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Background
Bladder cancer (BCa) is the sixth-most common cancer in male worldwide [1–4]. It is 
estimated that 549, 000 new cases and 200,000 deaths occurred every year, with three-
quarters of them occurring in men [1, 5]. Based on National Comprehensive Cancer 
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Background:  Invasion depth is an important index for staging and clinical treatment 
strategy of bladder cancer (BCa). The aim of this study was to investigate the feasibil-
ity of segmenting the BCa region from bladder wall region on MRI, and quantitatively 
measuring the invasion depth of the tumor mass in bladder lumen for further clinical 
decision-making. This retrospective study involved 20 eligible patients with postopera-
tively pathologically confirmed BCa. It was conducted in the following steps: (1) a total 
of 1159 features were extracted from each voxel of both the certain cancerous and wall 
tissues with the T2-weighted (T2W) MRI data; (2) the support vector machine (SVM)-
based recursive feature elimination (RFE) method was implemented to first select 
an optimal feature subset, and then develop the classification model for the precise 
separation of the cancerous regions; (3) after excluding the cancerous region from 
the bladder wall, the three-dimensional bladder wall thickness (BWT) was calculated 
using Laplacian method, and the invasion depth of BCa was eventually defined by the 
subtraction of the mean BWT excluding the cancerous region and the minimum BWT 
of the cancerous region.

Results:  The segmented results showed a promising accuracy, with the mean Dice 
similarity coefficient of 0.921. The “soft boundary” defined by the voxels with the prob-
abilities between 0.1 and 0.9 could demonstrate the overlapped region of cancerous 
and wall tissues. The invasion depth calculated from proposed segmentation method 
was compared with that from manual segmentation, with a mean difference of 
0.277 mm.

Conclusion:  The proposed strategy could accurately segment the BCa region, and, as 
the first attempt, realize the quantitative measurement of BCa invasion depth.
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Network (NCCN) guideline, surgical resection is one of the most effective treatment 
for BCa, while the invasion depth is one of the most important factors for choosing the 
optimal operation strategy like transurethral resection (TUR) of bladder tumor, par-
tial resection or radical removal of bladder [6]. Therefore, preoperatively evaluating the 
invasion depth of BCa is very critical for the treatment-decision of patients with BCa.

As a routine method in the clinic, TUR biopsy can provide the prediction of invasion 
depth [7–10]. However, this approach is usually limited by the selection of the biopsy 
sites. It is reported that about 30–50% of the patients with BCa were down-staged after 
radical cystectomy [11]. With the development of medical imaging, an image-based 
approach may assess the tumor more comprehensively and avoid the risks of multiple 
biopsies [12]. Recently, several imaging studies using magnetic resonance imaging (MRI) 
have confirmed its benefit in predicting the aggressiveness of BCa [13], and in differen-
tiating non-muscle-invasive (Stage ≤ T1) and muscle-invasive (Stage ≥ T2) BCa [14, 15], 
which might reveal the potential in predicting the invasion depth (staging) of BCa via 
MRI [16–18].

Specifically, in our previous studies, (1) a coupled directional level-set (CDLS) method 
was proposed to simultaneously segment the inner and outer surface of bladder wall on 
T2-weighted (T2W) magnetic resonance imaging (MRI) data [19], (2) three-dimensional 
(3D) thickness of bladder wall was calculated [20], to obtained the candidate region of 
BCa based on the variation of thickness and shape on T2W MRI [21]. However, it is dif-
ficult to further segment the certain cancerous region from the adherent wall tissue in 
the candidate region on T2W MRI (Fig. 1), due to the naturally weak boundary and simi-
lar intensity signals between the cancerous and wall tissues in this region.

In our recent study, a progressive dilated convolutional network was proposed to 
realize the simultaneous segmentation of multiple bladder regions, including the inner 
lumen, the wall region, the tumor masses and the background region outside the blad-
der [22]. However, one of the apparent limitations of this study is that the segmentation 
accuracy for tumor masses is less than satisfactory, with the Dice’s coefficient (DSC) of 
only 0.69 [22].

Due to the difficulty in precisely segmenting the BCa lesions from the adherent wall 
tissues, as far as we know, no study has currently taken a further look at how to quantita-
tively define and measure the invasion depth of bladder tumor on T2W images.

Therefore, the aim of this study was to first accurately segment the cancer region from 
the candidate region using the voxel-based features extracted from each voxel of can-
cerous and wall tissues, and then measure the invasion depth by using the Laplacian 
method to reflect the 3D surface alteration induced by BCa, as shown in Fig. 1. In the 
processing steps, the CDLS method was firstly used to segment the inner and outer sur-
face of bladder wall, for the T2W images of each patient [19]. Between the inner and 
outer surfaces, the potential field and a streamline was generated, based on the Lapla-
cian method [23], in which the BWT is the arc length of a streamline connecting a point 
on the inner surface and its corresponding point on the outer surface [20]. Then, the 
bent rate differences between the paired points were calculated to evaluate the bladder 
abnormalities caused by the lesions [21]. Based on these abnormal points, the candidate 
region of BCa can be obtained through the collection of all the voxels on the streamline, 
which is a mixed region containing both cancerous and wall tissues (Fig. 1). Based on 
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the candidate region, the cancerous tissue can be segmented by a voxel-feature-based 
classification method proposed in this study. After subtracting the cancerous tissue from 
the entire bladder wall region, the invasion depth of BCa can be finally defined by the 
subtraction of the mean BWT excluding the cancerous region and the minimum BWT 
of the cancerous region.

Results
Demographics of the subjects

This study used an archived database of Tangdu hospital with 20 BCa patients postop-
eratively identified from October 2013 to August 2014. From each patient, the archived 
tumor lesion with the maximal size in bladder lumen was determined on the corre-
sponding MRI dataset. These patients were randomly divided into a training set (n = 10) 
and a validation set (n = 10). Detailed information on the baseline demographics of these 
patients used in this study is shown in Table 1.

Optimal feature subset determined from the entire feature set

In this study, the training set contained 5812 cancerous voxels and 5851 wall voxels. 
A total of 1159 features were extracted from each voxel to characterize its properties. 
Considering that feature redundancy might actually exist and impair the capability of 
the classification model, feature selection was performed using support vector machine 
(SVM)-recursive feature elimination (RFE) approach [24–26]. The results are shown 
in Fig.  2. From the figure, we can see that when the number of features reached 125, 
the classification accuracy of the training set reached its highest value, with sensitiv-
ity = 99.98%, specificity = 1, accuracy = 99.99%, and AUC = 1 (Fig.  3). The subset com-
posed of these top-ranked 125 features was treated as the optimal feature subset.

Fig. 1  The proposed pipeline for the segmentation of the cancerous tissue and the measurement of the 
invasion depth of BCa
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Performance of the of cancerous region segmentation

Using the optimal feature subset, 10 candidate regions obtained from the valida-
tion set were used to evaluate the accuracy of proposed method. Figure 4 shows the 
segmentation results for the first three subjects. From left to right: the segmented 
results using CDLS method, ground truth contoured using green color, segmented 
results of our method contoured using red color, and the results of “soft boundary” 
using our method. From Fig. 4, we can see that our results were well consistent with 
the manual delineation results. Meanwhile, defined by the probability value between 
0.1 and 0.9, the “soft boundary” was identified, which is located at the interface 
between cancerous and wall tissues. This “soft boundary” indicated the overlapped 
or mixed regions of two types of tissues. Table 2 shows the DSC values for the test-
ing subjects, which ranges from 0.848 to 0.985 with the average of 0.921, indicating 
its high consistence with manual delineation.

Results of the invasion depth measurement

According to Table 2, columns 3 and 4 give the invasion depth of the validation set 
based on the manual segmentation and that using the proposed method, respec-
tively. The differences between them are mostly lower than 1 mm, with the mean of 
0.277 mm.

Discussion
Invasion depth is an important index for treatment-decision of BCa, especially for the 
use of bladder-preserving or bladder-removing surgery [6]. To measure the invasion 
depth of BCa, a segmentation method using voxel-based features was firstly proposed 
to differentiate cancerous tissues from wall tissues and then a 3D thickness method 
was used to calculate the invasion depth quantitatively. To our knowledge, this is the 
first attempt to quantitatively measure the invasion depth. The preliminary results 
suggested that the proposed segmentation method could segment the BCa region 
accurately and the proposed pipeline could provide a quantitative measurement of 
invasion depth for treatment-decision of BCa.

The exact and robust segmentation of the BCa region is critical for the measure-
ment of invasion depth. Due to the weak boundary between cancer region and wall 

Table 1  Baseline demographics of the patients used in this study

Characteristics Training Validation

Patients, no. (%) 10 (50%) 10 (50%)

Age, median (range), years 66.5 (32, 79) 68.5 (53, 81)

Gender, no. (%)

 Male 8 (40%) 9 (45%)

 Female 2 (10%) 1 (5%)

Tumor size, median (range), mm 21.69 (12.68, 39.94) 18.76 (10.16, 27.59)

Clinico-pathological stage, no. (%)

 Stage ≤ T1 4 (20%) 7 (35%)

 Stage ≥ T2 6 (30%) 3 (15%)



Page 5 of 13Liu et al. BioMed Eng OnLine           (2020) 19:92 	

region, it is hard to segment the cancer region only using the intensity value of MRI 
data. Considering the amplification characteristics of the imaging features [13], 1159 
features were extracted from each voxel and an optimal feature subset containing top-
ranked 125 features was obtained for the classification of cancerous and wall tissue. 
Using the optimal subset, we calculated the “hard” and “soft” boundary. The “hard” 
boundary is almost the same with the ground truth contoured by the radiologists, 
indicating that the extracted features can effectively distinguish cancer and wall tis-
sues. Meanwhile, the “soft” boundary gathers at the interface between the cancerous 
and wall tissues, which could reflect the overlapped region of two tissues in images 
and should be considered in treatment.

Considering the 3D structure of bladder, we used the 3D thickness method to measure 
the invasion depth. Currently, no exact invasion depth of BCa can be obtained, thus, 

Fig. 2  Optimal feature subset selection process

Fig. 3  The ROC curve of the SVM classifier using the optimal feature subset
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we compared our results with the invasion depth calculated from manual segmentation. 
Considering the voxel size was resampled to 1 × 1 × 1 mm3 when calculating the inva-
sion depth, the error derived from a voxel may be 1 mm. Based on our initial testing, the 
difference of invasion depth derived from the manual segmentation and our proposed 
segmentation method is mostly lower than 1 mm, which further confirmed the accuracy 
of our segmentation method. Meanwhile, the proposed measurement method for inva-
sion depth may provide a quantitative tool for treatment-decision of BCa.

Several limitations of this study should be addressed. Firstly, this is a retrospective 
study aiming to accurately segment bladder cancer on MRI and quantitatively estimate 
the invasion depth of the BCa, which needs multi-clinical validations and multi-modal-
ity data in future before the practical clinical applications. Secondly, the sample size of 
this study is small, which may influence the performance of classification and the evalu-
ation of the segmentation results. Thirdly, only the T2W MRI sequence is included in 
this study. Currently, a semi-supervised classified method is under investigation using 
more datasets with multi-modality MRI, which takes the “soft boundary” into account 
and may further improve the segmentation.

Conclusions
The proposed BCa segmentation method using the voxel-based feature can accurately 
segment the entire cancer region from the candidate region. As the first attempt, the 
quantitative measurement method of invasion depth may provide the quantitative infor-
mation for the clinical decision.

Methods
This retrospective analysis was ratified by the institutional Ethics Review Board, and the 
requirement for informed content was waived.

Subject enrollment

The database contains 20 BCa patients identified from October 2013 to August 2014. 
All patients were scanned by a 3.0-T MRI scanner (Discovery MR 750; GE Medical Sys-
tems) from the Tangdu Hospital. The inclusion criteria were as follows: (1) patients with 

Table 2  The DSC value and the invasion depth calculated by using the validation set

Sample ID DSC TID
(manual, mm)

TID
(mm)

Difference
(mm)

1 0.927 3.615 3.608 0.007

2 0.899 4.124 4.780 0.656

3 0.888 4.522 5.724 1.202

4 0.895 2.952 2.337 0.615

5 0.866 3.693 3.661 0.032

6 0.983 5.335 5.298 0.037

7 0.848 6.203 6.181 0.022

8 0.939 5.242 5.357 0.115

9 0.985 4.734 4.701 0.033

10 0.979 4.795 4.849 0.054

Mean ± SD 0.921 ± 0.050 – – 0.277 ± 0.409
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pathologically confirmed BCa lesions after operation, (2) the maximal lesion in bladder 
lumen and its postoperatively pathological findings were archived, and (3) T2W MRI 
sequence was performed prior to any treatment. The MRI data with poor imaging qual-
ity were excluded, which may make the accurate bladder carcinoma segmentation dif-
ficult. The T2W sequence (GE Discovery MRI 750 3.0 T) was performed to obtain the 
preoperative bladder images of each patient, and the main parameters of this sequence 
included repetition time of 2500 ms, echo time of 135 ms, slice thickness of 1 mm, and 
pixel size of 0.5 × 0.5 mm2. These patients were then randomly divided into the training 
set for model development and the validation set for performance assessment, with 10 
patients in each set.

Candidate region determination

For T2W MRI sequence of each patient, the CDLS method was used to segment the 
inner and outer surface of bladder wall [19]. Between the two surfaces, a potential field 
and a streamline can be generated based on the Laplacian method [23], in which the 
thickness of bladder wall is the arc length of a streamline connecting a point on the inner 
surface and its corresponding point on the outer surface [20]. The bent rate differences 
between the paired points that reflect bladder abnormalities are caused by lesions [21]. 
From these abnormal points, all the voxels on the streamline can constitute a candidate 
region of BCa, as shown in Fig. 1, which usually contains both cancerous and wall tissues 
to be separated.

Voxel‑feature‑based segmentation of BCa region

After the previous processing (Fig. 1), the bladder wall and the candidate region of each 
patient can be obtained. In the training set, the cancerous and wall tissues were man-
ually delineated, and 1159 features were extracted from each voxel of them. Then the 
SVM-RFE method was adopted to first select an optimal subset of features and then dis-
tinguish the cancerous and the wall tissues from the voxels [27]. Using the model con-
structed by the optimal feature subset in the training set, 10 candidate regions obtained 
from the validation set were used to evaluate the accuracy of proposed method.

(1) Volume of interest delineation from training set

In the training set, volumes of interest were previously manually contoured by a radi-
ologist who has 8 years of bladder MRI reading experience. The cancerous VOIs were 
contoured within the candidate region and away from the bladder wall as much as pos-
sible, as described as the yellow contour in Fig. 5. Due to limited voxels and weak bound-
ary between the cancerous and wall tissues, we selected wall voxels near the candidate 
region as the wall VOIs and tried to keep its number of voxels approximately equal to 
that of cancerous VOIs.

(2) Voxel‑based feature extraction

Previous studies indicate that intensity and texture features could reflect pathological 
properties of different tissue types [28, 29], which can be used to distinguish the BCa tis-
sues from wall tissues [30]. Prior to intensity and texture features extraction, the wavelet 
transform was used to decompose the original image to obtain 16 wavelet images. Thus, 
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a total of 17 images (16 wavelet images and the original image) were used to extract the 
intensity and texture features.

The intensity features describe the intensity information of the target voxel (x, y, z) and 
its six neighbor voxels (x − 1, y, z), (x + 1, y, z), (x, y − 1, z), (x, y + 1, z), (x, y, z − 1), (x, 
y, z + 1). A total of 20 intensity description features were extracted, which contains the 
intensities of these seven voxels, the mean intensity-values of 3 × 3 areas centered at the 
seven voxels, respectively, and the intensity-differences between the target voxel and its 
six neighbor voxels, respectively.

In this study, the Leung–Malik (LM) filter bank was used to extract texture features 
[31]. The LM filter bank consists of 48 filters, which includes 18 first derivatives and 18 
second derivatives of Gaussian-differential filters (6 orientations, 3 scales), 8 Laplacian of 
Gaussian filters, and 4 Gaussian smoothing filters. The response from 48 filters is taken 
as 48 texture features for each voxel.

By considering the x, y, and z coordinate values of each voxel as 3 location features, 
in this study, a total of 1159 features were generated for each voxel, i.e., 3 location fea-
tures + (20 intensity features + 48 texture features) × 17 images.

(3) Feature selection and classification using the SVM

Among features obtained from each voxel, some may be correlated and redundant, 
which may affect the classification performance [30, 32, 33]. In the present study, we 
used the SVM-RFE method implemented by LIBSVM package [34], to find the optimal 
feature subset with the best differentiation performance [35]. After each iteration, the 
feature with smallest absolute weight was eliminated. Finally, the optimal feature sub-
set was determined using this approach and a fivefold cross-validation, which contains 
the first N features with the highest mean accuracy. The classification performance was 

Fig. 5  Cancerous and wall VOIs delineation of the training dataset. The cancerous VOI is outlined by the 
yellow contour. The wall VOI is contoured in the green
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evaluated by the sensitivity, specificity, accuracy, and area under the curve (AUC) of the 
receiver operating characteristics (ROC).

(4) The segmentation of the cancerous tissues from the candidate regions

Using the optimal feature subset, the SVM prediction model was performed on the vali-
dation set. Based on the SVM model, we can obtain the probability value of each voxel 
belonging to the cancer region. According to the probability, we calculated the “hard” 
and “soft” boundary to distinguish the cancer and wall regions.

To obtain the “hard boundary”, we used the probability of 0.5 as the threshold, and 
then segmented the cancer region from the wall region within the candidate region. 
After classification, a postprocessing, including the maximum connected region (max-
region) and void filling, was performed to obtain the continuous boundary. Meanwhile, 
according to the position of concerned voxel, the “soft boundary” was defined by the 
probabilities between 0.1 and 0.9, calculated by the SVM prediction model.

(5) The accuracy evaluation of proposed segmentation method

In this study, the manual segmentation was treated as the ground truth. The contours of 
the cancer regions from the validation set were drawn by another two radiologists with 
9 years of experience in MRI interpretation. After delineation of each cancer region slice 
by slice independently, they worked together on the contours according to a consensus 
reading. The DSC was used to quantitatively evaluate the performance of proposed seg-
mentation method, which can be calculated by DSC(SG, SA) = 2 ×|SG ∩ SA|/(|SG| +|SA|), 
where SG denotes the manual segmentation of radiologists and SA denotes segmentation 
results from our method.

Fig. 6  The diagram for the measurement of invasion depth. Tmean: the mean thickness of bladder wall 
excluding the cancer region, Tmin: the minimum thickness of the cancer region, TID: invasion depth calculated 
by Tmean − Tmin
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Measurement of invasion depth

Based on the segmented results, the cancer region was excluded from the candidate 
region. After that, the 3D thickness map of the bladder wall was calculated using the 
Laplacian method [20]. In the 3D thickness map, the average thickness of bladder wall 
Tmean was defined by the mean thickness of bladder wall excluding the candidate region 
to avoid any bias induced by the cancer region, and the minimum thickness of the candi-
date region Tmin was obtained. In this way, the invasion depth (TID) can be evaluated by 
Tmean − Tmin, as shown in Fig. 6.

Due to the limitation of tissue biopsies, the exact invasion depth of a BCa could not be 
obtained. Instead, the value of invasion depth calculated from the proposed segmenta-
tion results was compared with that from manual segmentation.
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