels in that class, according to the ground truth. There are two 
variants of this measure: gAcc is the ratio of correctly classified pixels, regardless 
of class, to the total number of pixels; mAcc is the average Acc of all classes in all 
images.

•	 True positive rate (TPR) - is also known as sensitivity, recall or hit rate and it 
describes the relation between true positives and all positive elements: 

 where TP is the number of true positives, FN is the number of false negatives.
•	 False negative rate (FNR) - or miss rate, it corresponds to the proportion of positive 

pixels which yield negative test outcomes with the test: 

•	 Positive predictive value (PPV) - is also known as precision and it represents the rela-
tion between true positives and all elements segmented as positive 

FP is the number of false positives.
•	 False discovery rate (FDR) - it describes the expected proportion of type I errors. 

•	 Intersection over union (IoU) - is also known as the Jaccard similarity coefficient. 
This metric is used as a statistical accuracy measurement that penalizes false posi-
tives. For each class, it is the ratio of correctly classified pixels to the total number of 
ground truth and predicted pixels in that class 

 The value of IoU  for each class is weighted by the number of pixels in that class and 
marked as wIoU  to reduce the impact of errors in the small classes on the aggregate 
quality score. For the aggregate data set mIoU  is the average IoU  score of all classes 
in all images.

•	 The boundary F1 contour matching score - is used to indicate how well the predicted 
boundary of each class aligns with the true boundary, and it is used to correlate bet-

(6)TPR =
TP

TP+FN

(7)FNR =
FN

FN+ TP
= 1− TPR

(8)PPV =
TP

TP+ FP

(9)FDR =
FP

FP+ TP
= 1− PPV

(10)IoU =
TP

TP+ FP+ FN
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ter with human qualitative assessment than the IoU  metric. It can be written as fol-
lows: 

 In this paper, the average BF score of that class over all images or the average BF 
score of all classes in all images are computed ( mBFS).

•	 Sørensen-Dice similarity coefficient (DSC) - which is a spatial overlap index, meas-
ures the overall segmentation accuracy between the manual and automatic segmen-
tations 

 The Dice coefficient is related to the Jaccard coefficient.
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