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Abstract 

Background:  Epilepsy is one of the most common neurological disorders associated 
with disruption of brain activity. In the classification and detection of epileptic seizures, 
electroencephalography (EEG) measurements, which record the electrical activities of 
the brain, are frequently used. Empirical mode decomposition (EMD) and its derivative, 
ensemble EMD (EEMD) are recently developed methods used to decompose non-
stationary and nonlinear signals such as EEG into a finite number of oscillations called 
intrinsic mode functions (IMFs). Our main objective in this study is to present a hybrid 
IMF selection method combining four different approaches (energy, correlation, power 
spectral distance, and statistical significance measures), and investigate the effect of 
selected IMFs extracted by EMD and EEMD on the classification. We have applied the 
proposed IMF selection approach on the classification of EEG signals recorded from 
epilepsy patients who are under treatment at our collaborator hospital. Multichannel 
EEG signals collected from epilepsy patients are decomposed into IMFs, and then IMF 
selection was performed. Finally, time- and spectral-domain, and nonlinear features are 
extracted and feature sets are created for the classification.

Results:  The maximum classification accuracies obtained using various combinations 
of IMFs were 94.56%, 95.63%, 96.8%, and 96.25% for SVM, KNN, naive Bayes, and logistic 
regression classifiers, respectively, by using EMD analysis; whereas, the EEMD approach 
has provided maximum classification accuracies of 96.06%, 97%, 97%, and 96.25% for 
SVM, KNN, naive Bayes, and logistic regression, respectively. Classification performance 
with the same features obtained using direct EEG signals instead of the decomposed 
IMFs was worse than the aforementioned 2 approaches for every combination.

Conclusion:  Simulation results demonstrate that the proposed IMF selection 
approach affects the classification results. Also, EEMD provides a robust method for fea-
ture extraction from EEG signals in order to classify pre-seizure and seizure segments.

Keywords:  Electroencephalogram (EEG), Epilepsy, Epileptic seizure classification, 
Empirical mode decomposition, Ensemble empirical mode decomposition, Intrinsic 
mode function selection
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Background
Epilepsy is one of the neurological disorders associated with disruption of brain 
activity that affects approximately 50 million people of the world’s population [1, 
2]. Detection of epileptic seizures is performed by neurologists by a visual examina-
tion of long-term electroencephalogram (EEG) signals. However, this method is very 
time-consuming and generally yields incorrect results. On the other hand, epileptic 
seizures are initiated in different brain lobes of different individuals, so it is not pos-
sible to determine a standard focus center for the studies. Therefore long-term EEG 
recordings are needed to detect epileptic seizures and determine focus center [2–5]. 
Since visual examination of long-term EEG data makes it difficult to diagnose the dis-
ease, automatic seizure detection has become a very popular research area and vari-
ous signal processing methods have been applied to solve this problem [2, 5, 6].

Many types of seizure detection and classification algorithms have been proposed 
in the literature [5]. These studies will be briefly discussed in  "Related studies" sec-
tion. In this present study, empirical mode decomposition (EMD) and its derivative, 
ensemble EMD (EEMD) based classification model for epileptic EEG data is intro-
duced. Our aim is to distinguish pre-seizure and seizure epileptic EEG signals by clas-
sifying the features extracted from selected IMFs of EMD, or EEMD. Simulations are 
performed to evaluate the effectiveness of selecting the IMFs based on some metrics 
as opposed to using first several IMFs for the classification.

The rest of the paper is organized as follows. The review of some of the previous 
related work is given in "Related studies" section. Experimental results of the pro-
posed method are shown in "Results" section. Discussion of the results is reported 
in "Discussion" section. The description of the data set, EMD algorithm, EEMD algo-
rithm and the details of the proposed methodology are discussed in "Materials and 
methods" section.

Related studies

Epileptic seizure detection and classification studies have been reported frequently in 
the literature using various signal processing and classification methods. A variety of 
features such as temporal, spectral, statistical and nonlinear features are exploited to 
improve the detection and classification performance.

Several methods have been presented for the detection and classification of seizure 
and seizure-free EEG segments by using time and frequency domain features such as 
energy [7], exponential energy [8], matrix determinant [2], spectral power of Hjorth’s 
mobility components [9], cross-correlation, power spectral density [10], subband 
spectral powers [11], average value, maximum value, and minimum value [5]. Fur-
thermore, several studies may be found in the literature using the wavelet transform 
and its derivative approaches [6, 12].

Weighted multiscale Renyi permutation entropy (WMRPE), weighted permu-
tation entropy (WPE), fuzzy entropy (FuzzyEn), a sigmoid entropy, approximate 
entropy (ApEn) based methods have also been frequently applied to this problem 
[13–15]. Additionally, nonlinear parameters such as fractal dimension, scaling expo-
nent obtained with detrended fluctuation analysis (DFA), Hurst’s exponent have been 
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utilized in many studies and successful results have been obtained for the detection 
and classification of seizure and seizure-free epileptic EEG signals [16, 17].

Time–frequency analysis methods such as EMD, EEMD, multivariate empirical mode 
decomposition (MEMD), complete ensemble empirical mode decomposition (CEEMD) 
which are developed for the analysis of nonlinear and non-stationary signals, have been 
successfully applied into detection or classification of seizure and seizure-free epilep-
tic EEG signals in many studies [1, 18–28]. These methods decompose a given signal 
into a finite number of zero–mean oscillations called intrinsic mode functions (IMFs). 
One of the major problems while using EMD and other similar decomposition methods 
is how to choose which IMFs to be used in the classification algorithms. In most stud-
ies, the first several IMFs, known to have high-frequency oscillations, are automatically 
selected for feature extraction [19–22]. It may be discussed that there is a lack of meth-
ods in the literature for the selection of best IMFs while using EMD and other similar 
decompositions.

After a brief investigation, it may be observed that successful classification results have 
been obtained by using classification algorithms such as support vector machine (SVM) 
[5, 13–15, 17, 19, 21, 27], Artificial Neural Networks (ANN) [12, 20, 24], K-nearest 
neighbor (KNN) algorithm [26], Extreme Learning Machine (ELM) [6, 16], Multilayer 
Perceptron Neural Network (MLPNN) [25], etc.

Results
EEG signals including pre-seizure and seizure segments obtained from 10-channel EEG 
recordings of 16 epilepsy patients who are under treatment at Izmir Katip Celebi Uni-
versity School of Medicine, Department of Neurology, were analyzed using EMD, and 
EEMD approaches and various classifiers. The hybrid IMF selection process including 
energy, correlation, power spectral distance, and statistical significance measures was 
carried out for EMD and EEMD approaches in order to identify the IMFs that best rep-
resent the original signal as described in "Selection of intrinsic mode functions (IMFs)" 
section. After the IMF selection process, time-domain (energy, mean value, skewness, 
and kurtosis) and spectral-domain (total power, spectral entropy, 1st, 2nd, and 3rd 
moments), and nonlinear (Hurst exponent and Higuchi fractal dimension) feature-sets 
were created using the selected three IMFs (IMF1, IMF3, IMF2) obtained by EMD, and 
EEMD approaches, and the EEG signal itself. In addition, we also performed simulations 
to compare the performance of our proposed approach with that of Discrete Wavelet 
Transforms (DWT). Since three selected IMFs of EMD and EEMD approaches are used 
for feature extraction and classification, three-level decomposition is used for DWT 
utilizing Daubechies4 (db4) mother wavelet function [23]. Finally, SVM, KNN, naive 
Bayes, and logistic regression classifiers are used for the classification, and the results are 
evaluated.

Performance evaluation results of our proposed approach are given in Tables 1, 2, 
3, 4. In these tables IMF1, IMF2, or IMF3; show that the features for classifications 
are calculated by using the corresponding IMF; IMF 1–3 denotes that the features are 
extracted using all three IMFs. On the other hand IMF1– IMF2 shows that the fea-
tures are extracted from IMF1 and IMF2. Additionally, AC+DC1-3 show that the fea-
tures are extracted from approximation coefficient (AC) and 3 detail coefficients (DC) 
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Table 1  Performance results (%) for pre-seizure and seizure EEG signal classification using 
the time-domain feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC​ F-score ACC​ F-score ACC​ F-score ACC​ F-score

EMD IMF1 55.81 43.64 94.56 94.45 91.56 91.24 94.69 94.94

IMF2 77.75 79.54 93.50 93.40 91.44 91.06 94.38 94.19

IMF3 86.19 87.75 93.88 93.75 93.38 93.24 94.69 94.60

IMF1–IMF2 94.63 94.72 96 95.94 92.25 92.02 93.44 93.42

IMF1–IMF3 96.12 96.14 95.25 95.19 94.94 94.86 97.18  97.14

IMF2–IMF3 78.63 73.11 94.69 94.60 93 92.84 94.38 94.30

IMF1–3 74.44 69.07 95.75 95.71 94.19 94.08 96.88 96.88

IMF1–4 78.88 75.24 95.63 95.54 93.50 93.39 91.56 91.03

EEMD IMF1 91.38 91.28 95.19 95.20 92.69 92.52 95.31 95.27

IMF2 62.44 60.80 90.94 90.63 90.63 90.14 92.81 92.60

IMF3 71.44 69.75 94.44 94.34 93.63 93.55 94.38 94.27

IMF1–IMF2 96.06 96.04 95.06 95.06 91.75 91.56 95.31 95.30

IMF1–IMF3 95.50 95.22 96.31 96.28 93.56 93.50 98.13 98.13

IMF2–IMF3 92.75 92.33 94.50 94.39 92.38 92.24 94.38 94.30

IMF1–3 73.44 64.36 96.63 96.61 93.81 93.73 90.94 90.61

IMF1–4 73.13 68.00 96.50 96.43 92.81 92.71 90.63 90.51

DWT AC+DC1-3 71.38 60.51 94.25 94.31 93.50 93.39 92.09 92.06

EEG All EEG 53.94 45.26 89.75 89.96 78.94 75.38 87.81 87.21

Table 2  Performance results (%) for pre-seizure and seizure EEG signal classification using 
the spectral feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC​ F-score ACC​ F-score ACC​ F-score ACC​ F-score

EMD IMF1 94.12 94 94.38 94.35 94.56 94.28 85 82.73

IMF2 94.06 93.81 92.94 92.77 93.75 93.42 94.06 93.97

IMF3 93.63 93.60 94.75 94.59 95.81 95.66 77.19 80

IMF1–IMF2 94.69 94.53 93.25 93.15 94.94 94.70 83.13 84.75

IMF1–IMF3 85.50 86.56 95.44 95.35 96.88 96.77 94.69 94.50

IMF2–IMF3 93.34 93.77 94.81 94.66 96.13 95.99 83.44 82.03

IMF1–3 93 93.31 94.88 94.80 96.19 96.06 82.50 82.93

IMF1–4 93.81 94.03 94.66 94.59 95.75 95.62 84.38 83.77

EEMD IMF1 96.06 96.02 95.06 95.05 94.44 94.26 96.25 96.25

IMF2 92.13 91.90 91.94 91.88 93 92.56 92.50 92.31

IMF3 94.56 94.48 94.25 94.20 95.56 95.39 96.88 96.86

IMF1–IMF2 94.38 94.26 94.94 94.88 94.81 94.61 81.88 81.29

IMF1–IMF3 74.31 73.80 95.31 95.26 96.75 96.6 79.69 78.83

IMF2–IMF3 94.94 94.83 93.75 93.74 95.69 95.52 96.88 96.89

IMF1–3 95.12 94.84 96.69 96.66 96.06 95.93 88.13 88.34

IMF1–4 91.25 90.64 96.31 96.29 96.81 96.68 90.31 89.42

DWT AC+DC1-3 81.25 77.56 93.31 93.24 95 94.87 88.75 88.82

EEG All EEG 72.06 67.29 93.31 93.37 77.37 71.59 89.06 88.14
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Table 3  Performance results (%) for pre-seizure and seizure EEG signal classification using 
the nonlinear feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC​ F-score ACC​ F-score ACC​ F-score ACC​ F-score

EMD IMF1 80.50 79.17 83.13 82.82 82.69 82.05 83.13 82.80

IMF2 81.38 80.11 83.31 83.15 86.19 86.79 85.63 85.80

IMF3 84.75 85.05 81.81 81.52 86.06 86.46 86.25 86.34

IMF1–IMF2 84.19 83.23 87.31 87.27 88.94 89.18 87.81 87.93

IMF1–IMF3 88.87 87.85 89.31 89.32 90.75 91.02 89.69 89.72

IMF2–IMF3 88.19 88.21 86.88 86.93 92 92.32 87.5 87.5

IMF1–3 90.37 90.15 90.44 90.39 91.81 92.17 90.94 90.97

IMF1–4  95 95.01 93.94 93.86 92.38 92.61 94.38 94.41

EEMD IMF1 55.88 42.68 59.63 59.05 63.75 56.97 55.63 50

IMF2 69.73 61.66 79.38 79.47 82.88 84.07 81.25 81.82

IMF3 70.31 67.75 73.88 73.58 79.88 79.80 77.81 78.15

IMF1–IMF2 70.06 62.49 77.87 77.63 84.50 84.99 87.50 87.58

IMF1–IMF3 70.19 66.94 74.19 74.08 80.25 79.65 81.88 81.65

IMF2–IMF3 77.31 75.39 78.38 78.20 84.50 85.10 83.44 83.28

IMF1–3 76.69 74.32 78.63 77.69 85.56 85.77 89.06 88.89

IMF1–4 92.94 92.90 91.50 91.35 90.69 90.74 91.25 91.19

DWT AC+DC1-3 64.63 58.12 68.88 67.53 84.50 84.22  87.50 87.42

EEG all EEG 58.19 64.84 67.31 65.83 69.38 68.95 62.81 65.51

Table 4  Performance results (%) for pre-seizure and seizure EEG signal classification using 
the combined feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC​ F-score ACC​ F-score ACC​ F-score ACC​ F-score

EMD IMF1 94.31 94.16 94.38 94.31 94.31 94.03 86.25 87.06

IMF2 94.12 93.85 92.62 92.48 93.13 92.79 94.06 94.22

IMF3 93.38 93.36 94.63 94.45 95.63 95.48 87.50 86.58

IMF1–IMF2 94.56 94.40 93.81 93.70 94.56 94.33 92.5 92.31

IMF1–IMF3 92.06 92.38 95.63 95.53 96.88 96.77 96.25 96.23

IMF2–IMF3 94.50 94.35 94.81 94.66 95.88 95.74 89.69 89.39

IMF1–3 90 90.99 94.88 94.81 96.19 96.07 93.75 93.59

IMF1–4 87.38 85.90 94.63 94.59 96 95.89 92.81 92.55

EEMD IMF1 96.06 96.04 94.44 94.43 93.75 93.60 96.25 96.30

IMF2 92.44 92.19 91.81 91.69 93.50 93.12 87.19 86.38

IMF3 94.50 94.42 94.06 94.02 95.44 95.27 92.19 91.80

IMF1–IMF2 94.94 94.86 94.81 94.76 94.12 93.91 92.50 92.68

IMF1–IMF3 81.69 80.29 95.94 95.90  97 96.91 84.38 84.66

IMF2–IMF3 94.44 94.32 94.25 94.21 95.38 95.18 91.25 91.36

IMF1–3 94.19 94.39 97 96.97 95.75 95.62 90.31 90.22

IMF1–4 93.56 93.30 96.19 96.17 96.88 96.77 93.13 92.86

DWT AC+DC1-3 80.81 76.83 93.44 93.38 94.56 94.43 90.94 90.97

EEG All EEG 59.75 66.33 93.25 93.35 78.94 74.41 88.44 87.46
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of DWT. Furthermore, the italicized numbers in table cells indicate the best perfor-
mance in accuracy for each approach (Tables 1, 2, 3) and classifier (Table 4).

Table 1 summarizes the performance evaluation of time-domain features used for 
classification. Using the time-domain features calculated from the IMF1–IMF3 (the 
most favorable two IMFs) of EMD, we obtain 97.18% classification accuracy and 
97.14% F-score using the logistic regression classifier. While the logistic regression 
algorithm yields the highest accuracy (98.13%) and F-score (98.13%) values by using 
the time-domain features calculated from IMF1–IMF3 of EEMD, the SVM algorithm 
performs the worst (ACC: 62.44%, F1-score: 60.80%) for the same features calculated 
from IMF2. When the same features calculated from the subbands obtained using 
DWT, we achieved 94.25% accuracy and 94.31% F-score for the KNN classifier. To 
reveal the effect of decomposition, we analyzed the EEG signal itself and repeated 
the above feature extractions and classification. Using the time-domain features and 
KNN classifier, we obtain 89.75% accuracy and 89.96% F-score, where the SVM per-
formed very poorly (ACC: 53.94% and F-score: 45.26%). Results of all classification 
using time-domain features are provided in Table 1.

We give the performance metrics for spectral features used in classification for dif-
ferent IMF combinations in Table  2. We observe that naive Bayes provides 96.88% 
accuracy and 96.77% F-score using spectral features calculated from IMF1–IMF3 of 
EMD. However, higher classification performance is obtained by the same features 
calculated from IMF2–IMF3 of EEMD with logistic regression. While 95% accuracy 
and 94.87% F-score were obtained from the spectral feature of DWT using naive 
Bayes classifier; 93.31% accuracy and 93.37% F-score were achieved using the same 
feature obtained from EEG signals itself.

Classification results using nonlinear features are given in Table  3. The results 
suggest that the nonlinear features extracted from IMF1–4 of EMD provided clas-
sification performance with 95% accuracy and 95.01% F-score using KNN and SVM. 
However, EEMD approach provided 92.94% accuracy and 92.90% F-score using the 
same features with SVM. Using the features obtained from the EEG signal itself, accu-
racy and F-score are obtained 69.38% and 68.95%, respectively, with KNN. On the 
other hand, 87.50% accuracy and 87.42% F-score were obtained using the nonlinear 
feature of the DWT approach by the logistic regression classifier.

In order to determine the effect of IMF selection on the classification performance 
and to compare the approaches, the classification is performed with the combina-
tion of time, spectral, and nonlinear features. The classification results are shown in 
Table 4. In EMD approach, the SVM provided the maximum classification accuracy 
(94.56%) using combined features of IMF1–IMF2. However, KNN (95.63%), naive 
Bayes (96.88%), and logistic regression (96.25%) classifiers resulted in the highest 
accuracies using combined features of IMF1–IMF3.

On the other hand, in the EEMD approach SVM (96.06%) and logistic regression 
(96.25%) classifiers provided the highest classification accuracy for the combined fea-
tures of IMF1. While KNN (97.06 %) achieves the best performance using combined 
features of IMF1–3, naive Bayes (97%) yielded maximum classification accuracy using 
the combined feature of IMF1–IMF3.
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DWT approach provided maximum classification accuracy of 94.56% with naive Bayes 
classifier for the combined features of subbands. Notice that by using the same features 
extracted from the EEG signal (the last row), KNN (93.25%) provides the best classifi-
cation performance. We also observed that the classification performance of the com-
bined feature-set created by using the EEG signal is worse than the EMD and EEMD 
approaches. Furthermore, the highest classification performance for all classifiers is 
achieved using features extracted by EEMD approach. Apart from the selected first 3 
IMF, the success of the classification was not improved when the features obtained using 
the 4th IMF were included in the classification process.

In order to investigate the channel-based performance of our approaches, the classifi-
cation is performed for 10 channels separately using total features of IMF1–3. The aver-
age mean classification accuracies for the channels in the left (Fp1–F7, F7–T1, T1–T3, 
T3–T5, Fp1–F3 channels) and right (Fp2–F8, F8–T2, T2–T4, T4–T6, Fp2–F4 channels) 
hemispheres are calculated. The classification accuracy of EEMD- and EEG-signal based 
approaches are higher in the left hemisphere for all four classifiers (shown in Fig.  1b, 
c). These results are supported by the clinical information about epileptic focus areas of 
patients in our study, shown in Table 5. However, in the EMD-based approach, the clas-
sification accuracy is higher for the left hemisphere only for KNN and naive Bayes classi-
fier (shown in Fig. 1a).

Discussion
In our proposed study, the main objective is to present a hybrid IMF selection method 
and explore the effect of selected IMFs extracted by EMD and EEMD, on the classifi-
cation performance. Our approach investigates the advantage of using EEMD, where 
noise-added versions of the signal are decomposed to eliminate the well-known, 
mode-mixing problem of EMD. The problem of mode mixing can be described as the 

Fig. 1  Hemisphere-based mean classification accuracy for a EMD approach, b EEMD approach, and c EEG 
signals. Here, left and right hemispheres were represented with blue and red, respectively
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occurrence of very different oscillations in one mode, or very similar oscillations in 
different modes. EEMD method has been developed to overcome this shortcoming 
of EMD. As such, in our experiments we included EEMD as well as EMD to compare 
their classification performance.

We have applied the proposed IMF selection approach on the classification of EEG 
signals recorded from epilepsy patients who are under treatment at our collaborator 
hospital. We have used 10-channel EEG signals recorded from 16 patients, provid-
ing a total of 160 pre-seizure, and 160 seizure (320 total) EEG segments. In addition, 
4 time-domain, 5 frequency domain, and 2 nonlinear features are extracted from 
each selected IMF of those EEG segments. The time-domain, spectral-domain, and 
nonlinear features obtained from the selected three IMFs (IMF1, IMF3 and IMF2; 
in this order) were classified using support vector machine (SVM), K-nearest neigh-
bor (KNN), naive Bayes, and logistic regression classifiers, and the performances of 
EMD and EEMD approaches were compared. Then by using this selection approach, 
we explore the advantages of IMF selection in either EMD or EEMD approaches as 
opposed to using first several IMFs (IMF1–4). In order to reveal the advantages of 
using EMD or EEMD approaches, the same features were extracted from the EEG 
signal itself, and the subbands obtained by the DWT approach, and classification pro-
cesses is repeated.

Performance of SVM classifier with time feature-set was found to be poor for both 
approaches. When nonlinear feature-set was used, the success of four classifiers was 
found to be low in both approaches. Using the spectral feature-set, we obtain higher 
accuracies for all classifiers except logistic regression. This suggests that epileptic 
seizures cause distinctive changes in the frequency domain. In addition, when IMF-
based classification results were evaluated, we notice that the success of classification 
performed only by the features obtained from the combination of selected IMFs was 

Table 5  Summary of the EEG data set used in the proposed study

F female, M male, LTemp left temporal, RTemp right temporal, RFron.-Temp right fronto-temporal

Subjects Gender Epileptic focus areas Age-duration

Patient 1 F LTemp

Patient 2 F LTemp

Patient 3 F LTemp

Patient 4 F LTemp

Patient 5 F LTemp

Patient 6 M LTemp

Patient 7 M LTemp

Patient 8 M RFron.-Temp Age: 37.3∓7

Patient 9 M RFron.-Temp Duration: 1 min

Patient 10 M L.Temp

Patient 11 M L.Temp

Patient 12 M R.Temp

Patient 13 M R.Temp

Patient 14 M L.Temp

Patient 15 M L.Temp.

Patient 16 M L.Temp
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higher or similar to randomly selected first 4 IMFs (except nonlinear feature set). This 
shows that the IMF selection process helps improve the classification performance 
as selected IMFs carry the most useful information for the discrimination between 
the seizure and pre-seizure segments of EEG signals. The classification accuracy 
obtained using EMD or EEMD approaches using each feature-set is higher than that 
of the features obtained directly from EEG signals, and subbands of DWT, for all four 
classifiers. The computational complexity of EMD and its derivative, over classical 
approaches such as DWT, and fast Fourier transform (FFT) is generally considered as 
a disadvantage. Contrary to common knowledge, if the number of sifting steps in the 
EMD algorithm is equal to 10, the computational complexity is given as O(N logN ), 
which is same as the computational complexity of FFT, where O denotes the order 
of computation, and N shows the signal sample size. In addition to EMD, the num-
ber of ensembles is added to the computational complexity in the EEMD approach 
[29]. Therefore, in signal processing applications, EMD-based approaches may be pre-
ferred considering the trade-off between the performance and computational cost.

Evaluating the channel-based classification performances, the classification suc-
cess of the features obtained by EEMD approach was found to be higher than other 
approaches for all 4 classifiers (shown in Fig. 1).

The innovative contributions of our study can be highlighted as follows:

•	 We propose a hybrid IMF selection method considering different approaches such 
us energy, correlation, power spectral distance, and statistical significance test.

•	 We demonstrate the advantages of using selected IMFs by the proposed approach 
of either EMD or EEMD approaches as opposed to randomly selecting first several 
IMFs.

•	 We investigate the performance improvement by using ensemble EMD in the clas-
sification of epileptic seizures as compared to traditional EMD, the EEG signal 
itself, and DWT-based approaches.

Conclusion
There are many studies in the literature for the detection and classification of epilep-
tic seizures. Many studies have been performed in this field by using EMD and deriv-
ative approaches used in our study [1, 18–28]. EMD and its extensions (ensemble, 
multivariate and other) are suitable for the analysis of nonlinear and non-stationary 
signals such as EEG. In these methods, EEG signals are decomposed into IMFs which 
are zero–mean oscillations. Determining which of these IMFs contain useful informa-
tion is vital for the success of the analysis. In most of the previous studies, the first 5 
IMFs [19, 22] or first 4 IMFs [1, 17, 20, 25] have been selected, because they contain 
high-frequency information. In other words, no IMF selection process was performed 
in the initial stage of these studies. On the other hand, there are several IMF selection 
procedures presented in the literature based on energy, correlation coefficient, power 
spectrum, and statistical significance [24, 30–33]. If the signal to be analyzed contains 
noise, the energy and correlation coefficient of the IMFs where the noise component 



Page 10 of 22Karabiber Cura et al. BioMed Eng OnLine           (2020) 19:10 

is dominant, will be high and misleading [30]. Therefore, the use of these IMF selec-
tion methods alone is not sufficient to determine the appropriate IMFs.

In our study, we propose a hybrid IMF selection approach considering energy, cor-
relation, power spectral distance, and statistical significance measures. We explore 
the advantages of the proposed IMF selection in either EMD or EEMD approaches as 
opposed to using randomly selected IMFs. In our epileptic EEG classification experi-
ments, the proposed EMD- and EEMD-based approaches outperformed the EEG-based 
and DWT-based approaches for all classifiers and feature sets we used. The selection 
algorithm for both EMD and EEMD suggests IMF1, IMF3 and IMF2 in this order. We 
use these IMFs separately and their combinations for feature extraction and evaluate the 
classification performance. The classification performance of selected IMFs and their 
combinations was generally higher than the classification success of randomly selected 
IMF1–4. It is obvious that in another signal processing problem, the selection algo-
rithm may yield a completely different set of IMFs. Hence the use of first k IMFs in the 
classification process, as generally done in previous studies, is not the best approach. 
In our simulations, highest classification accuracies were obtained by using the EEMD 
approach where the discriminative information about epileptic seizures in the channels 
may be revealed more clearly (shown in Fig. 1). Note that, working with 3 or more IMFs 
increases both the computational load and processing time. It may be concluded that 
performing an IMF selection procedure before obtaining the features directly affects the 
success and computational load of the study.

Materials and methods
Proposed approach

In this study, we present a method for pre-seizure and seizure classification algorithm 
using EMD- and EEMD-based feature extraction methods and various classifiers as 
depicted in Fig. 2. EEG data recorded from diagnosed epilepsy patients are labeled by 
physicians, and divided into pre-seizure and seizure sections. These EEG segments are 
decomposed into intrinsic mode functions (IMFs) using both EMD and EEMD methods 
for each EEG channel separately. Subsequently, optimum IMFs that best represent the 
signal are selected by combining several selection approaches. Following the IMF selec-
tion process, temporal, spectral, statistical and nonlinear features were calculated from 
the selected IMFs. Finally, the extracted features were classified by using naive Bayes, 
K-nearest neighbor (KNN), support vector machine (SVM), and logistic regression 
methods.

Data set

Epileptic EEG data of 16 epilepsy patients recorded using surface electrodes in Izmir 
Katip Celebi University, School of Medicine, Neurology Department were used in this 
study. EEG data were recorded using the Neurofax EEG device, from 18 different chan-
nels and a sampling frequency of 100 Hz. Surface EEG data were recorded from, Fp1–
F7, F7–T1, T1–T3, T3–T5, T5–O1, Fp1–F3, F3–C3, C3–P3, P3–O1, Fp2–F8, F8–T2, 
T2–T4, T4–T6, T6–O2, Fp2–F4, F4–C4, C4–P4, P4–O2, electrode positions, accord-
ing to the International 10–20 electrode placement system. In order to use this EEG 
data within the scope of our study, Izmir Katip Celebi University Non-Invasive Clinical 
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Research Ethics Committee was applied and Ethical Approval dated 08.08.2019 and 
numbered 296 was obtained. As discussed in [34], EEG signals recorded from the tem-
poral and frontal lobe-weighted 10 channels (Fp1–F7, F7–T1, T1–T3, T3–T5, Fp1–F3, 
Fp2–F8, F8–T2, T2–T4, T4–T6, Fp2–F4) are used in the study.

One-minute pre-seizure and seizure epochs were marked by neurologist in the epi-
leptic EEG signals recorded from selected channels. A total of 2 EEG epochs, one pre-
seizure, and one seizure EEG epoch were used for each patient for our study. Thus, a 
total of 32 EEG epochs (containing 10 channels, for 1 min) were analyzed. Summary of 
the EEG data set used in the proposed study is presented in Table 5.

Analysis of EEG signals using EMD and EEMD methods

We applied empirical mode decomposition (EMD) and ensemble EMD methods for the 
analysis of EEG signals in our study. In the following, we present a brief introduction to 
these decomposition methods.

Empirical mode decomposition (EMD)

Empirical mode decomposition which produces a collection of intrinsic mode functions 
(IMF) with zero–mean oscillations, is used as an adaptive time–frequency signal analysis 
method. In nonlinear and non-stationary processes, it is applied as a feature extraction 
and noise reduction method in signal processing applications. It is the most important 

Fig. 2  Block diagram of the proposed method
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rule of the EMD method that the sum of these obtained IMFs give the original signal. 
It is essential for the IMF to satisfy two conditions: (1) the number of zero crossing and 
extrema should be equal or it varies with one, (2) the mean value of the upper and lower 
envelopes should be zero. The process of the EMD algorithm is to extract IMF, also 
called Sifting, can be performed as shown in Algorithm 1 [19, 24]. 

Ensemble empirical mode decomposition (EEMD)

Although the standard EMD algorithm provides successful results in signal process-
ing applications as a time–frequency analysis method, it suffers from a problem called 
“mode mixing”. The problem of mode mixing can be described as the occurrence of very 
different oscillations in one mode, or very similar oscillations in different modes. The 
ensemble empirical mode decomposition (EEMD) method has been developed to over-
come this problem. In the EEMD method, Gaussian white noise is added to the signal to 
be analyzed and the signal is decomposed into the intrinsic mode functions (IMF) using 
the EMD method. Due to the statistical properties of Gaussian white noise, the continu-
ity of the signal is obtained in different frequency regions, so that the problem of mode 
mixing is reduced. The process of the EEMD algorithm is demonstrated in Algorithm 2 
[28].
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In the proposed method, we had a 10-channel and two-epoch EEG signal for each 
patient (total number of patients is 16). Hence the size of the pre-seizure and seizure 
EEG data set was 16 × 10. Maximum numbers of obtained IMFs after applying the 
EMD and EEMD were 16 and 15, respectively. Therefore, since it would be time-con-
suming and meaningless to obtain features from all IMFs, IMF selection process was 
performed before the feature extraction.

Discrete wavelet transforms (DWT) has widely been used for the analysis of non-sta-
tionary signals [23]. In our study, we use the DWT-based approach for feature extraction 
and classification of epileptic EEG segments to investigate the advantages of proposed 
EMD- and EEMD-based approaches. DWT decomposes a given signal x[n] into detail 
and approximation coefficients by using a set of mother wavelet function [23, 35]. In our 
study, Daubechies4 (db4) mother wavelet and 3-level subband decomposition are used.

Selection of intrinsic mode functions (IMFs)

In this study, we propose a hybrid IMF selection method by using energy-based, correla-
tion-based, PSD distance-based, and t-test-based approaches. Pre-seizures and seizures 
epileptic EEG data of 16 patients recorded from 10 channels were decomposed into the 
IMFs using both EMD and EEMD approaches (example signals are shown in Fig. 3), then 
the proposed IMF selection procedure in the following described is executed.

Fig. 3  a Surface pre-seizure EEG signal and its first three IMF obtained using EMD; b surface seizure EEG 
signal and its first three IMF obtained using EMD; c surface pre-seizure EEG signal and its first three IMF 
obtained using EEMD; d surface seizure EEG signal and its first three IMF obtained using EEMD
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Energy‑based selection method

The energies of each IMFs are calculated as shown in Eq. (1). Since the higher-energy 
IMF is considered to be the best representative of the original signal, the IMFs were 
ranked from the high to the low energy IMF [30].

Here, IMFi is the ith IMF and EIMFi is the energy of this IMF.

The correlation‑based selection method

The correlation coefficient of each IMFs are calculated as shown in Eq. (2). Since the 
IMF with high correlation coefficient is considered to be a good representative IMF of 
the original signal, the IMFs are ranked from the high to low correlation coefficient IMF 
[31].

Here, Cx,IMFi is the cross-covariance of the original signal and ith IMF , σx , and σIMFi are 
the standard deviations of the original signal and IMFi, respectively, andρ denotes the 
correlation coefficient.

The PSD distance‑based selection method

Another IMF selection method, based on power spectral densities (PSD) was also uti-
lized by using the power spectral densities of the original signal and IMFs. The distances 
between the estimated PSDs are calculated using the Kullback Liebler distance (KLD) 
method as shown in Eq. (3). If the distance between the PSDs of original signal and an 
IMF is minimum, that IMF is considered to be the best representative IMF of the origi-
nal signal. Hence, the IMFs are ranked from the low to the high PSD distance IMF [32, 
33].

where Sx(.) is the power spectrum of the original signal, SIMFi(.) is the power spectrum 
of the ith IMF , the disKLD(x, IMFi) shows the KLD between the power spectra of the 
ith IMF and that of the original signal.

Statistical significance‑based selection method

We also use the t-test statistical significance measure for the selection of best IMFs. The 
t-test is based on the principle of generating a null hypothesis that a single sample data 
set comes from a normal distribution. In this statistical significance test, test statistic val-
ues; h-value and p-value are calculated. Here, the h-value indicates whether the distribu-
tion of data is normal, and the p-value indicates the statistical significance of the data. If 
a p-value greater than the specified threshold of α (often chosen as 0.05 or 5% in the liter-
ature), the distribution of data can be interpreted as normal (null hypothesis is satisfied, 

(1)EIMFi =

N−1
∑

n=0

|IMFi[n]|
2, i = 1, . . . , L.

(2)ρx,IMFi =
Cx,IMFi

σxσIMFi

.

(3)disKLD(x, IMFi) =

N−1
∑

n=0

log
Sx(ωk)

SIMFi(ωk)
, ωk =

2π

N
k ,
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h-value = 0). Otherwise, if this p-value is less than that threshold, the distribution of 
data may not be interpreted as normal (null hypothesis is not satisfied, h-value = 1). The 
p-values of the data whose distribution is known to be normal (h-value = 0) can be used 
as a statistical significance measure. It has previously been recommended to select the 
IMFs with high p-values in order to create a feature set with improved classification per-
formance [24]. As such, we calculate the p-value for every IMFs by applying the t-test. 
Since the p-value obtained here shows the statistical significance of IMFs, the IMFs are 
ranked from the high to low p-value IMF.

Table 6 shows the results of the above four selection approaches for one of the patients 
and one EEG channel.

These procedures were applied to the pre-seizure and seizure EEG data of 10 different 
channels of each patient separately. Finally, 40 metrics for 10 channels are calculated for 
each patient. All ranking matrices were combined and a 1280 × 16 -dimensional rank-
ing matrix for all pre-seizure and seizure EEG data was obtained. To determine the first 

Table 6  Example of IMF ranking matrix

Here, 7th IMF has the highest energy while 12th IMF has the lowest energy.

7th IMF has the highest correlation coefficient while 2nd IMF has the lowest correlation coefficient.

1st IMF has the lowest PSD distance while 12th IMF has the highest PSD distance.

3rd IMF has the highest p value while 12th IMF has the lowest p value.

Each row shows the ranking of the obtained IMFs according to that features

Component Order of IMF

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Energy 7 6 8 5 9 10 4 1 3 2 11 12

Correlation coefficient 7 6 8 9 5 4 10 3 11 12 1 2

PSD distance 1 2 3 4 5 6 7 8 9 10 11 12

p value 3 2 1 7 4 9 5 6 10 8 11 12

Fig. 4  Histogram of first priority selected IMFs
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priority selected IMFs for all signals, the histogram of the 1st column of the ranking 
matrix was calculated. The resulting histogram is shown in Fig. 4.

Examining the histogram shown in Fig. 4, we observe that the IMF1 is the first prior-
ity selected IMF, IMF2 is the third, and IMF3 is the second priority selected IMF. In our 
simulation, we choose these three IMFs (IMF1, IMF3, IMF2) for feature extraction.

The histogram shown in Fig. 4 suggests IMF1, IMF3 and IMF2 in this order.

Classification of pre‑seizure and seizure EEG segments

In this section, we present a method to classify the pre-seizure and seizure segment of 
EEG signals collected from epilepsy patients. These EEG signals are detailed introduced 
in "Data set" section. We use the selected best IMFs represented the EEG signals, we 
extract a set of feature.

Feature extraction

Time-domain, spectral, and nonlinear features were obtained using the selected IMFs 
and original EEG signals to obtain feature sets.

•	 Time-domain feature set: after the IMF selection process was carried out, the time-
domain feature data set was created, using directly the EEG signals, using the first 
three of the IMFs obtained by EMD and EEMD methods, and using the subbands of 
DWT. Energy, mean value, skewness, and kurtosis values were calculated for 3 IMFs, 
DWT subbands, and EEG signals in the time-domain [8, 23].

In the above equations, X[n] indicates the EEG signal or IMFs, N is the size of the signal 
or IMFs. E denotes the energy, µ is the mean value; S indicates the skewness, K is the 
kurtosis value.

In the EMD- and EEMD-based approaches a total of 320 × 12 size, and DWT -based 
approach a total of 320 × 16 size feature sets were obtained. Applying the same proce-
dure to the EEG signal itself, a total of 320 × 14 size feature set for pre-seizure and sei-
zure EEG data was obtained.

(4)E =

N−1
∑

n=0

|X[n]|2

(5)µ =
1

N

N−1
∑

n=0

X[n]

(6)
S =

1
N

∑N−1
n=0 (X[n] − µ)3

(

√

1
N
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n=0 ([n] − µ)2

)3

(7)K =

1
N
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n=0 (X[n] − µ)4

(

1
N
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n=0 (X[n] − µ)2

)2
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•	 Spectral-domain feature set: to generate this feature data set, the spectrum of the 
signal or IMF calculated by the periodogram method was used. Total power, spec-
tral entropy, 1st, 2nd, and 3rd moments were calculated using the spectrum of 
signals [10, 26].

Here, in Eqs. (8) and (9), S(ωk) denotes the power spectral density of the signal esti-
mated by periodogram method, X(ωk) is the discrete Fourier transform of the signal 
x[n] [10], and ST is the total power. In addition, N indicates the size of the corre-
sponding signal and ωk =

2π
N k ; Mj given in Eq. (10), indicate the higher order spec-

tral moments of the corresponding signal. H shown in Eq. (11) denotes the spectral 
entropy of the signal, and P(ωk) =

S(ωk )
ST

 indicates the normalized power spectral dis-
tribution [26].

In the EMD- and EEMD-based approaches a total of 320 × 15 size, and DWT 
-based approach a total of 320 × 20 size feature sets were obtained. Applying the same 
procedure to the EEG signal itself, a total of 320 × 5 size feature set for pre-seizure 
and seizure EEG data was obtained.

•	 Nonlinear feature set: nonlinear features such as the Hurst exponent and Higuchi 
fractal dimension were computed to obtain this feature data set. These nonlinear fea-
tures are used to analyze the complexity and self-similarity of brain recordings and 
other biological signals. Calculation of Hurst exponent and Higuchi fractal dimen-
sion were given in Eqs. (12), (13), (14), and (15); (16), (17), and (18), respectively.

(8)S(ωk) =
1

N
|X(ωk)|

2

(9)ST =

N−1
∑

k=0

S(ωk)

(10)Mj =

N−1
∑

k=0

(ωk)
jS(ωk), j = 1, 2, 3

(11)H = −

N−1
∑

k=0

P(ωk) log2 P(ωk)

(12)X[n] = {X[1],X[2], . . . ,X[N ]}

(13)XA[n] =

n
∑

i=1

X[i] − µ, n = 1, . . . ,N

(14)

R[m] = max({XA[1],XA[2], . . . ,XA[m]})−min({XA[1],XA[2], . . . ,XA[m]}),

S[m] =

√

√

√

√

1

m

m
∑

k=1

(X[k] − X̄m)2, m = 1, . . . ,N
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where X[n] given in Eq. (12) shows the EEG signal or the IMFs to be analyzed and 
µ indicates the mean value of this signal. The XA[n] shown in Eq. (13) indicates the 
accumulated deviation value of X[n]. Equations (14) shows the range series R[m] and 
the standard deviation S[m] of the time-series X[n], and X̄m is the mean value from 
X[1] to X[m]. In Eq. (15), LN shows the logarithmic value. The Hurst exponent is cal-
culated as the slope of the line where LN is plotted with respect to ln(k).

The value of Hurst Exponent (HE) ranges from 0 to 1. If there is no correlation in the 
time-series, HE = 0.5 ; if time-series has long-range anti-correlations, 0 < HE < 0.5 
and if there is long-range correlations in the time-series, 0.5 < HE < 1 [16].

Higuchi fractal dimension (HFD) used to calculate the fractal dimension (FD) 
directly from time-series signals. The most important parameter that must be deter-
mined for the calculation of Higuchi fractal dimension is k(max) . The HFD values 
calculated in a given k(max) range are plotted against this range in order to deter-
mine the optimal value for the k(max) parameter. The k value that the obtained curve 
reaches the saturation point is determined as k(max) [17, 36].

In Eq. (16) , X indicates the one-dimensional time-series EEG signal or the IMFs and 
Xk

m indicates the new time-series. Here, k and m are integers and the int(.) operation 
indicates the integer part of the (N −m)/k value, N is the length of the original signal. 
The L[m, k] calculated in Eq. (17) indicates the the size of the new time-series signals. 
The L[k] calculated by using the average of the L(m, k) values in Eq. (18) indicates the 
length of the curve for the k new time interval. HFD is calculated as the slope of the line 
where L[k] is plotted with respect to ln[1/k], k = 1, 2, . . . , kmax.

In our study, HFD values calculated against different k (max) values were plotted 
and a graph was obtained. It was observed that this graph reached saturation point 
when kmax = 30.

In the EMD- and EEMD-based approaches a total of 320 × 6 size, and DWT 
-based approach a total of 320 × 8 size feature sets were obtained. Applying the same 
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procedure to the EEG signal itself, a total of 320 × 2 size feature set for pre-seizure 
and seizure EEG data was obtained.

Classification

Features extracted from the selected IMFs of the EEG signals are used to discriminate 
the pre-seizure and seizure segments of the EEG by using the support vector machines 
(SVM), K-nearest neighbor (KNN), and naive Bayes classifiers. In the following, we pre-
sent the fundamentals of these classification methods.

•	 Support vector machine (SVM): support vector machine (SVM), a supervised 
machine learning algorithm, is a successful algorithm that is frequently used in both 
classification and regression studies. In this algorithm, the elements of the data set 
containing n features are placed as elements of the coordinate system in an n-dimen-
sional space. Then, the classification is performed by finding the hyperplane that 
separates the classes best. There are many possible hyperplanes that can separate 
the two classes. What is important here is to choose the hyperplane from which the 
highest classification performance may be achieved.

Let (xk , yk) be given as a separable sample example. Here, k indicates the size of the fea-
ture set and y ∈ {−1, 1} indicates the class label. Thence, separating hyperplane can be 
formulated with f (x) = �wx + c. Here, �w indicates the hyperplane parameters and c indi-
cates the offset. The hyperplanes that can separate the two classes from each other with 
minimum error provide yk [(�wxk)+ c] − 1 ≥ 0, k = 1, 2, . . . , n condition. The main pur-
pose here is to achieve the maximum margin. Here, the margin is the distance between 
the support vectors belonging to two different class. Finally, the data falling on different 
sides of the hyperplane is assigned as an element of a different class [13, 14, 18, 19, 26].

•	 K-nearest neighbor (KNN): it is one of the learning-based pattern recognition meth-
ods. The data set is divided into two parts as training and tests then the learning 
process is performed according to the data in the training set. First, the distance 
between the sample to be classified and all the data in the training set is calculated. 
Then, the K-nearest neighbors that have minimum distance is determined. Finally, 
the most common class among these K-nearest neighbors is selected as the class of 
the new sample. Various distance measurement methods such as Euclidean, Manhat-
tan, Minkowski, and Hamming can be used for distance calculation [26, 35, 37]. In 
our study, the most commonly used Euclidean distance calculation method is used 
[shown in Eq. (19)] and k value is chosen as 5.

•	 Naive Bayes: it is one of the probabilistic classifier based on Bayes theorem in which 
classification is performed according to probability basics. The classification process 
is performed by calculating the membership probability of a sample to all classes in 
the data set.

(19)ED =

√

√
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∑
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(xm − ym)2
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Let X = {x1, x2, . . . , xn} be given. Here, n is the number of features, X indicates the 
sample in the feature-set. In addition, {M1,M2, . . . ,Mm} represents classes, here m is 
the number of classes. The probability that each X data in the data set is a member of 
the Mi class is calculated as given in Eq. (20):

Then the X data is assigned to the class in which class membership is highest. Here, X 
data is assigned to the Mi class, where P(Mi) indicates the class prior probabilities, P(X) 
indicates the prior probability of sample X, P(X/Mi) indicates the probability of X con-
ditioned on Mi and P(Mi/X) indicates the probability of Mi conditioned on X [35, 37].

•	 Logistic regression: logistic regression (LR) is a frequently used statistical classi-
fication technique in which the probability (P1), of dichotomous outcome event 
limited to two values such as yes/no, on/off, or 1/0, is related to a set of independ-
ent variables, and given in Eq. (21):

Here, β0 is the intercept and {β1X1 + · · · + βnXn} are the coefficients associated 
with the independent variable {X1,X2, . . . ,Xn} . Generally, in the logistic regression 
method, the maximum likelihood estimation (MLE) method is used to calculate the 
coefficients {β1X1 + · · · + βnXn}.

The probability of an event existing as a function of the independent variables is 
nonlinear as extracted from Eq. (22) [38]:

Here, P1 ∈ {0, 1} indicates the probability value.
If the result of our Eq. (22) is −∞ , the probability is 0 ( P1 = 0 ), and if the result of 

this equation is ∞ , our probability is 1.

Performance evaluation

In this study, accuracy (ACC), sensitivity (SEN), selectivity (SPE), and precision (PRE) 
expressed as the performance criteria and F-score values that is the combination of 
previous parameters were used for performance evaluation. Fivefold cross-validation 
(CV) method has been used to establish the performances of the classifiers.

The feature set used in the k-fold CV method is randomly separated into k differ-
ent folds with the same size. Of these k folds, (k − 1) folds are used for training and 
the other one (1) fold is used for testing. No fold is used for validation processes. This 
process is repeated k times and the accuracy value is calculated separately for each 
iteration. After k iterations, the average accuracy value is obtained. This average accu-
racy obtained is accepted as CV accuracy [21, 23].

(20)
P(Mi/X) =

P(X/Mi)P(Mi)

P(X)

if; P(Mi/X) > P(Mj/X), 1 ≤ j ≤ m, j �= i.

(21)logit(P1) = ln

(

P1

1− P1

)

= β0 + β1X1 + . . .+ βnXn.

(22)P1(X) =
P1

1+ e−logit(P1(X))
.
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In Eq. 23 , false-positive (FP) indicates the number of samples for class 0, but is mistaken 
for class 1 by the algorithm. False-negative (FN) denotes the number of samples for class 
1, but is mistaken for class 0 by the algorithm. True-positive (TP) (the number of sam-
ples for class 1) and true-negative (TN) (the number of samples for class 0) indicate the 
numbers of samples that are exactly classified by the algorithm [13, 14].
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