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Abstract 

Background:  Increasing evidence has demonstrated the correlation between 
hepatocellular carcinoma (HCC) prognosis and RNA binding proteins (RBPs) dysregula-
tion. Thus, we aimed to develop and validate a reliable prognostic signature that can 
estimate the prognosis for HCC.

Methods:  Gene expression profiling and clinical information of 374 HCC patients were 
derived from the TCGA data portal. The survival-related RBP pairs were determined 
using univariate cox-regression analysis and the signature was built based on LASSO 
analysis. All patients were divided patients into high-and low-risk groups according 
to the optimal cut off of the signature score determined by time-dependent receiver 
operating characteristic (ROC) curve analysis. The predictive value of the signature was 
further validated in an independent cohort.

Results:  A 37-RBP pairs signature consisting of 61 unique genes was constructed 
which was significantly associated with the survival. The RBP-related signature accu-
rately predicted the prognosis of HCC patients, and patients in high-risk groups 
showed poor survival in two cohorts. The novel signature was an independent 
prognostic factor of HCC in two cohorts (all P < 0.001). Furthermore, the C-index of the 
prognostic model was 0.799, which was higher than that of many established risk mod-
els. Pathway and process enrichment analysis showed that the 61 unique genes were 
mainly enriched in translation, ncRNA metabolic process, RNA splicing, RNA modifica-
tion, and translational termination.

Conclusion:  The novel proposed RBP-related signature based on relative expression 
orderings could serve as a promising independent prognostic biomarker for patients 
with HCC, and could improve the individualized survival prediction in HCC.

Keywords:  Hepatocellular carcinoma, RNA binding protein, Signature, Overall survival

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Kang et al. BioMed Eng OnLine           (2020) 19:68  
https://doi.org/10.1186/s12938-020-00812-0 BioMedical Engineering

OnLine

*Correspondence:   
lhs841209@163.com 
†Chunmiao Kang and 
Xuanhui Jia contributed 
equally to this work and 
should be considered co-first 
authors
2 Department of Radiology, 
Xi’an Central Hospital 
Affiliated to Xi’an Jiaotong 
University, No. 161, Xiwu 
Road, Xincheng District, 
Xi’an 710003, Shaanxi, PR 
China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-020-00812-0&domain=pdf


Page 2 of 15Kang et al. BioMed Eng OnLine           (2020) 19:68 

Background
Hepatocellular carcinoma (HCC) was the most common primary malignancy of the liver 
and its incidence rate is increasing [1]. It has been commonly known that many risk fac-
tors contribute to HCC carcinogenesis and progression, including chronic hepatitis B 
virus (HBV)/hepatitis C virus (HCV) infection, diabetes mellitus, alcohol abuse, obesity, 
nonalcoholic fatty liver disease, metabolic diseases, autoimmune hepatitis, and exposure 
to dietary toxins such as aflatoxins [2]. Recently, it has reported that the incidence of 
HCC all over the world is highly heterogeneous owe to different risk factors, and that 
most HCC patients occur in South-eastern Asia and Saharan Africa, where HBV infec-
tion is the leading risk factor [3]. Despite the rapid progress over the past few decades in 
earlier diagnosis and treatment of HCC, the long-term prognosis remains poor, and the 
5-year survival rate remains below 20% [4]. Surgery resection remains the most effec-
tive treatment of HCC, and it has markedly improved the overall survival (OS) of HCC 
patients. However, the long-term survival rate is still low [4, 5]. The classic tumor-node-
metastasis (TNM) staging, as a classic prognostic model, helps predict HCC progno-
sis and is widely used in current clinical practice [6]. However, the predictive efficacy 
of TNM model is still far from satisfying. HCC is a highly heterogeneous malignancy 
with substantially variable clinical outcomes, the prognoses of patients with the same 
TNM stage may varied due to inherent clinical and molecular diversities, and even 
among patients with HCC who are diagnosed as the same TNM stage and received simi-
lar clinical management, survival outcomes are various, suggesting that TNM provides 
incomplete prognosis information [7, 8]. Therefore, novel valid and robust prognostic 
signatures are indispensable to improve risk prediction and offer better information for 
guiding personalized therapy.

RNA-binding proteins (RBPs) are inherently pleiotropic proteins, which bind RNA 
through one or more spherical RNA-binding domains and control RNA stabilization, 
degradation and modification at the post-transcriptional level [9]. So far, more than 
1,500 RBP genes have been confirmed by genome-wide screening in human genome 
[10]. Emerging evidences have demonstrated that RBPs are critical in the regulation of 
human cancer progression by influencing multifaceted cellular functions [11, 12]. RBPs 
play a vital role in post-transcription and dysfunction of RBPs expression is closely 
related to various diseases including cancer and immune disorders [13]. Considering the 
importance of post-transcriptional regulation of RBPs, aberrantly deregulated RBPs are 
closely related to the occurrence and progression of cancers. To best of our knowledge, 
very few RBP based signatures have been established for HCC prognosis prediction.

With the rapid development of sequencing and precision medicine, increasing evi-
dence indicated that gene signatures at mRNA level had promising potential in predict-
ing HCC prognosis. Numerous studies have proposed various signatures for survival 
prediction in patients with HCC [14–19]. For example, Liu et al. [20] have established a 
novel six-gene signature for HCC prognosis prediction, but only one external validation 
cohort was used to validate the performance of the predicted model without compari-
son of its performance with other existed biomarkers. Li et al. developed and identified 
a seven-gene signature related to the DNA repair process to predict survival in HCC, 
but without any external validation the performance of the predicted model [21]. How-
ever, none of these signatures have yet been widely accepted in routine clinical practice 
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because of technical limitations and evaluation difficulties. Recently, a novel established 
method based on the within-sample relative expression orderings of gene pairs has been 
proposed. It can overcome the disadvantages of gene expression data normalization and 
scaling, and has yielded robust results in various studies [22, 23].

Therefore, based on 1542 RBP genes [10], we used two cohorts to develop and validate 
an individualized prognostic signature for HCC. We compared this signature with other 
previous prognostic signatures to validate the predictive effectiveness and accuracy of 
the novel signature.

Results
Prognostic signature construction

The analysis process of present study is shown in Fig. 1. A total of 647 RBP genes were 
common among two datasets, and 23,353 RRGPs were constructed in two cohorts. 
Using univariate Cox regression analysis, we identified 581 prognostic RRGPs that were 
significantly associated with patient OS (P < 0.05). To determine the optimal model for 
predicting prognosis, the prognostic RRGPs were used to build prognostic signature by 
using LASSO penalized Cox regression on the TCGA cohort. The risk score was cal-
culated as combination of gene’ expression values weighted by regression coefficient 
derived from LASSO regression. After 1000 iterations, we identified the 37 gene pairs to 
construct an RRGP risk signature (Fig. 2). The 37-RRGP prognostic signature informa-
tion is shown in Table 1.

Validation and assessment of the novel signature

The clinical data of patients in the internal validation group and the external validation 
group is displayed in Table 2. We calculated the risk score for each patient as mentioned 
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Fig. 1  Analysis workflow used in this study
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previously in the two groups. The optimal cut-off of the signature risk score for separat-
ing patients into the high- or low-risk groups was set at -0.241 using time-dependent 
ROC curve analysis at 5 years (Fig. 3). It was revealed that the high-risk group presented 
a poorer OS than the low-risk group (P < 0.001; HR = 6.43, 95%CI 4.15–9.96) (Fig.  4a). 
The patients in the ICGC cohort were classified into high- and low-risk groups based 
on the same cutoff value in the TCGA cohort. It was confirmed that high-risk group 
exhibited a poorer OS than the low-risk group (P < 0.001; HR = 6.87, 95%CI 2.43–19.38) 
(Fig. 4b). The Kaplan–Meier curves indicated that the risk score was a stable prognos-
tic marker for patients with HCC stratified by age (< 60 or ≥ 60), sex (male or female), 
stage (I-II or III-IV), and grade (I-II or III-IV) (Fig.  4c–j). Furthermore, the AUC val-
ues of the prognostic signature risk score for the 1-year, 3-year and 5-year OS using the 
time-dependent ROC curves in the TCGA cohort were 0.83, 0.86, and 0.83, respectively 
(Fig. 5a). As expected, the robust predictive performance of the signature was further 
validated in the ICGC cohort with the 1-, and 3-year survival rates of 0.75 and 0.73, 
respectively, (Fig.  5b), which demonstrated that the predictive ability of our prognos-
tic signature was robust and accurately. To further explore the prognostic power of the 
signature for other clinical factors, univariate and multivariate Cox proportional haz-
ards regression analyses were used to the TCGA cohort. The univariate and multivariate 
Cox regression analysis showed that the novel signature risk score was an independent 
prognostic factor for predicting OS of HCC after adjustment for by age, gender, grade, 
and stage in the TCGA cohort (HR = 9.492, 95%CI 6.196–14.539; P < 0.001, Fig. 6a, b), 
and further confirmed in the external cohort (HR = 2.680, 95%CI 1.424–5.046, P = 0.002, 
Fig. 6c–d).

Comparison with other established prognostic signatures

To further confirm the prognostic performance of the model, we built prognostic 
risk models of age, sex, stage and grade and compared these models with the novel 

a b

Fig. 2  Predictor selection by the least absolute shrinkage and selection operator (LASSO). a Parameter 
(Lambda) selection by LASSO model adopted tenfold cross-validation via minimum criteria; b LASSO 
coefficient profile plot of 37 RBP gene pairs against the log (Lambda) sequence
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Table 1  37-RRGP prognostic signature information

Genepair1 Gene name Genepair1 Gene name Coefficient

RBFOX2 RNA binding fox-1 homolog 2 TRMT6 tRNA methyltransferase 6 − 0.03268748

RBFOX2 RNA binding fox-1 homolog 2 UPF3B UPF3B regulator of nonsense 
mediated mRNA decay

− 0.037164549

NCBP2 Nuclear cap binding protein 
subunit 2

AIMP1 Aminoacyl tRNA synthetase com-
plex interacting multifunctional 
protein 1

0.066221909

GNL2 G protein nucleolar 2 QTRT1 Queuine tRNA-ribosyltransferase 
catalytic subunit 1

0.059558561

PELO Pelota mRNA surveillance and 
ribosome rescue factor

DHX34 DExH-box helicase 34 − 0.016014421

FBXO17 F-box protein 17 ISG20L2 Interferon stimulated exonucle-
ase gene 20 like 2

− 0.161981498

FBXO17 F-box protein 17 YARS Tyrosyl-tRNA synthetase − 0.032387367

SPATS2 Spermatogenesis associated 
serine rich 2

DHX58 DExH-box helicase 58 0.236866919

LSM4 LSM4 homolog, U6 small nuclear 
RNA and mRNA degradation 
associated

CIRBP Cold inducible RNA binding 
protein

0.05881972

PIH1D1 PIH1 domain containing 1 SRRT​ Serrate, RNA effector molecule − 0.225462618

MRPL54 Mitochondrial ribosomal protein 
L54

PA2G4 Proliferation-associated 2G4 − 0.067034961

MRPL54 Mitochondrial ribosomal protein 
L54

SMG5 SMG5 nonsense mediated mRNA 
decay factor

− 0.024001874

HINT3 Histidine triad nucleotide binding 
protein 3

ABCE1 ATP binding cassette subfamily E 
member 1

− 0.206441474

RPS19BP1 Ribosomal protein S19 binding 
protein 1

ACO1 Aconitase 1 0.062394557

MRPS28 Mitochondrial ribosomal protein 
S28

TXNL4A Thioredoxin like 4A − 0.058273164

RPUSD1 RNA pseudouridine synthase 
domain containing 1

ZC3H13 Zinc finger CCCH-type contain-
ing 13

0.140504191

SARS Seryl-tRNA synthetase MRPL40 Mitochondrial ribosomal protein 
L40

0.004986247

ANG Angiogenin RPL15 Ribosomal protein L15 − 0.005968985

XPOT Exportin for tRNA PRPF8 Pre-mRNA processing factor 8 0.057395002

DHX34 DExH-box helicase 34 SRPK2 SRSF protein kinase 2 0.038955695

DHX34 DExH-box helicase 34 DDX59 DEAD-box helicase 59 0.021534239

EZH2 Enhancer of zeste 2 polycomb 
repressive complex 2 subunit

PPRC1 PPARG related coactivator 1 0.049244644

KHDRBS3 KH RNA binding domain con-
taining, signal transduction 
associated 3

PPARGC1A PPARG coactivator 1 alpha 0.243268497

MTRF1 Mitochondrial translation release 
factor 1

CNOT6 CCR4-NOT transcription complex 
subunit 6

− 0.041893707

ZC3H13 Zinc finger CCCH-type contain-
ing 13

ESF1 SF1 nucleolar pre-rRNA process-
ing protein homolog

− 0.073576247

UPF3B UPF3B regulator of nonsense 
mediated mRNA decay

DDX59 DEAD-box helicase 59 0.005316586

VARS2 Valyl-tRNA synthetase 2, mito-
chondrial

EEF1E1 Eukaryotic translation elongation 
factor 1 epsilon 1

− 0.092573503

PPIH Peptidylprolyl isomerase H AIMP1 Aminoacyl tRNA synthetase com-
plex interacting multifunctional 
protein 1

0.011338774

AARS Alanyl-tRNA synthetase SF3B4 Splicing factor 3b subunit 4 − 0.130223697

CTIF Cap binding complex dependent 
translation initiation factor

RRP12 Ribosomal RNA processing 12 
homolog

− 0.011438504
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signature risk score. The 37-RRGP signature achieved a higher predictive accuracy 
than the risk models of age, sex, grade, stage, and their combined models with C-index 
of 0.799 (Fig. 7). The RBP prognostic signature was verified as a robust complement 

Table 1  (continued)

Genepair1 Gene name Genepair1 Gene name Coefficient

TRMT1 tRNA methyltransferase 1 SRA1 Steroid receptor RNA activator 1 0.113049796

DENR Density regulated re-initiation 
and release factor

PRPF8 pre-mRNA processing factor 8 0.040880372

NPM1 Nucleophosmin 1 RPL9 Ribosomal protein L9 0.127539928

ZFC3H1 Zinc finger C3H1-type containing DDX60 DExD/H-box helicase 60 0.039777048

MRPS31 Mitochondrial ribosomal protein 
S31

REXO4 REX4 homolog, 3′-5′ exonuclease − 0.045609959

SMG5 SMG5 nonsense mediated mRNA 
decay factor

NOL7 Nucleolar protein 7 0.07179385

YARS Tyrosyl-tRNA synthetase SRA1 Steroid receptor RNA activator 1 0.33277612

Table 2  Clinical data of  patients in  the  internal validation group and  the  external 
validation group

Variables Subgroups TCGA(N = 370) ICGC(N = 231)

Age

 < 60 169 44

≥  60 201 187

Sex

Male 249 170

Female 121 61

Stage

I 171 36

II 85 105

III 85 71

IV 5 19

NA 24 0

Grade

I 55 –

II 177 –

III 121 –

IV 12 –

NA 5 –

Survival status

Dead 130 42

Living 240 189

Family history

Positive – 73

Negative – 143

NA – 15

Prior malignancy

Positive – 30

Negative – 201

NA – 0
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Fig. 3  Time-dependent ROC curve for the signature risk score in the TCGA cohort. The risk score of -0.241 
was used as cut-off to separate patients into low- and high-risk groups
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Fig. 4  Kaplan–Meier survival analysis of patients in the high-risk and low-risk groups in the TCGA cohort (a), 
and ICGC dataset (b). The Kaplan–Meier curves of patients with hepatocellular carcinoma stratified by age (c, 
d), sex (e, f), grade (g, h), and stage (i, j)
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to clinical and pathological factors for the prognosis assessment of HCC patients with 
C-index of 0.803. We further compared the novel established signature with twelve 
published molecular signatures [16–21, 24–29], which were all prognostic signatures 
for HCC survival prediction. More importantly, the C-index of the prognostic model 
yielded much higher value than that of other risk models (Fig.  7). Thus, the novel 
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prognostic signature was more effective than the previous signatures in the prognosis 
of HCC patients.

Biological processes related to the RBP signature

Functional enrichment of the RBP genes relevant to the signature in the TCGA cohort 
were mostly involved in RNA modification, translation, translational termination, 
nuclear-transcribed mRNA catabolic process, RNA splicing, ribonucleoprotein complex 
biogenesis, and ncRNA metabolic process (Fig.  8). The enrichment of related biologi-
cal processes provided evidence of molecular mechanisms affected by the RBP signature 
and, therefore, contributed to predict the prognosis of HCC.

Discussion
HCC is a heterogeneous solid malignancies and the prognosis of HCC mainly depends 
on the degree of surgical resection and intervention [18]. Therefore, it’s important to 
accurate predict survival and adopt novel therapy methods in time for the patients at 
high risk of mortality. Microarray technology, which is a highly efficient and accurate 
transcriptional expression technology, has been successfully used in the identifying of 
molecular biomarkers of nearly all human malignant cancers. With the rapid develop-
ments in gene chips as well as high-throughput sequencing, gene signatures based on 
mRNA expression levels have exhibited significant potential in predicting HCC progno-
sis. Many risk-coefficient models based on a multigene mRNA expression signature has 
been reported and confirmed to be an independent prognostic predictor for OS in HCC 
and could classify patients into high- and low-risk group with notably different OS [14, 
18–21, 24, 27]. Although a lot of multigene prognostic signatures have been developed 
for HCC patients, but the accuracy of their prognosis predictions remains far from satis-
fying [14–18, 24, 25]. Therefore, there is an urgent to build robust prognostic signatures 
to predict the survival of patients with HCC.
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Fig. 7  Comparison of C-index among multivariate prognostic modules, signature risk score, twelve existing 
prognostic signatures and clinical features
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In the last years, post-transcriptional regulation of gene expression has stimulated 
much interest in studies focused on RBPs and the interactions with their RNA targets 
[30]. Previous studies have demonstrated that RBPs were abnormally expressed in differ-
ent cancer types, which affected the translation of mRNA into protein, and were indeed 
involved in carcinogenesis [31]. For example, SERBP1 (Serpine1 mRNA-binding protein 
1) is a member of the RG/RGG family of RNA-binding proteins and has been recognized 
as a novel oncogenic factor in glioblastoma, and the high SERBP1 expression correlates 
with poor patient survival and adverse response to chemo- and radiotherapy [32]. RNA-
binding protein CELF1 contributes to migration, invasion, and chemotherapy resistance 
by targeting ETS2 in colorectal cancer and could be a potential diagnostic and prognos-
tic marker [33]. However, little attention has been paid to the molecular characteristics 
of RBP genes interaction in HCC. Therefore, there is a need to develop and validate of a 
robust RBP genes signature for prediction of the prognosis of HCC.

In this study, we used the within-sample relative expression orderings to develop a sig-
nature based on 37-RRGP for HCC patients and validated its accuracy and effectiveness 
in an independent cohort via comprehensive bioinformatics methods. Univariate Cox 
regression analysis was used to identify RRGPs significantly associated with OS in HCC. 

Fig. 8  Functional enrichment of 61 unique RBP-related genes using the Metascape database
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We found that 581 gene pairs were associated with OS, with p < 0.05. We identified the 
37 RRGPs that predicted survival in patients with a LASSO penalized Cox regression 
on the TCGA cohort. These gene pairs were used to derive a signature risk score. Based 
on the cutoff of the risk score, patients could effectively classify into low-risk and high-
risk groups with distinct outcomes. Furthermore, the same conclusion was reached in 
survival analysis stratified by age, sex, stage, and grade. We performed univariate and 
multivariate Cox regression analysis to investigate the combined ability of the signature 
risk score and other clinicopathological factors to predict survival. It was revealed that 
the novel signature risk score may be an independent prognostic factor for patients with 
HCC. Besides, an independent dataset from ICGC was used as validation set to ensure 
the robustness of our results. The results confirmed that the risk score is a stable, inde-
pendent prognostic indicator and indicates that the risk score could be of important 
significance for patients with HCC as an effective clinical classification tool. However, 
most of existing signatures have not been widely used in clinical practice, which may 
owe to multiple factors. First, many traditional prognostic signatures failed to validate 
their findings in another independent cohort [17, 21]. More importantly, the diversity 
of data also represents a major challenge, and data processing across various sequenc-
ing platforms require suitable normalization and elimination of the batch effects. In 
addition, the cutoff in previous signatures could not be used across multiple datasets. 
These disadvantages severely limit their clinical application. In this study, we performed 
gene pairwise analysis to identify reliable biomarkers for prognosis of HCC based on 
the within-sample relative expression orderings of genes, which are robust against to 
experimental batch effects [34, 35]. Using this algorithm, the bias caused by gene nor-
malization was eliminated. Furthermore, the signature and cutoff value could be used 
across different datasets, which was an important advantage in our study. In addition, 
the RBP-based prognostic signature identified in the present study performed well com-
pared with twelve existing prognostic signatures, which was another vital advantage in 
our study. Furthermore, the time-dependent ROC analysis showed that it performed 
well in 1-, 3, and 5 years for HCC OS prediction. All these results demonstrated that the 
novel signature could provide an accurate prognosis of patients with HCC.

The RBP genes involved in the signature were mainly involved in RNA modification, 
translation, translational termination, RNA splicing, nuclear-transcribed mRNA cata-
bolic process, ribonucleoprotein complex biogenesis, and ncRNA metabolic process. 
Previous studies revealed that RBPs can bind to their target RNAs in a structure or 
sequence-dependent manner to form ribonucleoprotein complexes that regulate pro-
cesses ranging from mRNA stability to RNA processing, splicing, localization, export, 
as well as translation at the post-transcriptional level [36]. Post-transcriptional regu-
lation by non-coding RNAs has been reported involved in RBP expression in cancer. 
For instance, the expression of HuR protein is antagonized by miR-519 and miR-125a, 
remarkably inhibiting the proliferation of colon, cervical, breast, and ovarian carci-
noma cells [37, 38]. It was revealed that ribonucleoprotein granule is a crucial region 
that executes protein biosynthesis. The alteration of ribonucleoprotein influences the 
translation processing and related to cancer progression [39]. RNA binding protein 
SERBP1, which regulates mRNA translation, has been identified as a target of the tumor 
suppressor miR-218 in HCC and confirmed associated with cell migration/invasion 
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and epithelial mesenchymal transition [40]. A recent study revealed that methyltrans-
ferase-like 3 (METTL3) suppressed the expression of morphological effect on genitalia 
1 (SMG1) through m6A modification-mediated miR-873-5p up-regulation, therefore, 
serving an oncogenic role in HCC [41]. The number of HCC cells is significantly reduced 
when RNA binding protein NSUN6 is overexpressed, revealing that the occurrence and 
development of LIHC is related to alterations of tRNACys and tRNAThr biogenesis [42]. 
These evidences suggested that the signature may be concerned with HCC-related bio-
logical pathways and their functional dysregulations may be closely related to the sur-
vival of HCC.

Nevertheless, some notable limitations must be acknowledged. The main limitation 
of our findings is its retrospective nature, and more prospective studies should be con-
ducted to validate the findings. Moreover, the underlying mechanism through which the 
identified RBP genes contribute to the initiation and progression of HCC still requires 
further evaluated using RT-PCR or IHC.

Conclusion
We developed and validated of a novel robust prognostic signature based on relative RBP 
genes expression orderings, which could serve as a promising independent prognostic 
biomarker for patients with HCC. The novel signature could improve the individualized 
outcome prediction in HCC. The RBP-related signature provided new insights into the 
identification of HCC patients with a high risk of mortality.

Materials and methods
HCC data sources and data preprocessing

Level-three transcriptome RNA-sequencing data (HTSeq-FPKM) of 374 primary HCC 
samples, as well as their clinical follow-up information were downloaded from the 
TCGA data portal (https​://cance​rgeno​me.nih.gov/). Another RNA-seq dataset of 240 
primary HCC patients together with corresponding clinical information were accessed 
from the International Cancer Genome Consortium database (ICGC, https​://dcc.icgc.
org/, LIRI-JP), which was used as cohort for external validation of the signature. For the 
TCGA cohort, the expression values at probe level (probe ID) were converted to the 
corresponding gene symbol according to the annotation files without further stand-
ardization. When several probes matched to an identical gene symbol, the mean value 
was calculated as the expression value of this gene. We matched the ID numbers of 
the patients with their corresponding mRNA expression profile and clinical data and 
excluded patients whose ID numbers failed to match. Only selected patients with com-
plete overall survival (OS) information were used for further analysis. We downloaded 
1542 RBP genes as mentioned above. The RBP genes expression matrixes were further 
extracted from the two publicly datasets, respectively.

Prognostic signature construction

Before formal statistical analysis, we first filtered out RBPs measured on all the plat-
forms with relatively high variation (determined by median absolute deviation > 0.5) to 
decrease the false discoveries [43, 44]. The gene expression levels were compared pair-
wise in a given sample or profile to compute a score for each RBP-related gene pair 

https://cancergenome.nih.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
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(RRGP). In a pairwise comparison, if the expression value of the first RBP gene was 
higher than that of the second one, the output score of this RRGP was 1; otherwise, the 
output was 0, according to the proposed method [15, 22]. The advantage of analyzing 
genes in a pairwise comparison is without the requirement for standardization process 
for individualized analysis. A summary of 23,353 shared RRGPs in two datasets were 
included as the initial candidate factors for prognosis prediction. Univariate analysis 
was performed to identify prognostic RRGPs associated with OS (P < 0.05). The RRGPs 
was further reduced while maintaining high accuracy. Therefore, LASSO penalized Cox 
regression was used to establish a more stable prognostic signature using an R package 
glmnet after 1000 iterations with tenfold cross-validation. Subsequently, the risk score 
of the prognostic RBP signature for each sample was calculated by the relative expres-
sion level of RRGPs with weighted by the estimated regression coefficient derived from 
the LASSO regression model. Risk score = (Exprgenepair-1 × Coefgenepair-1) + (Exprge-
nepair-2 × Coefgenepair-2) + … + (Exprgenepair-n × Coefgenepair-n). The patients were 
divided into high-and low-risk groups according to the RRGPs score cutoff, which was 
determined by a time-dependent ROC curve at 5 years.

Validation and assessment of the novel signature

We adopted the nearest neighbor estimation (NNE) method to plot the ROC curve. 
Time-dependent ROC with AUC at 1, 3, and 5 years was used to explore the prognostic 
accuracy in both cohorts. The OS difference between the low-risk and high-risk groups 
were evaluated by the log-rank test and Cox regression analysis. We then integrated the 
signature risk score with existing clinical and pathologic variables for multivariate Cox 
regression analysis. The Kaplan–Meier survival curves in patients with HCC stratified 
by sex, age, grade, and stage were used to further validate the performance of the prog-
nostic signature. In addition, we compared the prognostic signature with other clinico-
pathological features and twelve recent established prognostic signatures by the Harrell’s 
concordance index (C-index) with 1,000 bootstraps resamples in the TCGA cohort.

Functional enrichment of the RBP genes in the prognostic signature

To understand the underlying biological mechanisms of the novel RBP-related prognos-
tic signature, functional enrichment analysis was conducted among the 61 unique genes 
using the Metascape database, which is a biologist-oriented resource for the analysis of 
systems-level datasets [45].

Statistical analysis

Survival curves were generated using the Kaplan–Meier method and the differences in 
survival curves were compared by the log-rank test using the ‘survival’ package. Multi-
variate analyses were conducted using the Cox proportional hazards regression model 
and hazard ratios (HR) with their 95% confidence interval (CI) were calculated. The 
ROC curves were performed by an R package “survivalROC”. The R package rms was 
used to compare other models with the RRGP prognostic signature. A p-value < 0.05 
was considered to be significant. All statistical analyses were performed using R (version 
3.6.3; https​://www.r-proje​ct.org/).

https://www.r-project.org/
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