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Abstract 

Background:  Intracranial aneurysm is a common type of cerebrovascular disease with 
a risk of devastating subarachnoid hemorrhage if it is ruptured. Accurate computer-
aided detection of aneurysms can help doctors improve the diagnostic accuracy, and 
it is very helpful in reducing the risk of subarachnoid hemorrhage. Aneurysms are 
detected in 2D or 3D images from different modalities. 3D images can provide more 
vascular information than 2D images, and it is more difficult to detect. The detection 
performance of 2D images is related to the angle of view; it may take several angles to 
determine the aneurysm. As the gold standard for the diagnosis of vascular diseases, 
the detection on digital subtraction angiography (DSA) has more clinical value than 
other modalities. In this study, we proposed an adaptive multiscale filter to detect 
intracranial aneurysms on 3D-DSA.

Methods:  Adaptive aneurysm detection consists of three parts. The first part is a filter 
based on Hessian matrix eigenvalues, whose parameters are automatically obtained by 
Bayesian optimization. The second part is aneurysm extraction based on region growth 
and adaptive thresholding. The third part is the iterative detection strategy for multiple 
aneurysms.

Results:  The proposed method was quantitatively evaluated on data sets of 145 
patients. The results showed a detection precision of 94.6%, and a sensitivity of 96.4% 
with a false-positive rate of 6.2%. Among aneurysms smaller than 5 mm, 93.9% were 
found. Compared with aneurysm detection on 2D-DSA, automatic detection on 
3D-DSA can effectively reduce the misdiagnosis rate and obtain more accurate detec-
tion results. Compared with other modalities detection, we also get similar or better 
detection performance.

Conclusions:  The experimental results show that the proposed method is stable and 
reliable for aneurysm detection, which provides an option for doctors to accurately 
diagnose aneurysms.

Keywords:  Aneurysm detection, Multiscale filter, Bayesian optimization, Adaptive 
thresholding
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Background
Intracranial aneurysm is a serious life-threatening cerebrovascular disease and usu-
ally occurs around the arteries at the base of the brain called the Circle of Willis. The 
worldwide incidence of aneurysms is approximately 3% [1]. In a cross-sectional study in 
China, 7% of adults between the ages of 35 and 75 years had an aneurysm detected on 
widespread screening with brain magnetic resonance angiography (MRA) [2]. Subarach-
noid hemorrhage (SAH), which results from the rupture of an intracranial aneurysm, is a 
devastating event associated with high rates of mortality (40–50%) and morbidity, while 
only 40% of SAH patients recover to reach independent status [3, 4]. Aneurysm rupture 
is a rare event; nevertheless, early detection is essential for its prevention. With early 
detection, the growth of aneurysms can be halted by interventional or surgical treatment 
[5]. Intracranial aneurysms are usually asymptomatic before rupture and are often found 
incidentally [6]. The increasing use of medical imaging devices has led to an increased 
diagnosis rate of unruptured intracranial aneurysms. Image modalities that are used in 
aneurysm diagnosis usually include computed tomography angiography (CTA), mag-
netic resonance angiography (MRA), and digital subtraction angiography (DSA). These 
imaging techniques can adequately show the location, size and shape of aneurysms and 
help doctors make reasonable treatment plans [7]. For some small intracranial aneu-
rysms, CTA and MRA diagnosis performance is not as good as DSA, which has been 
used as the ground truth for aneurysm diagnosis [8, 9].

Detection of aneurysms can help doctors to improve the accuracy of aneurysm diag-
nosis, allowing them to take effective measures for developing a corresponding treat-
ment to reduce the risk of arachnoid hemorrhage. Generally, aneurysms are detected 
from 2D or 3D images. Different detection systems have been tested with different angi-
ographic modalities [10]. Many studies have shown some progress in the detection of 
aneurysms on 2D-DSA. Sulayman et al. [11] proposed a semiautomatic detection algo-
rithm that combined image processing and machine learning and achieved 89.5% sensi-
tivity and 81% positive predictive value on 2D-DSA. Jin et al. [12] proposed a novel, fully 
automated detection and segmentation on 2D-DSA time series images. They combined 
a deep learning model (U-net) with long short-term memory (LSTM) and obtained an 
aneurysm detection sensitivity of 89.3%. Rahmany et  al. [13] separated blood vessels 
from the background, and further processed the vessel regions to detect aneurysms by 
integrating MSER, SURF and SIFT feature descriptors. The sensitivity of their method 
was 100%, but only  the data from three patients were analyzed. Other detection meth-
ods have only been evaluated for a single patient; these methods are generally based on 
traditional image processing [14, 15].

In addition to 2D-DSA, aneurysm detection systems have also been developed for 
using on 3D-MRA and 3D-CTA. Hanaoka et  al. [16] extracted a novel feature named 
HoTPiG (Histogram of Triangular Paths in Graph) from 3D-MRA. Then, they used a 
traditional machine learning method to detect aneurysms, and the results showed a 
sensitivity of 89.2%. Sichterman et  al. [17] first preprocessed 3D-MRA with different 
methods and then used a neural network that consisted of two pathways with 11 lay-
ers to detect intracranial aneurysms; the sensitivity reached 90%. Hentschke et al. [18] 
combined both low-level and high-level features, which were used to classify and detect 
aneurysms on MRA and CTA. They achieved a sensitivity higher than 93% for three 
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modalities. After that, Hentschke et al. [19] detected aneurysms with three angiographic 
modalities (CE-MRA, TOF-MRA, CTA) by combining the features of shape informa-
tion, spatial information and probability information. The true positives could be dis-
tinguished with a linear discriminant function (LDF), reaching a sensitivity of 95% for 
the three modalities, and 93% of aneurysms that were smaller than 5 mm were found. 
According to the local and global geometric characteristics of the aneurysm, Zhou et al. 
[20] used a pretrained deep learning model to detect aneurysms on different 3D modali-
ties and obtained 94.7% accuracy and 94.8% sensitivity. Yang et al. [21] proposed a fully 
automated computer-aided detection (CAD) scheme for detecting aneurysms on 3D 
MRA. First, they used two methods to extract points of interest (POI) and then reduced 
false positives according to feature analysis, obtaining a sensitivity of 96%, but only 91% 
of aneurysms that were smaller than 5 mm were found.

In the clinical diagnosis of aneurysms, the detection performance for 2D images 
depends on the selected viewing angle. However, multiple aneurysms may not be all 
observed at one angle. 3D images can provide more information than 2D images, and its 
detection is more difficult. As the gold standard for the diagnosis of intracranial aneu-
rysms, DSA is an optimal choice for aneurysm detection. Detection on 3D-DSA has 
more clinical value than on other 3D modalities.

The enhanced filter based on Hessian matrix has great potential in computer-aided 
diagnosis. Some multiscale enhancement filters were proposed to enhance specific 
shape structures [22–25]. This idea can also be used in aneurysm detection, but one of 
the difficulties was in setting the parameters for the multiscale filters. In previous stud-
ies, the parameters for multiscale filters were set manually. Therefore, it will be much 
convenient if these parameters could be searched automatically. For the search of hyper-
parameters, the common search methods include Grid search, Random search, Genetic 
algorithm and Bayesian optimization [26]. In fact, grid search and random search are 
very common and general methods; their search ability is not good as genetic algorithm. 
However, genetic algorithm also has some defects, such as poor local search ability, long 
time consuming and slow searching speed [27]. The advantage of Bayesian optimization 
is to use Gaussian process to adjust the parameters, which will consider the previous 
search information and constantly update the prior knowledge [28]. Moreover, Bayesian 
optimization has fewer iterations and faster speed, and it is still stable for non-convex 
problems [29]. In this study, we proposed an automatic detection of intracranial aneu-
rysms on 3D-DSA based on a Bayesian optimized filter.

Results
In the evaluated data, there were 165 aneurysms in 145 patients, among whom 127 
patients had one aneurysm, 16 patients had two aneurysms, and 2 patients had three 
aneurysms. The response of the enhancement filter was visualized by rendering tech-
nology. After the optimal scale parameters were obtained by Bayesian optimization, the 
proposed filter was used to detect the aneurysms.

All 3D-DSA data were analyzed with the same method. These data may or may not 
contain aneurysms, and there may be one or multiple aneurysms in the data. In clini-
cal diagnosis, although most patients have only one aneurysm, multiple aneurysms also 
occur occasionally. In our method, when the detected target was an aneurysm, it was 
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removed, and then the steps were repeated in the remaining image to continue detec-
tion. In the second round of detection, another set of optimal parameters was obtained. 
These parameters were substituted into the filter and used to continue to detect aneu-
rysms in the remaining image. In this way, two aneurysms in a patient could be detected. 
When there were more than two aneurysms in a patient, the detection method was 
repeated again. Figures  1 and 2 illustrate the detection results of two aneurysms in a 
single patient. 

Figure 1 shows the first aneurysm detection process. The maximum intensity projec-
tion (MIP) and 3D visual rendering were used to display the blood vessels and aneu-
rysms, respectively. In Fig.  1, the red arrow indicates the first aneurysm. Figure  1a, b 
shows the image to be detected.

Figure 1c shows the Bayesian optimization process for finding the parameters of the 
aneurysm filter, where ×1 and ×2 represent the two parameters (s, τ) , respectively, of 
the filter. The ordinate represents the target function value corresponding to each group 
of parameters, the blue point represents the point that has been found in each search 
process, and the black point is the next group of parameter points found by model cal-
culation in the Bayesian optimization process. Since the number of calculations was set 
to 50 in advance, there are 50 points in the graph. In the final result, the point with the 
lowest objective function value is the optimization point, which is represented by a red 
asterisk.

When the optimal parameters were obtained by Bayesian optimization, these 
parameters were substituted into the filter for aneurysm detection. Figure 1d, e shows 
the filtered image. As seen from the figure, the aneurysm was obviously enhanced, 
and other areas, including blood vessels, were suppressed to dark pixel values. In 
Fig.  1f, g, the detected aneurysm was removed by region growth. According to the 

b c
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a

Fig. 1  The first aneurysm detection process. a Display the original image with MIP. b Display the original 
image with 3D rendering. c The process of searching parameters by Bayesian optimization for the first 
aneurysm detection. d The first aneurysm detected is shown by MIP. e The first aneurysm detected is shown 
by 3D rendering. f Image after removing the first aneurysm is shown by MIP. g Image after removing the first 
aneurysm is shown by 3D rendering
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detection rules, if the first target was detected as an aneurysm, it was removed, and 
then the detection steps were repeated until the target was not an aneurysm.

Figure 2 shows the Bayesian optimization process and detection results for the sec-
ond aneurysm. The detection process and image display were the same as the first 
aneurysm. Also, Fig. 2a, b shows the image to be detected. Figure 2c shows the Bayes-
ian optimization procedure for detection of the second aneurysm. Figure 2d, e shows 
the filtered image, in which the red arrow indicates the detected aneurysm. According 
to the same rule used for the first aneurysm, the second aneurysm was also extracted 
by region growth. After the first and second aneurysms were detected, the detec-
tion process was continued, as shown in Fig. 2f, g. When no more aneurysms were 
detected, the detection process was stopped.

The filter can enhance not only spherical aneurysms but also aneurysms that 
slightly deviate from a spherical structure. In our method, mean value of the filter-
ing response of the detected target ( Vmean ) was used to detect the aneurysm. As the 
threshold was gradually changed, we could determine whether the detected target 
was an aneurysm by comparing the value of Vmean with the threshold. Maximum value 
of the filtering response of the detected target ( Vmax ) was also used for comparison, 
and the detection method was the same as that of Vmean . During filter processing, 
since the response of the aneurysm region is uniform, it is theoretically better to use 
the mean value. The diagnosis of two neuroradiologists served as a reference stand-
ard. The performance of the proposed method was objectively evaluated by precision, 
recall, and F1-score, which were defined as:

c

d ef g

a b

Fig. 2  The second aneurysm detection process. a Image after removing the first aneurysm is shown by MIP. 
b Image after removing the first aneurysm is shown by 3D rendering. c The process of searching parameters 
by Bayesian optimization for the second aneurysm detection. d The second aneurysm detected is shown 
by MIP. e The second aneurysm detected is shown by 3D rendering. f Image after removing the second 
aneurysm is shown by MIP. g Image after removing the second aneurysm is shown by 3D rendering
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where TP , TN , FP , FN are the number of true-positive aneurysms, number of true-nega-
tive aneurysms, number of false-positive aneurysms, and number of false-negative aneu-
rysms, respectively. Recall can also be called sensitivity, which is a measure of coverage, 
and is the proportion true positives among all actual aneurysms. The precision–recall 
(PR) curve can be obtained by plotting recall on the horizontal axis and precision on the 
vertical axis. According to the values of precision and recall, the F1-score can be calcu-
lated; when the value of F1-score is maximized, the detection performance is regarded 
as the best. It is also possible to calculate the false positive rate, which is defined as 
FPR = FP

/

(FP+ TN) . The receiver operator characteristic (ROC) curve can be drawn 
from the sensitivity and false positive rate. This curve can also reflect the performance of 
detection, more specifically by calculating the area under the curve (AUC).

We also detected aneurysms on 2D-DSA for comparison. First, we selected a view 
angle that clearly showed an aneurysm on 2D-DSA for each patient and then detected 
the aneurysm with the method described in this paper, only changing the dimen-
sion from 3D to 2D. When the target was extracted, the maximum or mean value 
of the response of the target was compared with the threshold. When the threshold 
was gradually changed, different values of precision and recall could be obtained. In 
this way, a series of different detected results were obtained. The detection process 
can be drawn as a PR curve and as a ROC curve, which are shown in Figs. 3 and 4, 
respectively. To increase the experimental contrast, each patient was also assessed by 
a human. The best detection results are listed in Table 1.

(1)

Precision =
TP

FP+ TP
,

Recall =
TP

TP+ FN
,

F1 - score =
2 ∗ Precision*Recall

Precision+ Recall
,

Fig. 3  The PR curve of the detection results
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As shown in the PRC and ROC curves, 3D-DSA (Vmean) had the best performance 
and conformed to the theoretical analysis. From the experimental results, we obtained 
a precision of 94.6% and a recall of 96.4%. When the sensitivity was 96.4%, the false-
positive rate was 6.2%. In our experiment, 6 of 165 aneurysms remained undetected 
by the proposed method. A histogram of aneurysm size and detection frequency on 
3D-DSA is shown in Fig. 5. From the detection results, 5 of the false-negative aneu-
rysms were under 5  mm, and the detection rate for small aneurysms (< 5  mm) was 
thus (82 − 5)/82 ≈ 93.9%. The mean size of the 6 undetected aneurysms was 3.63 mm, 
and four of them were not detected by humans on 2D-DSA. Because of the nonuni-
formity of the filter response, the position of some vascular protrusions could also be 
enhanced very well; so, the performance using the maximum response value as the 
threshold value was not as good as that of the mean response value. On 2D-DSA, due 
to the limitation of the 2D image perspective, a total of 163 observed targets were 
regarded as aneurysms, of which 154 were true positive, resulting in a recall of 93.3%. 
In the automatic detection of aneurysms, overlapping curved vessels and aneurysmal 
areas are easily confused in 2D-DSA; therefore, more false positives are obtained. The 
experiment shows that the performance of aneurysm detection in 3D-DSA is better 
than that in 2D-DSA.

Fig. 4  The ROC curve of the detection results

Table 1  Detection results of 3D-DSA and 2D-DSA

Precision (%) Recall (%) F1-score (%) AUC​

3D-DSA (Vmean) 94.6 96.4 95.5 0.98

3D-DSA (Vmax) 82.1 88.7 85.2 0.94

2D-DSA (Vmean) 85.8 89.8 87.8 0.95

2D-DSA (Vmax) 87.2 75.0 80.6 0.91

2D-observed 94.5 93.3 93.9 –
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Discussion
In this section, we also compared with other aneurysm detection algorithms. According 
to the known literature, many aneurysm detection systems were carried on the modali-
ties of 2D-DSA, 3D-MRA/MRI and 3D-CTA. Since the evaluation criteria of each 
algorithm were different, we selected some criteria for comparison, and the results are 
shown in Table 2.

When comparing the performance of several other algorithms, the results of our 
method are superior in some indicators due to differences in data sets and evaluation 
criteria. As can be seen from Table  2, our method achieved the highest sensitivity. 
Sulayman et al. [11] combined the traditional feature extraction and machine learn-
ing method, 89% detection sensitivity was obtained in 19 cases. Jin et  al. [12] used 
deep learning to detect aneurysms in more 2D-DSA cases; the detection sensitivity 
was the same as Sulayman’s method. They also combined with image segmentation 
and got a lower dice coefficient. Clemens et al. [19] obtained 95% sensitivity by tra-
ditional machine learning, and the sensitivity of small aneurysms detection was 93%, 
while our result was 93.9%. The F1-score obtained by Zhou et al. [20] through deep 
learning was similar to our proposed method, but we had higher sensitivity. These 
aneurysm detection systems usually use traditional hand-crafted feature machine 
learning methods or other deep learning methods, and they were detected on the 
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Fig. 5  Histogram of aneurysm size and detection results

Table 2  Performance comparison with  other aneurysm detection methods in  different 
data sets

N: number of cases; SE: sensitivity

Algorithms Modality N F1-score (%) SE (%)

Sichterman et al. [17] 3D-MRA 85 – 87.0

Sulaymana et al. [11] 2D-DSA 19 – 89.5

Jin et al. [12] 2D-DSA 493 – 89.3

Hanaoka et al. [16] 3D-MRA 300 – 89.2

Zhou et al. [20] 3D-RA + 3D-MRI 121 94.7 94.8

Hentschke et al. [19] 3D-MRA + 3D-CTA​ 66 – 95.0

Proposed 3D-DSA 145 95.5 96.4
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same dimension of image modality. In this paper, we used Bayesian optimization to 
automatically find filter parameters, and detected aneurysms on both 2D-DSA and 
3D-DSA. As far as we know, it is the first time that Bayesian optimization is used in 
the automatic search for filter parameters, and based on the theory of Hessian matrix 
and traditional image processing, we get good detection performance.

We chose DSA instead of other neuroimaging modalities, such as MRA or CTA, for 
aneurysm intracranial detection because DSA provides maximum contrast between 
cerebrovascular and surrounding tissues and DSA remains the most effective modal-
ity in the diagnosis of cerebrovascular diseases. Compared to 3D images, 2D images 
are limited by different, constrained view angles, the inability to see some of the aneu-
rysms in some sections, and the interference from overlapping parts of the bending of 
blood vessels. However, these problems do not affect 3D images, which can provide 
more information for detection.

This paper presented a novel framework that performed structure enhancement 
and Bayesian optimization of brain DSA to accurately identify intracranial aneu-
rysms. The methodology presented in the preceding sections efficiently solved the 
most significant research questions through comprehensive investigation of filter 
processing and automatic filter parameter adjustment. This method was based on 
the principle that eigenvalues of the Hessian matrix can enhance objects of different 
shapes. A filter based on the eigenvalues of the Hessian matrix was constructed, and 
the optimal parameters were found by Bayesian optimization. By enhancing spherical 
structures and suppressing other structures, aneurysms could be detected. The pro-
posed method is reliable for the detection of intracranial aneurysms in a patient one 
at a time.

However, our system also has limitations. The detection of small aneurysms is still 
very difficult because of the overlap of vascular tissue. The system also generated some 
false positives, although they could be easily distinguished by humans. Computer-aided 
diagnosis is helpful for doctors to diagnose aneurysms accurately and analyze some of 
their properties, such as aneurysm rupture. In the future research, we can improve the 
detection filter and aneurysm extraction rules to increase the detection sensitivity of 
small aneurysms. We can also combine the three-dimensional deep learning to obtain 
better detection performance.

Conclusions
In this paper, we proposed an automatic aneurysm detection method based on Bayes-
ian optimization filter in 3D-DSA. First, we constructed a multiscale enhancement fil-
ter based on the attribute of Hessian matrix, and then used Bayesian optimization to 
automatically search for the optimal detection parameters of the aneurysm filter. We 
found that the mean response of the filter was a good discriminating parameter, and 
the adaptive threshold method can be used to determine whether the enhanced target 
was an aneurysm. When the aneurysm was detected, region growth method was used 
to remove the aneurysm. The detection was continued in the remaining images, and 
each aneurysm corresponds to a set of optimal detection parameters. The experimental 
results show that our method was superior to other methods.
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This method was evaluated on 145 patients with 165 intracranial aneurysms, and the 
quantitative assessment showed good performance of aneurysm detection. We obtained 
a detection precision of 94.6%, and a sensitivity of 96.4% with a false-positive rate of 
6.2%. The F1-score and AUC can reach 95.5% and 0.98, respectively; only 6 aneurysms 
remained undetected. The analysis was carried out in MATLAB (R2018b).

The proposed method can be used to assist doctors in the diagnosis of aneurysms, 
which is a stable and reliable detection method. Therefore, we hope that it can give a 
technical option to improve the accuracy of intracranial aneurysms detection. The major 
contributions can be summarized as follows:

1.	 We carried out aneurysm detection on 3D-DSA; compared with other 3D modali-
ties, this modality can provide more complete aneurysm information and reduce the 
rate of missing aneurysm detection.

2.	 We proposed a multiscale aneurysm enhancement filter and established the relation-
ship between aneurysm detection and Bayesian optimization.

3.	 We used Bayesian optimization to automatically search for the detection parameters 
of the aneurysm filter, where each aneurysm corresponded to a set of optimal filter 
parameters.

4.	 For multiple aneurysms, we used an iterative detection strategy and an adaptive 
threshold based on the region growth method to extract the aneurysms.

Materials and methods
Materials

The original angiography data were obtained from the Department of Neurosurgery, 
Huashan Hospital, Fudan University. This dataset consisted of information from 145 
patients who had data from both 3D-DSA and corresponding 2D-DSA. The image pixel 
spacing of DSA was 0.4–0.6  mm. Aneurysms from each patient were studied in this 
paper. The baseline characteristics of the patients are shown in Table 3. “Single” denotes 
patients with only one aneurysm, and “Multiple” denotes patients with two or more 
aneurysms; among the “Multiple” patients, 18 had a total of 38 aneurysms. In the follow-
ing subsection, the proposed method will be described in detail.

Methods

Figure 6 shows a flowchart of the proposed method. First, the original images were pre-
processed. Then, we constructed a filter based on the eigenvalues of the image voxel 
Hessian matrix and automatically determined the filter parameters through Bayesian 
optimization. The filter is capable of enhancing the aneurysm area and inhibiting the 
other tissues of the blood vessels. In the experiment, we found that the mean value of 
the filter response of the detected target can be used to screen for aneurysms. When an 
aneurysm is detected, it can be removed by region growth. We can repeat the previous 
steps to detect any aneurysms in the remaining image. Generally, the detailed process 
of the proposed computer-aided aneurysm detection system includes five steps: (1) pre-
processing; (2) optimal filter parameter determination by Bayesian optimization; (3) fil-
ter enhancement; (4) adaptive thresholding; (5) aneurysm extraction.
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Preprocessing

Given the existence of some noise in the image, a 3× 3× 3 median filter was used to 
remove the noise. Then, the image pixel values were normalized to the range 0–1. The 
image preprocessing process is shown in Fig. 7.

Optimal filter parameter determination by Bayesian optimization

Enhancement filters can enhance certain structures in an image. Previous studies [23–
25] have proposed various multiscale filters based on the second derivative of image 
intensity. Given that the shape of the aneurysm can be approximated as a sphere, we can 
regard the detection of the aneurysm as a filtering process using a spherical structure fil-
ter. Since the size of aneurysms is variable, it is important to introduce a scale parameter 
that varies adaptively. Let the intensity of the coordinate point x = [x1, x2, x3]

T in a 3D 

Table 3  Baseline characters of patients in this study

ACoA anterior communicating artery, ACA​ anterior cerebral artery, ICA internal carotid artery, MCA middle cerebral artery, 
PCoA posterior communicating artery

Parameters Single (n = 127) Multiple (n = 18)

Sex (number)

 Male 43 7

 Female 84 11

Age (mean ± standard deviation)

 Male 57.8 ± 11.6 52.6 ± 11.2

 Female 56.9 ± 10.7 57.6 ± 11.3

Size (mm)

 < 3 20 16

 3–6 61 15

 6–10 29 4

 > 10 17 3

Location

 ACoA 7 4

 MCA 22 6

 PCoA 8 5

 ICA 84 20

 ACA​ 6 3

Fig. 6  The scheme of the proposed algorithm
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image be I(x) . To analyze the local behavior of an image I(x) , Taylor expansion was car-
ried out as follows:

where ∇0,s and H0,s are gradient vectors and the Hessian matrix of images at point x0 , 
respectively, and s denotes the scale parameter. A scale space is introduced, and the sec-
ond-order derivative of I(x) is a 3× 3 Hessian matrix, which can be defined as a convo-
lution with derivatives of Gaussians:

where G(x, s) =
(
2πs2

)−3/2 exp
(

− xTx
2s2

)

 is a 3D Gaussian function, and ∗ denotes con-

volution. Assume the three eigenvalues of the Hessian matrix in 3D-DSA are �1, �2, �3 , 
and they are sorted according to their magnitude |�1| ≤ |�2| ≤ |�3| . The eigenvalues of 
the Hessian matrix can enhance the structure of different shapes. For spherical objects, 
the relationship between the magnitude and signs of the eigenvalues with the desired 
enhancement pattern is shown in Table 4 [30].

(2)I(x0 + εx0, s) ≈ I(x0, s)+ εxT0∇0,s + εxT0H0,sεx
T
0 ,

(3)H = s2I(x) ∗








∂2G(x,s)

∂x21

∂2G(x,s)
∂x1∂x2

∂2G(x,s)
∂x1∂x3

∂2G(x,s)
∂x2∂x1

∂2G(x,s)

∂x22

∂2G(x,s)
∂x2∂x3

∂2G(x,s)
∂x3∂x1

∂2G(x,s)
∂x3∂x2

∂2G(x,s)

∂x23







,

a b
Fig. 7  Image preprocessing process

Table 4  Enhancement pattern in  2D and  3D (H = high, L = low, ± indicates the  sign 
of eigenvalue, |�1| ≤ |�2| ≤ |�3|)

2D 3D Shape (enhancement)

�1 �2 �1 �2 �3

H− H− H− H− H− Spherical (bright)

H+ H+ H+ H+ H+ Spherical (dark)
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The magnitude and signs of the eigenvalues of the Hessian matrix reflect the specific 
shape of the structure, and a filter that is composed of these eigenvalues can enhance 
objects of different shapes. Bright spherical structures on a dark or bright background can 
be represented by negative and positive eigenvalues, respectively. In addition to the proper-
ties shown in Table 2, when 

(

�1 ≈ �2 ≈ �
|�1,2,3|
3 ≤ 0

)

 , the spherical structure will also be 

enhanced. Based on the Hessian matrix eigenvalue attributes of 3D images, different filters 
can be constructed to enhance a specific shape structure. In this paper, inspired by the 
method proposed by Jerman [31], we used an enhancement filter that combines these 
eigenvalues to detect intracranial aneurysms as follows:

where �3(x, s) denotes �3(x) at scale s; the minimum of all �3(x, s) is computed to find the 
eigenvalue with the highest magnitude. The value of τ determines the response inten-
sity of the filter. To obtain the maximum filter response value, we need to compare the 
eigenvalues for each point x at scale s on the image. The value of s depends on the size 
of the aneurysm. The values of s and τ vary within certain ranges; s varies from 0 to 20, 
and τ varies from 0.7 to 1. For aneurysm detection, the goal is to find a set of parameters 
(s, τ) that maximize the value of function Bp . The exponential function in Bp is used to 
increase the contrast between light and dark. In our experiment, we can find the maxi-
mum value of function Bp quickly with Bayesian optimization, which automatically finds 
the parameters. The second eigenvalue �2 does not provide information for distinguish-
ing spherical shapes from other shapes; so, this value is not used to construct the filter.

To obtain the maximum value of the filter, the parameters need to be adjusted 
repeatedly, and each set of parameters should be calculated for comparison because 
different scale parameters may enhance different shape and size structures. Bayesian 
optimization can automatically and quickly find the optimal set of parameters with-
out artificially selecting or setting any of them [32]. Assume a set of hyperparameters 
Z = {z1, z2, . . . zn} , where each zi = (si, τi), i = 1, 2, 3 . . . n, denotes a set of filter param-
eters in our experiment, and a corresponding relation between the set of hyperpa-
rameters and the final loss function f (Z) . If there is a function f : Z → R , using the 
reciprocal of the proposed filter 

(
1
/

Bp

)

 as the loss function in our method, the goal is 

to find Z ∈ R that makes:

(4)Bp =
(

expB1 −1
)

/(exp−1),

B1 =

2

(

�
2
1�ρ

(
3

2�1+�ρ

)3
+

�
2
1

|�ρ |
+

√
�1 ∗ �ρ

)

3
,

(5)�ρ =

{
�3 if �3 < τ ∗min(�3(x, s))
τ ∗min(�3(x, s)) otherwise

,

(6)
z∗ = arg minf (z)

︸ ︷︷ ︸

z∈Z

.
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The flow chart of the Bayesian algorithm is as follows:
where f  is the form of the loss function; Z are the filter parameters; R is the acqui-

sition function; M is the hypothesis module of the input data; y is the value of the 
loss function; and T is the number of iterations. Since each calculation requires many 
computing resources, the number of iterations was set to 50 in this paper. The specific 
process of Bayesian optimization calculation is as follows:

Step 1	� Obtain the initialized dataset D =
(
z1, y1

)
, . . . ,

(
zn, yn

)
;

Step 2	� Calculate the concrete form of the model M function from the assumed 
model M and initial dataset D;

Step 3	� Acquire the next data point through the acquisition function R;
Step 4	� Calculate the new value f (zi) and update the dataset

The input data model is assumed to follow a Gaussian distribution; then, f ∼ GP(u,K ) 
(GP: Gaussian process, u : mean, K  : covariance kernel), so the new prediction data also 
obey a normal distribution:

To obtain the concrete expression of function p
(
y|z,D

)
 , y, û, σ̂ 2 should be computed 

first; they are defined as

To avoid falling into a local minimum, the acquisition function R is defined as:

p
(
y|z,D

)
= N (y|û, σ̂ 2)

(7)y = (y1 . . . yi)
T,

(8)û = k(z)T(K + σ 2
n |)

−1y,

(9)σ̂ 2 = k(z, z)− k(z)T(K + σ 2
n |)

−1k(z).
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where f ′ = minf (z) and u(z) = max
(
0, f ′ − f (z)

)
 . Finding the maximum absolute value 

of the difference between f ′ and f (z) as a reward, u(z) is the utility function. Through 
this formula, we can see that the maximum value of aEI is the optimum point. On the 
left side, u(z) must be reduced as much as possible, and on the right side, the covariance 
k(z, z) must be increased as much as possible.

To avoid obtaining the local minimum value of the objective function, the positive 
acquisition functions modify their behavior based on whether they estimate that they are 
overexploiting an area. Assuming σF(z) is the standard deviation of the posterior objec-
tive function at position z , the posterior standard deviation of the additive noise is σ , 
and tσ is the value of the exploration ratio option, which is a positive number. After each 
iteration, the positive acquisition functions evaluate whether the next point z satisfies:

If this condition is satisfied, the algorithm will consider point z an overexploited point. 
Then, the acquisition function modifies its kernel function by multiplying θ by the num-
ber of iterations [33]. Then, a new point is generated according to the new fitted kernel 
function. Evaluating the new point z , if it is again overexploited, θ is multiplied by an 
additional factor of 10, and the above steps are repeated. This continues up to five times 
in an attempt to obtain a point z that is not overexploited as the next point.

Filter enhancement

Each aneurysm corresponds to a set of optimal filter detection parameters that can be 
found by Bayesian optimization. When the minimum loss function is found, the cor-
responding parameters constitute the aneurysm detection parameters, which are 
substituted into the filter for sphere region enhancement, and the enhanced region is 
designated the detection target.

Adaptive thresholding

In this paper, two parameters were used to determine whether the detected target was an 
aneurysm: one was the maximum value ( Vmax ) of the filtering response of the detected 
target, and the other was the mean value ( Vmean ) of the filtering response of the detected 
target. They were defined as follows:

where Ø denotes the set of filter response values of the detected target. If Vmean or Vmax 
was greater than a certain threshold, the target was treated as an aneurysm; otherwise, it 
was not.

(10)
aEI(z) =

f ′∫

−∞

(
f ′ − f

)
N
(
f ;u(z), k(z, z)

)
df

=
(
f ′ − u(z)

)
Φ
(
f ′;u(z), k(z, z)

)
+ k(z, z)N

(
f ′;u(z), k(z, z)

)
,

(11)σF(z) < σ tσ .

(12)Vmax = max(Ø),

(13)Vmean = mean(Ø),
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Aneurysm extraction

The detected target was extracted by region growth. First, the position of the maximum 
filtering response value in the image was located. We used this position as the seed point 
for region growth, which began in the 3D image space with 26 neighborhoods, and new 
points were added to the seed region until the final target area was obtained. Because the 
detected target incompletely coincided with the aneurysm, we first compared the length, 
width and height of the target extracted from the growth region and then selected their 
maximum value. Since some aneurysms were not completely spherical, we found the 
center of mass of the detected target and used this maximum value as the radius to 
extract the spherical target; if the target was an aneurysm, it was removed.

When a target was removed, the same steps were used in the remaining image until 
no further aneurysms were detected. It is important to note that to avoid detecting the 
same target, the detected region had to be removed after each iteration.
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