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Abstract

Background: The objective of the study was to validate biomechanical characteristics
of a 3D-printed, novel-designated fixation plate for treating mandibular angle fracture,
and compare it with two commonly used fixation plates by finite element (FE) simula-
tions and experimental testing.

Methods: A 3D virtual mandible was created from a patient’s CT images as the

master model. A custom-designed plate and two commonly used fixation plates were
reconstructed onto the master model for FE simulations. Modeling of angle fracture,
simulation of muscles of mastication, and defining of boundary conditions were
integrated into the theoretical model. Strain levels during different loading condi-
tions were analyzed using a finite element method (FEM). For mechanical test design,
samples of the virtual mandible with angle fracture and the custom-designed fixation
plates were printed using selective laser sintering (SLS) and selective laser melting
(SLM) printing methods. Experimental data were collected from a testing platform with
attached strain gauges to the mandible and the plates at different 10 locations during
mechanical tests. Simulation of muscle forces and temporomandibular joint conditions
were built into the physical models to improve the accuracy of clinical conditions. The
experimental vs the theoretical data collected at the 10 locations were compared, and
the correlation coefficient was calculated.

Results: The results show that use of the novel-designated fixation plate has signifi-
cant mechanical advantages compared to the two commonly used fixation plates. The
results of measured strains at each location show a very high correlation between the
physical model and the virtual mandible of their biomechanical behaviors under simu-
lated occlusal loading conditions when treating angle fracture of the mandible.

Conclusions: Based on the results from our study, we validate the accuracy of our
computational model which allows us to use it for future clinical applications under
more sophisticated biomechanical simulations and testing.

Keywords: Mandibular angle fracture, Rigid fixation, Customized fixation plate, Finite
element analysis, 3D printing
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Background

The incidence of fracture of mandibular angle is similar to that of condyle and body
[1]. Rigid fixation in conjunction with intra-operative maxillomandibular fixa-
tion (MMEF) is widely used to treat mandibular angle fractures [2, 3]. Intraoral open
reduction and internal fixation (ORIF) is a common surgical approach for treating
simple angle fractures using two non-compression mini-plates; or one non-compres-
sion mini-plate (the Champy technique) [4—7]. Many clinicians choose the Champy
method to treat noncomminuted angle fractures that is to place a mini-plate on the
superior mandibular border due to its simplicity. The Champy method is considered a
non-rigid fixation method.

Clinical complications following ORIF procedures in the treatment of angle frac-
ture, such as, nonunion, malocclusion and hardware removal ranging from 5.26 to
15.78% are related to biomechanical issues [3, 8]. It is difficult to conduct biomechan-
ical studies in vitro or ex vivo on physical models to evaluate the effectiveness of plate
designs or treatment techniques because it is difficult in obtaining human or animal
samples. Other issues are: variation of sample quality, and difficulty in simulating
complex functional loading generated from masticatory muscles [8, 9].

An alternative solution is the use of advanced computational tools such as finite
element analysis (FEA). The advantage of FEA is that it can analyze a model with
complex geometry and obtain detailed data than a physical model [10-13]. However,
it is critical to create a virtual model with built-in complex skeletal geometry, and
mechanical properties in order to obtain accurate results from FEA for relevant clini-
cal simulations. The degree of accuracy of a virtual model can be confirmed through
the same duplicated physical model through mechanical tests.

Another important factor is all pre-fabricated standard mini-plates are not custom-
made to fit each patient. It always requires bending to manually fit the patient’s man-
dible. The operator’s skill and the amount of residual bending stress are potentially
problematic [14]. The new trend of a custom-designed and 3D-printed fixation plate
is emerging as the method of choice for selecting a fixation plate in treating these
patients [14-16].

In 2017, we designed a custom-designed plate with topological optimization, and
evaluated its biomechanical behaviors with two commonly used fixation plates by
FEA [17]. The objective of the study is to validate the behaviors of the 3D-printed,
novel-designated fixation plate to treat mandibular angle fractures developed in a
previous research [17]. The custom-designed plate and two commonly used fixation
plates were compared by both FEA and experimental mechanical testing. Outcome
measurements of the region of interest on the mandibular surface were principal
stress, strain and displacement during simulated occlusal loadings. A correlation
coefficient between experimental and computational data was performed to validate
the accuracy of the finite element (FE) model.
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Table 1 The maximum strain values (pe) of fractured mandible with different fixation
systems in FEA under three occlusion conditions

Incisor loading Left molar loading Right
molar
loading

One mini-plate 3043 2886 3087
Two mini-plates 1711 2058 1951
Customized plate 1551 1552 1501

Results

The maximum principal strain values during three different loading conditions were
analyzed and collected by the FE method. Table 1 represents the maximum strain
values (pe) of fractured mandible with different fixation systems in FEA under three
occlusal loading conditions. The maximum strains occur near occlusal loading areas
and the anterior segment of the coronoid process.

Repeat measurements of strain distribution were collected three times at each gauge
location during simulate occlusal loadings. The data recording process of the strain dis-
tributions under the loading force of 5 N at lower central incisor are shown in Table 2.
The numbers of strain gauges from 1 to 10 are marked in Fig. 1 representing the measur-
ing points on the mandibular surface, and numbers of 11 and 12 represent strain values
from the gauges located at the upper and lower fixation plates. Figure 2 shows the maxi-
mum strains (pe) of mandibles and fixation plates under the three fixation methods. The

Table 2 Strain values (pe) of mandible and customized plate under 5 N loading at incisor

1 2 3 4 5 6 7 8 9 10 11 12
Q) 77 0 6 -1 —13 —4 35 85 —24 —-20 14 -6
) 76 2 6 —12 —13 -5 35 85 —21 —-20 14 -6
3) 76 0 7 —12 —-13 —6 36 85 —22 —-20 16 -6
Mean 76 1 6 —12 —13 -5 35 85 —22 —-20 15 -6

(1), (2), and (3) are three measurements at each location; 1-10 are strain gauges located on the mandible; 11 and 12 are
strain gauges located on the fixation plates

Fig. 1 10 strain gauges on the mandibular surface were numbered
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Fig. 3 The maximum strain values of three fixation systems under loading force of 5 N with different
occlusion positions

black lines show the results under the loading force of 5 N. Red lines show the results
under the loading force of 10 N. Figure 3 shows the maximum strain values (pe) of three
fixation systems at different occlusion positions under the loading force of 5 N. The three
different bars represent the strains from one mini-plate, two mini-plates and 3D-printed
customized fixation plate, respectively. Figure 4 shows the paired strain values (pe) from
the same location of the experimental and FEA data. Loading condition of FEA at inci-
sor was 125 N, left and right molar was 250 N. It was 25 times of the experimental load-
ing, therefore the strain values of the experimental groups were multiplied by 25 times
in Fig. 4. The black lines in the chart represent the results from the experimental groups,
and the red lines represent the results from the FEA groups. SPSS software (V19.0, IBM
Corp, Armonk, NY, USA) was used to obtain the correlation between experimental data
and FEA data. Pearson correlation coefficient values are shown in Table 3.

Discussion

Mandibular angle fractures are unfavorable to bone healing due to the actions of
masticatory muscles [18-20]. Teeth and the temporomandibular joint boundary
condition are important parameters related to stress and strain distributions during
occlusal loading [21]. Anisotropic properties of cortical and cancellous bone of the

mandible and degree of mineralization as well as anatomic variations in the mandible
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Fig. 4 Strain measurements from experimental groups and finite element groups; strain levels within incisor
loading: a one mini-plate, b two mini-plates, ¢ customized plate; strain levels within left molar loading: d one
mini-plate, e two mini-plates, f customized plate; strain levels within right molar loading: g one mini-plate, h
two mini-plates, i customized plate

Table 3 The correlation coefficient of measured and calculated strains with the same

treatment method
Incisor loading Left molar loading Right
molar
loading
One mini-plate 0.952 0.951 0.967
Two mini-plates 0.964 0.954 0.969
Customized plate 0.991 0.963 0.962

are important information when constructing an accurate finite model [22-24]. We
have taken into account those factors and integrated them into our physical and com-
putational models.

Critical yield tensile strain of human cortical bone is 0.4% [25, 26]. The principal
strains of the three fixation systems were well below the yield tensile strain of human
bone regardless of occlusal loading conditions. The strain levels of the custom plate
consistently were the lowest from both FEA and mechanical test results. Based on our
measured data, the average maximum strain (ye) of the custom plate was 5.23% of the
one-plate system and 52.2% of the two-plate system under loading. The FEA results
of the maximum stress of all three fixation systems are under the yield strength of
titanium alloy (0 =780-950 MPa) [27]. The combined average maximum von Mises
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stress (MPa) of the one-plate system is 3.75 times that of the two-plate system, and
2.4 times that of the custom plate system according to the previous FEA results [17].
A biomechanical behavior study by Ayali et al.[28] found that the two-plate system
provides more biomechanical stability than the one-plate system, which is consistent
with our conclusions. Coskunses et al. [29] used FEA to evaluate whether the adding
of lateral extension to a mini-plate similar to the Champy technique would improve
the stability of mandibular angle fractures. The study found that the biomechanical
stability of two parallel mini-plates fixation schemes, whether it is 4-hole or 6-hole,
was similar. Based on the conclusion, the 4-hole one mini-plate (Type A) and two
mini-plates (Type B) system in this study are typical. Figure 2 shows that the cus-
tom plate system provides the best stability and the least deformation under occlusal
loading. The customized plate is designed based on topological optimization to mini-
mize the structural strain energy that may provide the best results. It is noted that the
higher strain locations from our physical mold testing were on both the buccal and
the lingual aspects of the ramus area. The measured data correlate well with our FEA
models. The majority of strains recorded from our experiment were positive values,
which were tensile stress. The negative values were compressive stress under occlusal
loading and located at inferior border of the mandible along the fracture site. The
results from our strain gauge measurements confirmed the observation in the litera-
ture [30-32].

Determination of strain and stress in mandibles under mechanical loading has an
important impact in different clinical situations. From a biological view, it is known
that strain determines to a great extend the functional behavior of bone cells. Therefore,
knowledge of this parameter may permit assessment of the regenerative capacity of bone
turnover in various states (fracture healing, or callus stabilization). Concerning the bio-
mechanics of bones, stress evaluation in different anatomical positions can be used to
investigate potential fracture sites under loading.

Occlusal loading conditions in our FEA were 125 N at incisor, and 250 N at left or
right molar. However, 5 N and 10 N loading were used for testing our physical models
due to the material properties of the 3D-printed mandibles and the range and accuracy
of the forces delivered by the dynamometer. Figure 3 shows the paired plots from calcu-
lated and measured data sets under the same parameters of the three fixation systems.
All the Pearson Correlation coefficients were calculated by SPSS and compared between
the in vitro measurements and computational modeling with P<0.05. The results show

that high correlations exist with the two models.

Conclusions

We used computational modeling to generate mandibles with angle fracture. Three fixa-
tion plate systems were compared on their mechanical responses under three different
occlusal loadings. 3D-printed mandibular models, as well as custom-designed plates,
were used for in vitro measurements using strain gauge. The custom-designed fixation
plate showed many mechanical advantages over the other two commonly used fixation
systems. By comparing with the experimental data, we found that there is a very high
correlation between in vitro measurements and computational modeling. Therefore, we
conclude our finite model is accurate for biomechanical analysis for clinical applications.
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Methods

FE model generation and optimization of custom-designed fixation plate

A computational model of a mandible with angle fracture was created from a patient’s
CT scan images. The scanning parameters were set as 120 kV, 300 mA, with an image
resolution of 512 x 512 pixels and a slice thickness of 0.5 mm. Triangular meshes cre-
ated from Mimics (V16.0, Materialise, Leuven, Belgium) form a surface model. Volume
meshes (tetrahedrons) are required for model construction and FEA. The 3-matic soft-
ware (V9.0, Materialise, Leuven, Belgium) was used for mesh reduction, smoothing, and
re-meshing to create high-quality volume meshes from triangular meshes. An additional
triangular mesh tool, Geomagic (V12, 3D system, Rock Hill, SC, USA), was used to edit
the triangular models. Based on the triangular mesh model, mandibular angle fracture
with a 1-mm interfragmental gap on the right side of mandible was produced using
the cutting tool in Mimics. The mandible model was imported to Mimics to get vari-
ous material properties (density and Young’s modulus). The FE software Abaqus (V6.14,
Dassault Systémes, Cedex, France) can be used to directly create tetrahedron meshes by
importing the INP file generated from the 3-matic program for subsequent simulation
and calculation.

Figure 5 shows three types of fixation plates based on Champy technique: one mini-
plate (Type A fixation), two mini-plates (Type B fixation), and a V-shaped custom-
designed plate (Type C fixation). Type A fixation uses one mini-plate to stabilize the
mandibular fracture from the external oblique line to the buccal aspect mandible at the
2nd molar area (Fig. 5a). Type B fixation is to use two mini-plates, with one mini-plate
fixed at the same position of Type A plus the other one fixed at the inferior body of the
mandible (Fig. 5b). Type C fixation is to use a V-shaped mini-plate with 30-degree angle
between two arms of the plate (Fig. 5c).

Tetrahedral elements were applied to mesh the mandible model. The final FE model
of the mandible consisted of 141,206 elements and 33,652 nodes. The material proper-
ties of the mandible were defined in Hounsfield units (HU) from CBCT images [17, 22].
Figure 6 shows the locations and directions of masticatory muscle modeling including
masseter, medial pterygoid, lateral inferior pterygoid and temporal muscle. All those
muscles were simulated as different springs with no resistance during compression [17].

Fig. 5 Three fixation systems for mandibular angle fracture: a one mini-plate; b two mini-plates; c
customized plate
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Fig. 6 Schematic representation of muscle modeling and occlusal loading

Condyles were set as hinge constraints to simulate the state of mandibular occlusion at
a certain moment. Physiologic occlusal loadings are also illustrated in Fig. 6. Loading I
is the computational model under loading with 125 N at lower incisor. Loading II is the
computational model under loading with 250 N at left second molar. Loading III is the
computational model under loading with 250 N at right second molar. The directions of
loads were set as vertically parallel to the long axis of the teeth. FEAs were conducted
using Abaqus program.

To create the customized fixation plate with a novel geometry shape, the topological
optimization program in Abaqus was used. Detailed descriptions of the assignment of
material properties to the FE models and optimization process of the customized plate
are detailed in the previous publication [17]. Values of the maximum von Mises stress,
principal strain and interfragmental displacement of fractured mandible with differ-
ent fixation systems were calculated and recorded with three loading conditions using
Abaqus program.

Experimental setup

A testing platform was designed to mimic the parameters used by our FEM. The FE
models were described above. The testing platform (shown in Fig. 7a) was equipped with
condyle-restricting devices, simulators of muscles, and apparatus to simulate biting sta-
tus. The system can be adjusted for various mandibular sizes, muscular orientations, and
locations and directions of occlusion loading.

An SLS machine (Sinterstation HiQ/HS, 3D Systems Corporation, Rock Hill, SC,
USA) was used to manufacture mandible models for the experiment. Nylon powder
was used for SLS printing. The shape and the size of the models were exactly the same
as those generated by the FE models. Each mandible was suspended at the center

of the platform via the two condyles and three groups of masticatory muscles. The
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Fig. 7 a Experimental testing system; b condyle-restricting device; ¢ the simulator of the articular disc

lateral inferior pterygoid muscle was excluded in the experiment because its pulling
direction was approximately parallel to the occlusal plane and the muscular insertion
area was covered by the condyle-restricting device [33].

The three masticatory mandibular muscles were replaced by nylon cords and three
types of springs with different stiffness coefficients. One end of each nylon cord was
scattered and attached to correct location of mandibular surface corresponding to
each muscle origin or insertion. Cyanoacrylate adhesive was used to stabilize the
cords. The other side of the nylon cord was connected by a spring. The magnitude of
three masticatory muscle forces (F,) can be evaluated by the following equation:

F; =P-A; (1)

where P is the coefficient of muscle force (taking 40 N/cm?), and A, is the cross-sectional
area (cm?). The magnitude of three types of masticatory muscle forces in the experiment
is shown in Table 4 [34]. The parameters of three types of springs for simulating the mas-
ticatory muscle forces are shown in Table 5. The opposite side of the spring was con-
nected by a wire-rope. The stretched length of the spring was calculated from the ratio
of the masticatory muscle forces to the stiffness coefficient of springs. The sides of the
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Table 4 Parameters of three masticatory muscle forces

Muscle Muscle forces (N) Cross-sectional Unit vector coordinates
area (cm?)
X Y Y4
Masseter muscle 136.0 340 —0.21 —042 +0.89
Medial pterygoid muscle 76.8 1.92 —0.55 +0.36 +0.76
Temporal muscle 176.6 444 —-0.22 +0.50 +0.83

Table 5 Parameters of springs for mandibular muscles

Masseter muscle Medial pterygoid muscle  Temporal
muscle
Steel wire diameter (mm) 1.0 1.0 0.8
External diameter (mm) 8 8 6
Number of coils 30 35 25
Stiffness coefficient (N/mm) 166 138 147

Fig. 8 Condyle-restricting devices and three types of fixation plates printed by SLM

wire-rope were tied by small locking devices to simulate the magnitude of the muscle
fibers. Each wire-rope was wrapped with a small laminate to assure its correct orienta-
tion in order to simulate the direction of the muscle fibers.

The condyle-restricting device was designed to allow a 2 mm thick sili-
cone disc as meniscus to fit the condylar neck. Design an appropriate cuboid
(40 mm x 20 mm x 22 mm) to do a Boolean operation with the former shell. Another
cylinder piece was added at the back surface of the cuboid to attach to the platform. For
conveniently assembling the condyle and restrict device, this cuboid was divided into
two parts. An SLM machine (AM250, Renishaw, Gloucestershire, UK) was used to fab-
ricate the condyle-restricting devices and three types of fixation plates (shown in Fig. 8)
[35] under the following conditions: scanning rate at 0.6 m/s, laser power at 400 W and
exposure time at 125 ps. Titanium alloy powder (Ti6Al4V) with an average particle size
of 30 um was used for SLM printing. Figure 7b shows the condyle-restricting device.
The empty space between condyle and cuboid was designed to mimic the condylar disc.
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It is 2 mm in thickness and partially fits the exact surface of the anterior aspect of the
condylar head (shown in Fig. 7c). The silicone condylar disc is able to reduce the impact
between the condylar head and restrict device when the condylar head moves backward
during mechanical loadings. The screws used to connect between the fixation plates
and mandibular models are defined as locking screws and are locked in the mandibular
models.

The measurement system consisted of strain gauges and one data acquisition system.
Electric resistance strain gauges configured with a quarter bridge and their sensitivity
factor was 2.08. Static strain indicator (DH-3818, Donghuatest Ltd., Jingjiang, Jiangsu,
China) was used as the data acquisition system. Based on the von Mises stress of the
mandibular model with different fixation systems in the FEA [17], 10 positions on the
mandibular surface were selected to measure the strain distribution. Figure 1 shows the
locations of strain gauges positions. The directions of the strain gauges were adjusted
appropriately and they were glued on the predetermined locations with cyanoacrylate
adhesive. Strain gauges were also glued onto fixation plates at the middle point of each
plate, where the maximum strain was expected. The vertical loadings were applied to
specific locations by pressing a dynamometer. The locations of occlusal loading were set
to an exact position as the FE models, namely, lower central incisor, left and right lower
molar areas. The number of forces applied to the teeth was programmed with 5N, 10 N,
and 10 N correspondingly.

The experiment was performed at room temperature (20 ‘C). Before measuring the
strain values, all the measurement points were balanced automatically, then, loading
force was applied and set by the dynamometer. Strain values generated from the gauges
during deformation of the mandible and strain gauges under different occlusal loadings
were collected by the data acquisition system. Each sample was repeatedly tested three
times to evaluate the repeatability and reliability.
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