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Abstract 

Background:  Site-specific variations are challenges for pooling analyses in multi-
center studies. This work aims to propose an inter-site harmonization method based on 
dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived 
metrics on neonatal brains.

Results:  DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are 
obtained on age-matched neonates without magnetic resonance imaging (MRI) 
abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-
site differences of FA can be observed. The proposed harmonization approach and 
three conventional methods (the global-wise scaling, the voxel-wise scaling, and 
the ComBat) are performed on DTI-derived metrics from two sites. During the tract-
based spatial statistics, inter-site differences can be removed by the proposed dual 
GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the 
proposed method holds the lowest median values in absolute errors and root mean 
square errors. During the pooling analysis of two sites, Pearson correlation coefficients 
between FA and the postmenstrual age after harmonization are larger than those 
before harmonization. The effect sizes (Cohen’s d between males and females) are also 
maintained by the harmonization procedure.

Conclusions:  The proposed dual GANs-based harmonization method is effective to 
harmonize neonatal DTI-derived metrics from different sites. Results in this study fur-
ther suggest that the GANs-based harmonization is a feasible pre-processing method 
for pooling analyses in multi-center studies.
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Background
Diffusion tensor imaging (DTI) has been widely used to assess structural alterations 
associated with the brain development or lesions on neonates [1, 2]. However, the sam-
ple size is always limited due to the difficulty of the neonatal data acquisition [3]. To 
improve the statistical power, the multi-center/multi-scanner study is a common strat-
egy [4]. DTI-derived metrics are reproductive when magnetic resonance imaging (MRI) 
scanners and acquisition protocols are equivalent [5]. However, differences related to the 
variety of scanners, magnetic fields, coils, and/or acquisition protocols usually exist in 
multi-center studies [6, 7]. Such site-specific effects will introduce measurement vari-
ability, which hinder the ability to obtain ‘truly’ quantitative measures, which may lead 
to false findings [8]. Therefore, the site-specific variations have to be removed prior to 
integrating datasets. The inter-site (or inter-scanner) harmonization is the essential step 
in multi-center studies.

Recently, several harmonization methods have been proposed based on the phantom 
or directly based on human brain datasets. The phantom-based harmonization is a sim-
ple and feasible approach to correct systematic differences across sites [4, 9]. However, 
it is not suitable for retrospective studies to monitor real-time states of MRI scanners 
by phantoms. Furthermore, it may be not adequate to capture tissue-specific differences 
[7]. The harmonization based on human brain datasets may overcome these problems 
related to the phantom-based harmonization [7, 10–13]. There are three categories of 
approaches based on human brain datasets [7, 11]: the model-free approach based on 
the rotation-invariant spherical harmonic (RISH) features, the meta-analysis, and the 
statistical covariates methods. For the RISH-based method, regional complexities of bio-
logical properties in the brain have been considered during the harmonization [10]. It 
is able to capture tissue-specific differences. However, the accuracy of the transforma-
tion from diffusion-weighted images to the representation of spherical harmonic basis 
depends on the gradient direction number [14]. The demand of the high angular reso-
lution during the data acquisition will limit its clinical applications. Approaches based 
on DTI-derived metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), 
may be relatively feasible in clinical applications. As a comparison, the harmonization 
based on the meta-analysis can be performed on DTI-derived metrics. The meta-anal-
ysis strategy [15, 16] harmonizes data through calculating z-scores, with the hypoth-
esis of Gaussian distribution of the metric. However, the distribution is non-Gaussian 
because of the limited sample size in most cases [11]. Similarly, harmonization methods 
based on statistical covariates can also be performed on DTI-derived metrics. Among 
the methods based on statistical covariates, the linear scaling based on the whole brain 
or the target region of interest is the easiest to be implemented [4, 17]. Compared with 
the scaling, ComBat demonstrates better performances by estimating additive and mul-
tiplicative factors in each voxel [17, 18]. However, the parametric distribution is difficult 
to be determined for various imaging models [7]. It is also difficult to determine whether 
assumed parameters in the ComBat are enough to reflect scanner-related or site-related 
effects. Moreover, the feasibility of the previous harmonization methods proposed on 
datasets of adults remains to be investigated on datasets of neonates.

To solve the problem related to the parameter selection and capture characteristics 
of the data distribution, the framework of generative adversarial networks (GANs) 
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is an effective approach [19, 20]. Moreover, deep learning-based algorithms can reli-
ably capture the nonlinear mapping relationship between different sites or scanners 
[13]. GANs employ two neural networks, the generator and the discriminator, to yield 
high-quality synthetic images. By setting opposite objectives, the generator and the 
discriminator are adversarial to each other. As the training goes on, each network 
will be improved. Finally, the generator can yield sharp vivid images. Based on the 
power of GANs to generate synthetic images, the dual learning architecture has been 
adapted to achieve the unsupervised image-to-image translation [21–23]. This moti-
vates us to consider the same demand in the harmonization task.

In this work, we try to propose an inter-site harmonization approach by using the 
dual GANs (Fig. 1) with the Markovian discriminator (Fig. 2). Based on DTI-derived 
metrics (FA and MD) of age-matched neonates from different sites, this study intro-
duces the GANs to find the complex nonlinear mapping relationship between two 
different domains. Performances of the proposed approach are compared with three 
conventional methods: the scaling based on the whole brain white matter (global-wise 
scaling), the scaling in voxels (voxel-wise scaling), and ComBat [17]. The highlight of 
this work is to propose a dual GANs-based harmonization method and evaluate its 
performance on neonatal datasets.

Fig. 1  The diagram of the proposed harmonization approach based on dual generative adversarial networks
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Results
DTI metrics affected by sites

To demonstrate site effects on FA, Fig. 3 shows the histogram of FA values in the white 
matter region on neonates from two sites. In this study, there is no significant inter-site 
difference in the gestational age, the postmenstrual age, the gender ratio, or the birth 
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Fig. 2  Network architecture (a) and differences between the Markovian and the traditional discriminators 
(b, c). Conv convolution operation, DeConv transposed convolution operation, kN kernel size, sN stride 
size, cN number of output channels, BN batch normalization layers, ReLU rectified linear unit, LReLU, Leaky 
rectified linear unit. The green dotted line in generator represents skip connection followed by concatenation 
operation. pij (i = 1,2,…,n; j = 1,2,…,n) denotes the discriminate probability computed in each local region, 
where i and j are the orders of regions in the horizontal and the vertical orientations
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weight of the enrolled neonates. However, site 2 holds significantly (P < 0.05) higher FA 
than site 1 (as shown in Fig. 3). Moreover, Pearson correlation coefficient between the 
inter-site difference and the averaged FA is 0.1771 (as shown in Figure S1, Additional 
file 1). This suggests that the correlation between FA values and site effects is weak. By 
using tract-based spatial statistics (TBSS), it can be found that the original data without 
harmonization have significant inter-site differences (P < 0.05) in nearly the whole white 
matter region (as shown in Fig. 4). Similar site effects can also be found on MD (Figure 
S2A and B, Additional file 2). Though the inter-site differences in the distribution of MD 
is less obvious than that of FA, TBSS shows significant differences in MD between sites. 
This is in agreement with the previous results on subject from 8 to 19 years [17]. There-
fore, it is necessary to harmonize the data prior to the pooling analysis.

Dual GANs reduce site‑related effects on DTI‑derived metrics

As shown in Fig. 4, the proposed method achieves comparable results as the voxel-wise 
scaling and the ComBat methods. They can eliminate the inter-site significant differ-
ences in the white matter region. However, quantities of voxels with inter-site significant 
differences still exist for the global-wise scaling method. This suggests that methods per-
formed at the voxel level are more efficient than that performed at the global level.

To quantify differences between sites, Figs. 5 and 6 show the absolute error and the 
root mean square error (RMSE) before and after harmonization. The voxel-wise scaling, 
the ComBat, and the proposed dual GANs methods can reduce the absolute error and 
RMSE, compared with those of the original data. Furthermore, the proposed method 
holds the lowest median values in the absolute error and RMSE, according to the results 
of the sixfold cross-validation.

Note that, the results in Figs. 4, 5, and 6 are based on the dual GANs with the 2-dimen-
sional (2D) kernel in the axial orientation. Compared with the sagittal or the coronal ori-
entation, the harmonization based on dual GANs with 2D-kernel in the axial orientation 
holds lower RMSE (as shown in Table S1, Additional file 3). It can achieve comparable 
results with the 3-dimensional (3D) kernel (as shown in Table S1, Additional file 3 and 
Figure S3, Additional file 4). Moreover, the harmonization based on dual GANs with the 
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Fig. 3  Distributions of fractional anisotropy (FA) values on white matter of datasets from different sites. Note 
that site 2 holds significantly (P < 0.05) higher FA than site 1
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2D-kernel in the axial orientation can remove site effects on MD as well (as shown in 
Figure S2, Additional file 2). As in the case of 3 sites, one of the sites can be selected as 
the reference. As shown in Figure S4, Additional file 5, site 2 is considered as the refer-
ence. The dual-GAN method can remove the differences across sites (Figure S4B and D, 
Additional file 5).

Application in the pooling analysis of white matter development

To reveal age-related changes during the pooling analysis, this study performs Pearson 
correlation between postmenstrual age and FA along splenium of the corpus callosum 
(SCC), left and right corticospinal tract (CST) on neonates without MRI abnormalities. 

a Reference: Site 1

Original     Global-wise scaling   Voxel-wise scaling   ComBat Dual GANs 

b Reference: Site 2
Original     Global-wise scaling   Voxel-wise scaling   ComBat Dual GANs 

P<0.05 for site 1 < 2
P<0.05 for site 1 > 2

Fig. 4  Inter-site differences in fractional anisotropy (FA) values before and after harmonization using different 
methods. Red represents that site 2 holds significantly (P < 0.05) higher FA than site 1. Blue represents that site 
2 holds significantly (P < 0.05) lower FA than site 1. Green represents regions without significant difference 
between two sites. Note: dual generative adversarial networks are performed with the 2-dimensional kernel 
on axial slices. For inter-site comparisons after harmonization, differences with P < 0.05 in any run of the 
sixfold cross-validation are overlaid together on the template map
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Positive correlation between the postmenstrual age and FA can be found (as shown in 
Fig. 7). The dual GANs harmonization method increases the number of locations with 
significant correlation (P < 0.05), compared with the correlation before harmonization. 
Moreover, correlation coefficients after harmonization averaged over different runs of 
the cross-validation are also larger than those before harmonization.

Furthermore, inter-gender differences (Cohen’s d between males and females) can 
be maintained by the harmonization procedure (as shown in Figure S5, Additional 
file 6). Specifically, changes in the Cohen’s d are from 0.1088 to 0.0990, from − 0.2177 
to − 0.2632, and from − 0.3328 to − 0.4226 on SCC, left CST and right CST separately 
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Fig. 5  Representative slices of the averaged absolute error before and after harmonization by using 
different methods. Note: dual generative adversarial networks are performed with the 2-dimensional kernel 
on axial slices. Absolute errors after harmonization have been averaged over different runs of the sixfold 
cross-validation
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Fig. 6  Boxplot of root mean square error (RMSE) on white matter before and after harmonization by using 
different methods. The red lines represent median values in RMSE. Note: dual generative adversarial networks 
are performed with the 2-dimensional kernel on axial slices. Prior to the calculation of medians and the 
boxplot drawing, RMSE values after harmonization have been averaged over different runs of the sixfold 
cross-validation
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in site 1. As in site 2, changes in the Cohen’s d are from 0.2598 to 0.2343, from 0.1528 to 
0.1141, and from 0.2894 to 0.2980 on SCC, left CST and right CST separately. Note that 
the Cohen’s d values after harmonization have been averaged over different runs of the 
cross-validation.

Discussion
This study proposes a dual GANs-based harmonization method for neonatal DTI-
derived metrics from different sites. With smaller errors than conventional methods, 
the proposed method effectively removes site-related effects during the TBSS analysis. 
Moreover, the method can preserve the age-related and the gender-related variations of 
FA during the harmonization procedure.

Dual GANs vs. scaling and ComBat methods

Differences between sites or scanners, specifically including differences in magnetic 
fields, coils, and acquisition parameters, always cause nonlinear changes in MRI signals 
[7]. Together with potential unknown factors, the above differences make the relation-
ship between two sites complex. To remove effects associated with sites or scanners, 
various studies have proposed several methods to harmonize the DTI data [4, 17]. Con-
sistent with the previous finding [17], the global-wise scaling does not work well to 
harmonize neonatal datasets from different sites in this study. This is due to the spatial 
heterogeneity of site-related effects throughout the white matter [10]. As comparisons, 
the scaling and the ComBat at the voxel-wise level can overcome the problem of the 
global-wise scaling and perform well on neonatal datasets. However, it is not able to fully 
capture the nonlinear inter-site relationship by using a prior assumed model with sev-
eral observing significant factors. Different from conventional methods like the scaling 
and the ComBat, the proposed method introduces dual GANs to map the complex non-
linear relationship between different sites. This relatively complex mapping procedure 
takes longer time than the scaling and ComBat methods. On the same local computer, 
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Fig. 7  Correlation coefficient (Pearson correlation) between fractional anisotropy (FA) along white matter 
tracts and the postmenstrual age before and after harmonization. Locations: 100 planes along the white 
matter tract. Red and blue dots represent significant (P < 0.05) correlation before and after harmonization, 
respectively. Note: dual generative adversarial networks are performed with the 2-dimensional kernel on 
axial slices. Correlation coefficients after harmonization have been averaged over different runs of the sixfold 
cross-validation. The P ≥ 0.05 in any run of the cross-validation indicates that the correlation is not statistically 
significant



Page 9 of 18Zhong et al. BioMed Eng OnLine            (2020) 19:4 

the scaling and ComBat methods take about 2 × 10−5 s/slice, while the proposed method 
takes 2 × 10−2 s/slice during the inference procedure. Fortunately, the proposed method 
demonstrates advantages in reducing inter-site differences with smaller absolute errors 
and RMSE. The age-related and the gender-related variations of FA can be preserved 
during the harmonization procedure. Furthermore, the dual GANs-based harmoniza-
tion can increase the correlation coefficient between FA and the postmenstrual age dur-
ing the pooling analysis. In the case of multiple sites (more than 2 sites), one of the sites 
should be selected as the reference during the harmonization procedure. Results in this 
study suggest that dual GANs can be an alternative method for the data harmonization 
in multi-center studies.

Dual GANs vs. other deep learning‑based methods

Besides the assumed model-based harmonization methods, several deep learning 
approaches have also been reported [12, 13]. Similar to the motivation of those deep 
learning-based methods, this work tries to map the complex relationship between sites 
through the convolutional neural network. Different from previous methods, the pro-
posed approach is based on DTI-derived metrics instead of RISH features, considering 
the limited gradient direction number [14]. Meanwhile, this work uses the Markovian 
discriminator in the harmonization framework. This can improve the ability of GANs 
to capture the local information [22, 23], though the local information may be still not 
enough to achieve details in site effects. Furthermore, the dual GANs-based harmoniza-
tion can work well on unpaired datasets during the training, which will improve the flex-
ibility during applications.

As for the selection of kernel styles of dual GANs, the 2D-kernel in the axial orien-
tation shows great performances, compared with the 3D-kernel and 2D-kernels in the 
coronal and the sagittal orientations. This may be associated with the acquisition mode. 
In this current work, the axial acquisition mode is used. The intra-slice resolution is 
1.41 × 1.41  mm2, while the slice thickness is 2.5  mm or 4  mm. Therefore, the harmo-
nization depending on axial slices may be more suitable for these datasets. Consider-
ing the efficiency of training (2D vs. 3D: 0.07 vs. 0.70 s/slice) and the RMSE, this work 
focuses on the GANs with the 2D-kernel. During applications, the appropriate orienta-
tion should be selected according to the acquisition mode.

Limitations

Despite the promising results, this study also has some limitations. Firstly, the proposed 
method should be used with caution during applications, though it works well on the 
enrolled neonates in this study. Model parameters in dual GANs are mainly dependent 
on the target and the reference images. Therefore, dual GANs should be trained again 
when they are performed on new datasets to capture the specific information. Secondly, 
the mapping between sites in this work may be not perfect. This work harmonizes DTI-
derived metrics of age-matched neonates from two sites. The strategy based on the same 
travelers across different sites may overcome this limitation. However, it is not practi-
cal to acquire data from different sites on the same neonates during the same period. 
Thirdly, the harmonization method is performed on the DTI-derived metrics (FA and 
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MD) instead of the raw diffusion-weighted data. This will increase the cost of training 
for various metrics.

Conclusions
In conclusion, the proposed dual GANs-based harmonization method is effective to 
harmonize neonatal DTI-derived metrics from different sites. Results in this study fur-
ther suggest that the GANs-based harmonization is a feasible pre-processing method for 
pooling analyses in multi-center studies. Our future work will focus on the harmoniza-
tion approach for the raw diffusion-weighted data and try to improve the computational 
efficiency.

Methods
This study is approved by the local institutional review board. Informed written consents 
have been obtained from parents of neonates.

Pipeline of the GANs‑based harmonization method

GANs

GANs have achieved impressive results in the image generation, the image editing and 
the image translation tasks [19, 20]. The main idea of the adversarial training is intro-
ducing an auxiliary discriminator to handle the difficulty of evaluating the quality of 
generated images. The discriminator can be regarded as a binary classifier to distinguish 
synthetic images from real images. During the training process, the generator tries to 
generate high-quality synthetic images to satisfy the discriminator, while the discrim-
inator tries to discriminate those synthetic images. In practice, the generator and the 
discriminator are usually implemented as two independent neural networks. To form 
the adversarial relationship, GANs use the cross-entropy to define the objective of both 
networks:

where G and D denote the generator and the discriminator separately. x ∼ pdata(x) rep-
resents the real data. z ∼ pz(z) is the random noise taken by the generator. The min and 
max denote that two networks are going to optimize this objective function in opposite 
directions. The capacity of the generator and the discriminator will be improved dur-
ing the training process. Once the generator is well trained, it can generate high-quality 
images, hard to be distinguished from real images.

Based on dual GANs, the harmonization pipeline is designed as shown in Fig.  1. 
Details about the dual learning architecture, the objective, and the network configura-
tion are introduced as follows.

Dual learning architecture

The dual learning architecture is firstly proposed to reduce the requirement on labeled 
pairs in the machine translation [24]. The main idea of such architecture is to avoid the 
need of the paired training data. Moreover, the dual learning architecture can also help 
constraining a one-to-one mapping between the source and the target domains [21].

(1)min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+ Ez∼pz(z)[log (1− D(G(z)))],
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As shown in Fig. 1, the workflow of the dual GANs-based harmonization can be briefly 
summarized as follows: given the metric image (such as the FA) x ∈ px∼site1(x) , generator 
GA : site 1 → site 2 is employed to generate the harmonized output x′ = GA(x) . Discrim-
inator DA is then trained to distinguish the harmonized result xʹ from the DTI-derived 
metric y ∈ site 2 . To guarantee a meaningful mapping, generator GB : site 2 → site 1 is 
used to generate the corresponding reconstructed metric x′′ = GB

(

x′
)

= GB(GA(x)) of 
the original input x. And a reconstruction loss �x − GB(GA(x))� is employed to force 
the reconstructed result x” to obey the original distribution. Notice that, the generator 
and the discriminator are trained simultaneously in this dual task. Similarly, the met-
ric y ∈ px∼site2

(

y
)

 is used to generate the harmonized result y′ = GB

(

y
)

 . And then the 
reconstructed metric is generated by: y′′ = GA

(

y′
)

= GA

(

GB

(

y
))

 . The reconstruction 
error is defined as 

∥

∥y− GA(GB

(

y
)

)
∥

∥ , the distance between the original and the recon-
structed metrics.

A previous study [21] showed that the conventional model cannot guarantee the one-
to-one mapping, since the ability of the generator is theoretically infinite without the 
dual learning architecture [19, 20]. In other words, there are quantities of mappings 
between two domains. Though generators can always find a mapping without any con-
straint, the mapping is not one-to-one. Such harmonization could not bring us the 
meaningful relationship. Therefore, the dual learning architecture is essential for the 
GANs-based harmonization.

Objective

The key to the great performance of GANs is the use of the adversarial loss between the 
generator and the discriminator. However, it is difficult to achieve the balance between 
the generator and the discriminator. As observed in the previous work [25], the failure 
of GANs’ training is associated with the traditional format loss function based on the 
optimization toward the Kullback–Leibler divergence between the real and the gener-
ated probability. When there is little or no overlap between them, especially at the early 
training stage, the gradient from the discriminator will vanish and the training will stall. 
The Wasserstein distance is continuous and provides a usable gradient, which makes the 
training process more stable. Thus, we employ the loss function based on the Wasser-
stein distance. The corresponding adversarial loss function is defined as:

where GA denotes the generator, DA denotes the discriminator, x ∈ px∼site1(x) and 
y ∈ px∼site2

(

y
)

 denote the input metrics from site 1 and site 2, separately.
Different from approximating the Lipschitz continuity based on weighting clips [22], 

the gradient penalty approach [26] is employed in this work. In practice, the gradient 
penalty approach can speed up the training process. Thus the adversarial loss becomes:

In the above equation, x̂ is sampled uniformly along a straight line between a pair 
of real and generated images. �gp is a constant used to balance function D’s outputs 

(2)Ladv = Ey∼psite 2(y)

[

DA

(

y
)]

− Ex∼psite 1(x)[DA(GA(x))],

(3)
Ladv = Ey∼psite 2(y)

[

DA

(

y
)]

− Ex∼psite 1(x)[DA(GA(x))]

− �gpEx̂∼[αx+(1−α)y]

[

(

�∇DA

(

x̂
)

�2 − 1
)2
]
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and gradient-influenced factors. In our experiments, we set �gp to 10 according to the 
previous work [26].

The reconstruction loss is also introduced to force translated samples to obey the 
domain distribution. It has been proved that L2 distance usually causes blurry results 
during the image generation [27]. Thus, the reconstruction loss is defined by L1 
distance.

where GB(GA(x)) and Gx

(

Gy

(

y
))

 represent the reconstructed metrics. These recon-
structed metrics will be similar to original metrics x and y, when Lrecon converges to the 
minimum.

According to experimental results of the previous study [23], removing the adversarial 
loss substantially degrades the image quality, as does removing the reconstruction loss. 
Decreases in quantitative measures, such as FCN-scores and the classification perfor-
mance, also suggest that both the adversarial loss and the reconstruction loss are impor-
tant to improve the translation quality. Thus, the final loss function is defined as:

where � is a constant used to balance loss functions, because both the adversarial and 
the reconstruction losses are important to generate high-quality harmonized results. In 
our experiments, we set � to 20 according to the previous work [22].

Reconstruction loss is designed to preserve the global information. To introduce more 
local details, the Markovian discriminator is used in this current work (as shown in 
Fig. 2). With the employment of Markovian discriminators, the feedback from discrimi-
nators encourages generators to concentrate on the local information. Thus, the adver-
sarial loss and the reconstruction loss are complementary to each other.

Network configuration

The network architecture is shown in Fig. 2. This work uses the identical network archi-
tecture for both GANs. U-net is used as the backbone [28]. Generators are configured 
with the equal number of convolutional and transposed convolutional layers. For net-
works with 2D-convolutional kernels, the encoder part is composed of convolutional 
layers with a kernel size of 5 × 5 and stride-2 in the width and the height orientations, 
followed by a Leaky rectified linear unit (ReLU) function and Batch normalization layers. 
For networks with 3D-convolutional kernels, the encoder part is composed of convolu-
tional layers with a kernel size of 5 × 5 × 5, followed by a Leaky ReLU function and Batch 
normalization layers. To combine the low-level information, feature maps from convo-
lutional layers are passed by skip connections, and concatenated with those calculated in 
corresponding transposed convolutional layers with the identical output size. The com-
bination of information from front layers can help generators to reserve more low-level 
features. As for the discriminator, we follow the recommendation given in a previous 
research [26]. All the Batch normalization layers in the discriminator are removed. Thus, 
discriminators are configured with fully convolutional networks using modules of form 
convolution layers followed by a Leaky ReLU function.

(4)Lrecon = �x − GB(GA(x))� + �y− GA

(

GB

(

y
))

�,

(5)L = Ladv + �Lrecon,
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Harmonization methods based on global-wise parameters are tended to lose local 
details. The mapping relationships are not identical across different regions of white 
matter [10]. Thus, we consider the local information through employing a Markovian 
discriminator. The Markovian discriminator tends to consider local features, compared 
with the traditional discriminator [22, 23]. It discriminates input images at the patch 
level rather than the whole image. Differences in structures between the Markovian dis-
criminator and the traditional discriminator are shown in Fig. 2. With a relatively smaller 
receptive field, such discriminator will concentrate on local details. The overall discrimi-
native output possibility is computed by averaging all responses. Consequently, receiving 
the feedback from discriminators, generators can be induced to concentrate on the local 
information. In this study, the patch size is fixed at 30 × 30 for the discriminator with 
2D-convolutional kernels and 30 × 30 × 8 for the discriminator with 3D-convolutional 
kernels, considering the matrix size of DTI-derived metric images. This is different from 
the size of 70 × 70 employed in previous studies [22, 23].

Subjects and data acquisition

Participants

This study enrolls 84 term neonates without any MRI abnormalities or evidences of 
any clinical episodes that might cause cerebral damages. As shown in Table 1, the data 
include DTI on 42 neonates (28 males and 14 females, gestational age range: 37.43–
42.00  weeks, median = 40.00  weeks) from site 1 and 42 neonates (28 males and 14 
females, gestational age range: 37.14–41.71 weeks, median = 39.71 weeks) from site 2.

MRI acquisition

The acquisition parameters of DTI are listed in Table 2. DTI is performed on two sites 
by using the same scanner version (General Electric, 3.0  T, Signa HDXT, WI, USA) 
with the eight-channel head coil. The single-shot spin echo planar imaging sequence is 
used for the DTI acquisition. DTI protocol in site 1 is carried out with the following 
parameters: 35 gradient directions; b values = 0 and 1000 s/mm2; repetition time/echo 
time = 5500/95 ms; slice thickness = 4 mm without gap; field of view = 180 × 180 mm2; 
and matrix size = 128 × 128. As for the protocol in site 2, DTI is carried out with param-
eters: 30 gradient directions; repetition time/echo time = 11,000/69.5  ms; b values = 0 
and 600 s/mm2; slice thickness = 2.5 mm; while the field of view and the matrix size are 
the same with site 1.

Table 1  Demographic information of  neonates without  magnetic resonance imaging 
abnormalities from two sites

Mann–Whitney U test is used to test the inter-site differences in the gestational age, the postmenstrual age, and the birth 
weight. Differences in the gender ratio are tested by using the Chi square test

Site 1 (n = 42) Site 2 (n = 42) P

Gestational age (median and range, week) 40.00 (37.43–42.00) 39.71 (37.14–41.71) 0.25

Postmenstrual age (median and range, week) 41.00 (38.29–43.29) 41.07 (38.57–43.71) 0.82

Gender (male:female) 28:14 28:14 1.00

Birth weight (median and range, g) 3300 (1530–4415) 3375 (1250–4170) 0.36
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Data processing

The eddy current correction is performed initially by using the tool in the FMRIB Soft-
ware Library (FSL) [29]. Brain regions are then extracted by using the Brain Extraction 
Tool in FSL. Artifact-corrupted images are excluded automatically prior to the tensor 
estimation [30]. FA and MD maps are calculated by using the FMRIB diffusion toolbox 
in FSL.

The image registration is performed by using an optimized pipeline [31]. Firstly, the 
target FA in the native space is selected from subjects in this study. Secondly, images of 
all the subjects are registered to the target FA by using the combination of the linear and 
the nonlinear registration. Finally, all individual FA images are normalized to the neo-
natal FA template [32]. Other DTI-derived metrics (such as MD) are also normalized to 
the neonatal template space by using the transformation parameter of FA.

To extract DTI-derived metric values along white matter tracts, the tract probabilistic 
map (cmrm.med.jhmi.edu) is used to determine regions of the left and right CST and 
the SCC, vulnerable tracts associated with punctuate white matter lesions [33]. FA val-
ues are measured at 100 equivalent levels on each tract defined on the atlas [34]. Firstly, 
images of all subjects are normalized to the neonatal template. Secondly, measurement 
planes are equally spaced on the tract probabilistic map corresponding to the neonatal 
template. Measurements are then averaged on each plane. Finally, metrics are measured 
at 100 equivalent levels. These 100 planes are described as “locations” along the white 
matter tract in the results section.

Implementation of different harmonization methods

Training procedure of the dual GANs‑based method

In this study, the sixfold cross-validation is used for the model training and valida-
tion. During the training, we firstly train discriminators and then generators. This work 
employs the mini-batch Stochastic Gradient Descent and the RMSProp solver. The train-
ing process is performed by looping over each training sample until the convergence. In 

Table 2  Acquisition information of diffusion tensor imaging in the sites 1 and 2

SE spin echo, EPI echo planar imaging

Site 1 Site 2

MRI scanner version GE Signa HDXT GE Signa HDXT

Magnetic field 3.0 T 3.0 T

Coil Eight-channel head coil Eight-channel head coil

Sequence Single-shot SE EPI Single-shot SE EPI

Number of gradient directions 35 30

Number of b0 1 8

Nonzero b value (s/mm2) 1000 600

Repetition time (ms) 5500 11,000

Echo time (ms) 95 69.5

Slice thickness (mm) 4 2.5

Gap (mm) 0 0

Field of view (mm2) 180 × 180 180 × 180

Matrix size 128 × 128 128 × 128
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this work, we train the model by 300 epochs to get the loss function converged (Figure 
S6, Additional file 7). The training takes about 8 h by using a single Nvidia Geforce GTX 
1080Ti GPU. To choose the suitable kernel style and the orientation, this study performs 
the dual GANs by using the 3D-kernel (5 × 5 × 5) and the 2D-kernel (5 × 5) in the axial, 
coronal and sagittal orientations. To evaluate the feasibility of the dual-GAN method in 
case of multiple sites, the ComBat method [17] is used to generate the simulated data 
in a third domain different from site 1 or site 2. In this work, FA maps of the site 3 are 
the simulated data by transforming the data of site 1 to the third domain. As shown in 
(Additional file 5: Figure S4A and C), there are significant differences between site 1 and 
site 3, as well as site 2 and site 3. Data of site 2 is selected as the reference. The training is 
performed between the other site and the reference.

Conventional methods

This study compares the proposed harmonization method with three conventional 
methods: the global-wise scaling, the voxel-wise scaling, and the ComBat. This work 
performs these methods based on the description in the previous study [17]. For the 
global-wise scaling, metric values are averaged in the whole white matter region. Then 
these averaged values are used to calculate the scaling factor. As a comparison, the voxel-
wise scaling calculates the scaling factor at the voxel level. For the ComBat, the harmo-
nization is performed at the voxel level by using the code from https​://githu​b.com/Jfort​
in1/ComBa​tHarm​oniza​tion.

Statistical analysis

Mann–Whitney U test is used to test inter-site differences in the gestational age, the 
postmenstrual age, and the birth weight. Differences in the gender ratio are tested by 
using the Chi square test. Tests are considered statistically significant at P < 0.05.

To reveal distribution differences in FA of the two different sites, this study calcu-
lates the histogram of FA values in the white matter for each subject. The comparison 
in averaged FA values between sites is performed by using the Mann–Whitney U test. 
To investigate the correlation between FA values and site effects, Pearson correlation is 
performed between the inter-site difference and the averaged FA. Inter-site differences 
are also tested by using the general linear model in TBSS [31]. The permutation number 
is set at 10,000. Tests in TBSS are considered significant at P < 0.05 after the family-wise 
error rate correction and the threshold-free cluster enhancement. For inter-site compar-
isons after harmonization, differences with P < 0.05 in any run of the cross-validation are 
overlaid together on the template map. To quantify differences between sites, absolute 
errors and the RMSE of metric values are also calculated on the white matter before and 
after harmonization by using different methods.

To investigate age-related alterations before and after harmonization, Pearson correla-
tion is performed between FA along white matter tracts (left CST, right CST and SCC) 
and the postmenstrual age. To evaluate whether inter-gender differences could be pre-
served during the harmonization procedure, the effect size (Cohen’s d between males 
and females) is calculated before and after harmonization [7]:

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
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where Mf  and Mm are the mean FA of the female and the male subsets separately, Spooled 
is the pooled standard deviations for both subsets, which is given by:

where nf  and nm are the number of females and males separately. Sf  and Sm are the 
standard deviations for the female and the male groups, respectively.

Performances (including the absolute error, the RMSE, the correlation with age, 
and the Cohen’s d) of harmonization methods are averaged over different runs of the 
cross-validation.
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Supplementary information accompanies this paper at https​://doi.org/10.1186/s1293​8-020-0748-9.

Additional file 1: Figure S1. Relationship between inter-site differences and averaged fractional anisotropy (FA) 
values in the white matter region. r: Pearson correlation coefficient.

Additional file 2: Figure S2. Inter-site differences in mean diffusivity (MD) and the performance of Dual GANs (axial) 
on the MD metric. Dual GANs (axial) indicates the harmonization performed by using dual generative adversarial 
networks with the 2 dimensional kernel on axial slices. For inter-site comparisons after harmonization, differences 
with P < 0.05 in any run of the sixfold cross-validation are overlaid together on the template map. Absolute errors 
and root mean square errors (RMSE) after harmonization have been averaged over different runs of the sixfold 
cross-validation.

Additional file 3: Table S1. Root mean square error (RMSE) on white matter before and after harmonization by 
using different methods

Additional file 4: Figure S3. Evaluation of the harmonization by Dual GANs (3D) on the fractional anisotropy (FA) 
metric. Dual GANs (3D) indicates the harmonization performed by using dual generative adversarial networks with 
the 3 dimensional kernel. For inter-site comparisons after harmonization, differences with P < 0.05 in any run of the 
sixfold cross-validation are overlaid together on the template map. Absolute errors and root mean square errors 
(RMSE) after harmonization have been averaged over different runs of the sixfold cross-validation.

Additional file 5: Figure S4. Evaluation of the harmonization by Dual GANs (axial) on the fractional anisotropy (FA) 
metric of 3 sites. Dual GANs (axial) indicates the harmonization performed by using dual generative adversarial net-
works with the 2 dimensional kernel on axial slices. The ComBat method is used to generate the simulated data in a 
third domain different from site 1 or site 2 (as shown in the following Figure A and C). FA maps of the site 3 are the 
simulated data by transforming the data of site 1 to the third domain. For inter-site comparisons after harmonization, 
differences with P < 0.05 in any run of the sixfold cross-validation are overlaid together on the template map.

Additional file 6: Figure S5. The effect size between genders (Cohen’s d between males and females) in site 1 and 2 
before and after harmonization. The Cohen’s d values after harmonization have been averaged over different runs of 
the sixfold cross-validation.
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