
Rapid identification of COVID‑19 severity 
in CT scans through classification of deep 
features
Zekuan Yu1, Xiaohu Li2, Haitao Sun3, Jian Wang4, Tongtong Zhao5, Hongyi Chen1, Yichuan Ma6, Shujin Zhu7*   
and Zongyu Xie6*

Background
Since December 2019, the outbreak of a new coronavirus, named novel coronavi-
rus 2019 (COVID-19), has rapidly spread across China and other countries across the 
globe [1–4]. As of 19 July, 14,043,176 cases of COVID-19 with 597,583 deaths have been 
reported [5]. Since the World Health Organization declared the COVID-19 outbreak 
as a public health emergency of international concern, namely a pandemic, countries 
around the globe have heightened their surveillance to quickly diagnose potential new 
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Background:  Chest CT is used for the assessment of the severity of patients infected 
with novel coronavirus 2019 (COVID-19). We collected chest CT scans of 202 patients 
diagnosed with the COVID-19, and try to develop a rapid, accurate and automatic tool 
for severity screening follow-up therapeutic treatment.

Methods:  A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe 
cases were employed in this study. By taking the advantages of the pre-trained deep 
neural network, four pre-trained off-the-shelf deep models (Inception-V3, ResNet-50, 
ResNet-101, DenseNet-201) were exploited to extract the features from these CT scans. 
These features are then fed to multiple classifiers (linear discriminant, linear SVM, cubic 
SVM, KNN and Adaboost decision tree) to identify the severe and non-severe COVID-
19 cases. Three validation strategies (holdout validation, tenfold cross-validation and 
leave-one-out) are employed to validate the feasibility of proposed pipelines.

Results and conclusion:  The experimental results demonstrate that classification of 
the features from pre-trained deep models shows the promising application in COVID-
19 severity screening, whereas the DenseNet-201 with cubic SVM model achieved the 
best performance. Specifically, it achieved the highest severity classification accuracy 
of 95.20% and 95.34% for tenfold cross-validation and leave-one-out, respectively. 
The established pipeline was able to achieve a rapid and accurate identification of the 
severity of COVID-19. This may assist the physicians to make more efficient and reliable 
decisions.
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cases of COVID-19. Due to increasing outbreak of COVID-19, the early diagnosis of 
patients is crucial for prompt and effective in preventing and controlling of COVID-19. 
Presently, nucleic acid testing is generally considered as diagnostic ground truth. How-
ever, the stringent requirements of transportation and storage of COVID-19 nucleic 
acid kits may constitute an unsurmountable challenge for many existing transportation 
and hospital facilities in crisis. Moreover, the methodology, disease development stages 
and the method of sample collection could impact the result of nucleic acid testing [6]. 
The reverse transcription polymerase chain reaction (RT-PCR) could be used for iden-
tification of COVID-19, but it is difficult to identify the severity of COVID-19 patients, 
to predict whether the patient should be transferred to ICU or would need ventilators 
soon. These factors prolong the time to control the spread of COVID-19 and increase 
the recovery time of patients.

Chest CT, especially, high-resolution CT, is an important tool to detect the lung 
changes of 2019 novel coronavirus pneumonia (NCP) and to aid in evaluating the nature 
and extension of lesions. In a recent report, Ai et al. [7] utilized CT scans to investigate 
its diagnostic value and consistency in comparison with RT-PCR assay for COVID-19. It 
has been found that of 1014 patients, 59% had positive RT-PCR results, while 88% had 
positive chest CT scans which means chest CT has a high sensitivity for diagnosis of 
COVID-19. Hence, the Chest CT may be treated as a primary tool to detect COVID-19 
in epidemic areas. Some other investigators focused on the understanding of virus infec-
tion pathogenesis by observing the imaging patterns on chest CT. Bernheim et  al. [8] 
characterized chest CT findings in 121 COVID-19-infected patients in relationship to 
the time between symptom onset and the initial CT scan. Pan et al. [9] investigated the 
lung abnormalities by observing the changes in chest CT of patients from initial diagno-
sis to recovery. It was observed that the lung abnormalities on chest CT showed greatest 
severity approximately 10 days after initial onset of symptoms. Most of the concern in 
recent reports is with the diagnosis of the COVID-19 or the clinical observation during 
the therapeutic treatment [10–13].

Although for most COVID-19 patients, the clinical symptoms are mild and the prog-
nosis is good, about 20% can develop into severe cases with the symptoms of pneu-
monia, pulmonary edema, septic shock, metabolic acidosis, acute respiratory distress 
syndrome or even death [14]. Therefore, the timely diagnosis, accurate assessment with 
the following symptomatic  treatment is very important and is the key to improve the 
prognosis and reduce the mortality.

It is known that convolutional neural networks (CNNs) have been proved to be power-
ful in data mining, image classification/detection, and computer vision. Many research 
groups have applied deep learning methods into COVID-19 computer aided diagnosis 
[15–17]. But to our best knowledge, few studies were focused on the identification of 
severity of infected patients, although this identification is a crucial evaluation criterion 
to develop proper therapeutic treatment strategy.

Therefore, developing a rapid, accurate and automatic tool for COVID-19 severity 
screening is both an urgent and essential task, which could help physicians anticipating 
the need for ICU admission. Thus, to achieve an accurate and efficient COVID-19 sever-
ity diagnosis, we classified features gained from pre-trained CNNs such as Inception v3 
[18], ResNet [19] and DenseNet [20] to identify the severity of COVID-19 patients in 
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this study. Amid the crisis in hospitals and due to challenges of training a network from 
scratch (e.g., necessity of a large dataset), we find this approach to be more practical and 
reliable.

Results
In this section, three experiments are performed to validate the feasibility of the pro-
posed method. These include holdout validation, k-fold cross-validation, and leave-one-
out validation schemes. All the experiments were implemented in Matlab 2019b with 
Intel Xeon Gold 6252 @2.1 GHz CPU and 16 GB RAM environment, and five classifica-
tion methods were trained. These classifiers included linear discriminant, linear SVM 
(support vector machine), cubic SVM, K-nearest neighbor (KNN), and AdaBoost deci-
sion trees. We used the default parameters for these classification methods and no extra 
optimization was performed. For holdout validation experiment, 80% of deep features 
were randomly selected as training dataset and the remaining 20% were used for test-
ing. Figures 1 reports the results of holdout validation in terms of accuracy, AUC, sensi-
tivity and specificity. Obviously, the linear discriminator (purple square) cannot achieve 
a good accuracy and AUC performance, while the AdaBoost decision trees (black dia-
mond) and linear SVM (green circle) perform worse than other three classifiers with 
respect to sensitivity and specificity values. Among five classification methods, the cubic 
SVM (red star) performs the best for all cases with respect to accuracy, AUC, sensitivity 
and specificity values. We may also observe that all deep models with cubic SVM classi-
fier are able to achieve favorable results while the DenseNet-201 model does contribute 
to the best results for most cases.

In another series of experiments, tenfold cross-validation was performed to validate 
the performance of severity classification for four deep learning models. The deep fea-
tures were split into tenfolds. For each fold, nine out-of-fold observations were used to 
train the classifier and the remaining fold was used to assess the trained classifier. The 
average test error over all folds was considered as the final result. The performances of 
cubic SVM with tenfold cross-validation are reported in Table 1. We may observe that 
four deep learning models are able to achieve high accuracy values in identifying the 
severe and non-severe COVID-19 cases with accuracy over 91.9%. Among the four 
topologies, the DenseNet-201 which is believed to be more representative and seman-
tically correct in extracting features, contributes to the best result with an accuracy of 
95.2% and the AUC performance of 0.99. While the ResNet-101 which contains more 
layers outperforms ResnNet-50 in both accuracy and AUC performance. This may 
because that the deep layers have better capacity in representing subtle changes like 
ground-glass opacities in chest CT. In addition, the DenseNet-201 also achieves the 
best performance for sensitivity and specificity, which increases about 7% for sensitivity 
and improves from 95.84% to 96.87% for specificity, respectively, when compared with 
Inception-V3. Generally, the high sensitivity means a high positive result (also known as 
the “true positive” rate) which may be more important than specificity in disease diag-
nosis under epidemic conditions. Thus, the DenseNet-201 is more preferable than other 
three architectures for severity identification of COVID-19 in CT scans.

To further investigate the performance, the leave-one-slide-out validation strategy 
was performed. In this experiment, all 728 deep feature vectors (out of 729) were fed to 
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train different classifiers and the remaining one sample was used to test. This strategy is 
the logical extreme of k-fold cross-validation method. This leads to the reduced overall 
variability and bias than the validation-set method. The accuracy results of leave-one-
out validation strategy for different deep learning methods and classifiers are shown in 
Tables 2, 3. We may observe that the DenseNet-201 features with cubic SVM still per-
form the best with a classification accuracy of 95.34%. 

To make the deep features of our pipeline more explainable, the attention maps from 
the last ‘pooling’ layer in DenseNet-201 are depicted in Fig. 2. These attention maps may 
show the discriminant 2D locations for the identification of COVID-19 severity based 
on consecutive convolutional filtering and undersampling. These attention spots may or 
may not correspond to expert understanding. One factor that may improve the attention 
is to restrict the filtering to lungs via masking CT scans through lung segmentation. In 
addition, we also give the implement time for deep feature extraction and prediction in 
Tables 4, 5, respectively.

Fig. 1  The performance of classified deep features based on holdout validation: a The accuracy and AUC 
performance; b The AUC performance; c The sensitivity performance; (d) The specificity performance
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Discussion
The COVID-19 virus, first found in Wuhan, has spread across the globe and has been 
formally declared as pandemic by the World Health Organization. No symptoms in the 
early stages of disease and the community transmission lead to the fast spread of the 
coronavirus (with estimated reproduction number R0 of 2.2–6.4). Since the outbreak of 
COVID-19, the nucleic acid testing is treated as the ground truth to identify the pre-
sent of the virus. But some recent reports reveal that the accuracy of nucleic acid test-
ing COVID-19 is about 30–50% [6]. Hence, the Chinese government has changed the 
diagnostic protocol to switch to CT scans for diagnosis of suspected cases [21]. Com-
pared to the conventional X-ray, CT scans allow radiologists to inspect internal struc-
tures with much more details. Figure 3 shows the CT and DR images of a 76-year-old 
male COVID-19 patient with fever, cough and expectoration. It illustrates that multiple 
patchy regions with solid components in bilateral lung lobes can be easily detected in CT 
slides than in DR images. Thus, although no diagnostic test may provide complete cer-
tainty, and although this work is focused on severity identification, the CT scan seems to 
be an acceptable alternative diagnostic protocol to identify the COVID-19. A practical 
challenge that remains is the thorough disinfection of the CT machine after each scan-
ning session is absolutely necessary.

Deep learning, which has proven to be a powerful tool in medical image processing, has 
been employed in COVID-19 identification or diagnosis in recent reports. Some research-
ers tried to use the deep model to discriminate between COVID-19 patients and bacteria 
pneumonia patients/healthy ones. Xu et al. [15] developed a COVID-19 screening system 
which can identify COVID-19, Influenza-A viral pneumonia and healthy cases. A total of 

Table 1  Performance of different deep learning models with cubic SVM based on tenfold 
cross-validation

The highest performance value is in italics

Backbone Accuracy (%) AUC​ Sensitivity (%) Specificity (%)

Inception-V3 [18] 91.91 0.97 84.96 95.84

ResNet-50 [19] 92.45 0.98 85.85 96.07

ResNet-101 [19] 94.24 0.98 89.02 96.06

DenseNet-201 [20] 95.20 0.99 91.87 96.87

Table 2  Classification accuracy performance of  deep features based on  leave-one-out 
strategy (%)

The highest performance value is in italics

Backbone Discriminant Linear SVM Cubic SVM KNN Boosted trees

Inception-V3 78.88 86.15 92.47 93.69 85.32

ResNet-50 80.52 89.03 93.02 92.73 87.11

ResNet-101 78.74 90.53 93.69 93.96 89.44

DenseNet-201 65.95 90.53 95.34 94.24 89.57

Table 3  Feature extraction time for feature extraction

Feature extraction time Inception-V3 ResNet-50 ResNet-101 Densenet-201

Per image (s) 0.398 0.265 0.563 0.786
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618 CT samples were collected in the study, and the proposed deep model could achieve 
86.7% accuracy. Song et al. [13] proposed DRENet architecture for COVID-19 screening, 
which achieved 96% accuracy and 0.99 AUC among 88 COVID-19 patients with 777 images 
and 86 healthy persons with 708 images. Li eta al. [12] exploited ResNet50 to extract deep 
features to identify COVID-19 and other non-pneumonia cases. The dataset was consisted 
of 4356 chest scans from 3322 patients, and the proposed method achieved 90% sensitivity 
and 96% specificity with AUC of 0.96. Some researchers used the deep model to segment or 
detect the interested regions. Fan et al. [15] developed a deep learning system for automatic 
segmentation and quantification of COVID-19-infected regions, where their proposed VB-
Net achieved 91.6% ± 10% dice similarity coefficients between automatic and manual seg-
mentations. Gozes et al. [16] proposed an AI-based automated CT image analysis tools for 
detection and quantification of COVID-19. Zheng et al. [22] exploited a U-net to locate the 
infected region whose results were fed to a 3D deep neural network (DeCoVNet) to predict 
the probability of COVID-19 infection.

Fig. 2  Two sample attention maps from the last ‘pooling’ layer in DenseNet-201. Whereas the attention 
seems to be generally rather non-exclusive, it may sometimes not contribute to human interpretation. 
Restricting deep feature learning or extraction to the lung regions is expected to improve the interpretability 
of the attention maps
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Although a lot of efforts have been recently focused on the automatic identification of 
COVID-19, few studies pay attention to automatic or semi-automatic severity assessment 
of COVID-19 which can track and measure the disease in a quantitative way. For instance, 
Tang [23] employed the random forest model to assess the severity of COVID-19 CT 
images from 176 patients, achieving 87.5% accuracy and 0.91 AUC.

To identify the severity of COVID-19 rapidly, and to provide an efficient and accurate 
prognosis to guide the follow-up therapeutic treatment, the classification of deep features 
for severity identification was developed in this work. The experimental results dem-
onstrate that the proposed approach has a good ability in discriminating the severe ver-
sus non-severe cases of COVID-19 with an accuracy of 95.2%, a sensitivity of 91.87% and 
the specificity of 96.87%, respectively. The proposed method can be applied for severity 
screening.

Although the proposed method shows a promising application, there are some limita-
tions that should be mentioned: (a) The CT data were collected only from three hospitals 
within one province; more variable samples at different disease stages or cases from other 

Table 4  Feature extraction time for testing

Test time Discriminant Linear SVM Cubic SVM KNN Boosted trees

Per image (s) 0.0421 0.0402 0.0403 0.0453 0.0564

Table 5  The clinical data analysis of COVID-19 confirmed patients

Normal body temperature: 36.3 °C–37.2 °C; Normal value of CPR: 0–10 mg/l; Normal value of WBCs: 3.5–9.5 × 109/l; Normal 
ratio of lymphocytes: 20%–50%; High fever (≥ 39.0 °C)
a  Increment or reduction

Characteristics Total cases (N = 202) Non-severely 
ill (N = 161)

Severely ill (N = 41) P

Clinical data

 Gender (male) 110 (54.5%) 82 (50.9%) 28 (68.3%) 0.01

 Age (mean ± S.D., year) 46.4 ± 15.554 43.7 ± 14.600 57.0 ± 14.782 < 0.001

 Coexisting Illness 53 (26.2%) 30 (18.6%) 23 (56.1%) < 0.001

Symptoms

 Fever 157 (77.7%) 118 (73.3%) 39 (95.1%) 0.523

 Cough 109 (54.0%) 82 (50.9%) 27 (65.9%) 0.087

 Sputum production 48 (23.8%) 38 (23.6%) 10 (24.4%) 0.916

 Sore throat 17 (8.4%) 15 (9.3%) 2 (4.9%) 0.361

 Nausea/headache 11 (5.4%) 9 (5.6%) 2 (4.9%) 0.858

 Myalgia or arthralgia 15 (7.4%) 12 (7.5%) 3 (7.3%) 0.976

 Shortness of breath 16 (7.9%) 11 (6.8%) 5 (12.2%) 0.256

 Others 8 (4.0%) 8 (5.0%) 0 (0%) 0.145

Laboratory findings

 Increase of CRP 129 (63.9%) 92 (57.1%) 37 (90.2%) < 0.001

 WBCs abnormalitya 73 (36.1%) 50 (31.1%) 23 (56.1%) 0.011

 Lymphocytes abnormalitya 109 (54.0%) 76 (47.2%) 33 (80.5%) < 0.001

Fever

 High fever 12 (5.9%) 2 (1.2%) 10 (24.4%) < 0.001

 Low fever 145 (71.8%) 116 (72.0%) 29 (70.7%) 0.867

Travel or contact history 92 (45.5) 79 (49.1%) 13 (31.7%) 0.046
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regions should be included in our future dataset, (b) the number of training samples was 
rather limited, especially the severity samples (that is why we abandon the idea of training 
a network from scratch), and (c) only a few physicians were involved in this dataset labeling 
and identification; the impact of inter-observer variability should be studied when a larger 
dataset is curated by more radiologists to more comprehensively represent the uncertain-
ties of COVID-19 in CT scans.

Future researches will focus on the following aspects: (a) the volume CT scans are 
explored to achieve a more reliable and accurate COVID-19 severity assessment by consid-
ering the overall evaluation from 3D CT data; (b) the pre-processing method will be intro-
duced to locate or segment the interested region to avoid the confusion brought by clothes 
or other artifacts; (c) the deep network will be applied on the observation of CT scan of the 
COVID-19 patients in their remission and recovery.

a

c

b

d
Fig. 3  CT and DR images of a 76-year-old male with fever, cough and expectoration: a Chest CT scan. b–d 
Follow-up DR images
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Conclusion
In summary, our study demonstrated the feasibility of classification of pre-trained 
deep features to assist physicians to identify the severity of COVID-19. By achieving 
a good performance on severe and non-severe diagnosis, the proposed pipeline may 
enable a rapid identification and help the physicians make more reliable decisions for 
treatment planning.

Methods
Patients

We collected the CT volume data of 202 COVID-19 patients from three hospitals in 
Anhui Province, China, captured from January 24 to February 12, 2020. These cases 
were provided by the First Affiliated Hospital of Bengbu Medical college, the First 
Affiliated Hospital of Anhui Medical University, and Fuyang Second People’s Hospi-
tal. All collected cases satisfied the following instructions: (a) the result of RT-PCR 
was positive for throat swab, and sputum or bronchoalveolar lavage (BAL) was con-
firmed; (b) the availability of thin slice CT images; (c) the image quality of CT image 
was sufficient for radiological evaluation. Then, the patients in accordance with any of 
the following conditions were further marked as severely ill patients:

(a)	 shortness of breath with respiratory rate no less than 30 breaths/min;
(b)	 the oxygen saturation no more than 93% in a resting state;
(c)	 partial arterial oxygen pressure (PaO2) or fractional inspired oxygen concentration 

(FiO2) no more than 300 mmHg;
(d)	 significant progression of pulmonary lesions (over 50%) within 24–48 h;
(e)	 respiratory failure with the requirement of mechanical ventilation;
(f )	 occurrence of shock;
(g)	 multiple organ failure.

The remaining patients were regarded as non-severely ill. Then, radiologists 
selected 729 axial slices from these 202 CT volumes to build the dataset. Finally, 41 
severe cases with 246 axial slices and 161 non-severe cases with 483 axial slices were 
included in this dataset.

This retrospective study (enrolled medical datasets) was approved by the ethics 
committees of the participating hospitals.

Clinical information

There are 110 males and 92 females (aged from 5 to 86 years) in the dataset with aver-
age age of 46.4 ± 15.5. A total of 92 cases have travel history to epidemic area or close 
contact history of COVID-19 patient. As many as 53 patients had underlying coexist-
ing illness while no coexisting illness was reported for the remaining 149 cases. Most 
of the patients exhibited clinical symptoms or physical findings such as fever, cough, 
sputum production, sore throat, nausea or headache, myalgia or arthralgia and short-
ness of breath. Specifically, 14 patients had high fever and 169 patients had low fever. 
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Among most cases, the abnormal biomedical indicators or laboratory findings were 
generally reported, such as the abnormality of white blood cells (WCBs), neutrophils, 
lymphocytes and the increase of C-reactive protein (CRP) and nuclear cells. The 
details of clinical characteristics are shown in Table 5.

Imaging protocol and analysis

In most COVID-19 cases, the bilateral incidences of consolidation, ground-glass opaci-
ties and the crazy paving pattern can be found in the lungs, where the limited or scat-
tered nodular shadowing is observed in non-severe cases, while the flaky or widespread 
lesion is observed in the severe cases. Moreover, compared with non-severe cases, bron-
chial wall thickening, lymph node enlargement, pleural effusion, and the air bronchus-
charging sign with thickened blood vessel are often observed in severe cases. Figure 4 

Fig. 4  Sample CT scans of COVID-19-infected patients: a non-severe cases; b severe cases

Fig. 5  Typical examples for severe and non-severe CT chest slides in axial, sagittal and coronal views: a 
non-severe cases; b severe cases
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shows some thumbnails of severe and non-severe COVID-19 chest CT scans. Figure 5 
shows typical examples of severe and non-severe CT chest slides in different planes.

Feature extraction from the pre‑trained deep learning models

As training of deep networks from scratch would need a large and well-curated data-
set, and the fine-tuning strategy has the advantage over the off-the-shelf when the scan 
labels are plentiful. Thus in this work, with limited dataset amount and labels, the off-
the-shelf strategy was exploited. Specifically, the pre-trained deep models such as Incep-
tion [18], ResNet [19] and DenseNet [20] models (trained by 20.0 million images by 

Table 6  The DenseNet-201 architectures

Layers Output size DenseNet-201

Convolution 112 × 112 × 64 7 × 7 conv, stride 2, padding 3

Pooling 55 × 55 × 64 3 × 3 maxpool, stride 2, padding 1

Dense block
(1)

55 × 55 × 32
[

1× 1conv, stride 1, padding 0
3× 3conv, stride 1, padding 1

]

× 6

Transition layer
(1)

55 × 55 × 128 1 × 1 conv, stride 1, padding 0

26 × 26 × 128 2 × 2 average pool, stride 2, padding 0

Dense block
(2)

26 × 26 × 32
[

1× 1conv, stride 1, padding 0
3× 3conv, stride 1, padding 1

]

× 12

Transition layer
(2)

26 × 26 × 256 1 × 1 conv, stride 1, padding 0

13 × 13 × 256 2 × 2 average pool, stride 2, padding 0

Dense block
(3)

11 × 11 × 32
[

1× 1conv, stride 1, padding 0
3× 3conv, stride 1, padding 1

]

× 48

Transition layer
(3)

11 × 11 × 896 1 × 1 conv, stride 1, padding 0

5 × 5 × 896 2 × 2 average pooling stride 2, padding 0

Dense block
(4)

5 × 5×32
[

1× 1conv, stride 1, padding 0
3× 3conv, stride 1, padding 1

]

× 32

Classification layer 7 × 7 global average pool

1000D fully connected (FC-1000), softmax

Fig. 6  The pipeline of the proposed method
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ImageNet dataset) was exploited in this work. The image transformation in each succes-
sive layers of the DenseNet-201 network is shown in Table 6.

The input image of dimension 224 × 224 × 3 is given to the first convolutional layer 
which consists of 64 kernels of size 7 × 7 with 2 stride and 3 padding. The stride is 
defined as the number of pixels shift by the filter in the image matrix. By convolving the 
image with 64 kernels, the output image obtained from the convolution layer is of size 
112 × 112 × 64.

The final fully connected layer FC 1000 layer has dimension of 1000. In the proposed 
method, FC-1000 layer features from DenseNet-201 are extracted and fed into the vari-
ous classifiers for classification task. The output of single convolutional layer is given by 
Eq. (1).

where h represents the neuron output, x denotes the input, w represents the weight and 
b is the bias parameter. Here P, Q represent the size of weight parameters, k, l are param-
eter indices and i, j are input indices. Each convolutional layer follows rectified linear 
unit activation (ReLU), normalization and max pooling operations, and the ReLU is used 
as activation function in the DenseNet-201.

Figure 6 illustrated the details and the pipeline of the proposed method. During the 
training step, the pre-trained deep model (DenseNet-201) was employed to extract the 
deep features from COVID-19 CT scans. Subsequently, the binary SVM classifier with 
cubic kernel was trained to perform the classification task of severe versus not severe 
distinction. In the testing step, the unseen COVID-19 scan sample was input to predict 
the severity with the help of its deep feature and the trained classifier.
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