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Abstract 

Background:  The progressive evolution in hip replacement research is directed to 
follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, 
a renewed interest has been raised towards short uncemented femoral implants. A 
heterogeneous group of short stems have been designed with the aim to approximate 
initial, post-implantation bone strain to the preoperative levels in order to minimize the 
effects of stress shielding. This study aims to investigate the biomechanical properties 
of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a 
shortened conventional stem and the Minima S Femoral Stem, an even shorter and 
anatomically shaped stem, based on experiments and numerical simulations. Further-
more, finite element models of implant–bone constructs should be evaluated for their 
validity against mechanical tests wherever it is possible. In this work, the validation was 
performed via a direct comparison of the FE calculated strain fields with their experi-
mental equivalents obtained using the digital image correlation technique.

Results:  Design differences between Trilock BPS and Minima S femoral stems condi-
tioned different strain pattern distributions. A distally shifting load distribution pattern 
as a result of implant insertion and also an obvious decrease of strain in the medial 
proximal aspect of the femur was noted for both stems. Strain changes induced after 
the implantation of the Trilock BPS stem at the lateral surface were greater compared 
to the non-implanted femur response, as opposed to those exhibited by the Minima 
S stem. Linear correlation analyses revealed a reasonable agreement between the 
numerical and experimental data in the majority of cases.

Conclusion:  The study findings support the use of DIC technique as a preclinical 
evaluation tool of the biomechanical behavior induced by different implants and also 
identify its potential for experimental FE model validation. Furthermore, a proximal 
stress-shielding effect was noted after the implantation of both short-stem designs. 
Design-specific variations in short stems were sufficient to produce dissimilar biome-
chanical behaviors, although their clinical implication must be investigated through 
comparative clinical studies.
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Background
Total hip arthroplasty (THA) is arguably considered a reliable procedure to provide pain 
relief, restore function and improve quality of life in patients with advanced hip osteo-
arthritis [1–9]. While in the past, the procedure was mainly reserved for fragile elderly 
patients, the success of the procedure has expanded its indications to relatively younger 
and more active patients [10], whose sole debilitating limitation in daily living is the 
affected hip joint. In order to cope with this new surge of popularity of THA, several 
efforts have been made to accelerate the rehabilitation process, maximize the longevity 
of the implants and eliminate morbidity related to a future revision procedure. Recent 
innovations are therefore mainly aimed towards reducing soft tissue damage and pre-
serving native bone without compromising implant stability [11].

The reduction of strain in the bone caused by an adjacent load-carrying implant can 
lead to a subsequent reduction in surrounding bone density, causing the well-known 
stress-shielding phenomenon [12, 13]. There are conflicting data in the literature con-
cerning the clinical significance of stress-shielding effect, with some authors advocat-
ing that the adverse implant-induced bone adaptation can compromise the longevity 
of cementless THA [14–16]. According to other studies, periprosthetic bone resorp-
tion commonly observed around cementless implants has not yet correlated with any 
increased risk of aseptic loosening or periprosthetic fracture [17–20]. Though it is not 
proven that stress-shielding effect is directly related to the survival of implants, an exces-
sive bone loss around a primary prosthesis can complicate a potential revision proce-
dure. Consequently, the preservation of proximal periprosthetic bone is considered a 
vitally important principle in THA, and different stem designs have been launched in 
an effort to preserve a physiological load transfer to the femur, thus eliminating stress-
shielding effect.

A heterogeneous group of conservative femoral prostheses, called short stems, have 
emerged as an alternative to conventional stems, with differences in terms of design, bio-
mechanics and method of fixation [21, 22]. Ideally, a short-stem implant should provide 
rigid primary fixation, extensive metaphyseal bone–implant contact for sufficient osse-
ointegration and a more physiological load transfer reproducing a biomechanical behav-
ior more similar to the physiological bone. However, the benefits of short femoral stems 
remain hypothetical and there is not a clear understanding of the influence of short-stem 
designs on bone biomechanics [23, 24].

Numerous biomechanical studies have been performed comparing different femoral 
stem design features in an attempt to find a way to eliminate the stress-shielding effect 
of the implanted femurs. Most studies indicate that the stiffer the implant, the more pro-
nounced the stress shielding [25–28]. The following solutions have been proposed in an 
effort to reduce stems’ stiffness, including an optimum selection of constitutive materials 
[29–31], internal structure, geometry and shape [32–38].

This study combines experiments and numerical simulations to investigate the biome-
chanical properties of two different design short stems, the TRI-LOCK Bone Preserva-
tion Stem (DePuy Orthopaedics Inc. Warsaw, USA) (Fig. 1a) and the Minima S Femoral 
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Stem (Lima corporate Villanova di San Daniele, Italy) (Fig. 1b). According to the detailed 
classification system of short stems proposed by Gómez-García et al. [39] in 2016, the 
Tri-Lock Bone Preservation Stem (Tri-Lock BPS) and Minima S stems are classified as 
type C, meaning that they occupy the cervico-metaphyseal-diaphyseal area. In our point 
of view, an important issue that should be addressed is whether all variations of currently 
available metaphyseal-fitting short stems could offer similar load transfer characteris-
tics before making any generalized recommendation for their overall use. The study’s 
hypothesis was that even these subtle variations, regarding stem length and geometric 
design between these two stems, which are classified within the same subgroup, may 
create different strain distribution patterns and thus dissimilar biomechanical behaviors. 
For this purpose, the transmission of forces as measured by cortical surface strain distri-
bution in the proximal femur was evaluated using Digital Image Correlation (DIC), first 
on the non-implanted femur and then on the implanted femurs with the TRI-LOCK BPS 
and Minima S femoral stems in respect. The strain patterns of the non-implanted femur 
served as the control group. The DIC full-field strain patterns in intact and implanted 
composite femurs were compared and also the corresponding numerical models were 
developed and evaluated for their validity against mechanical tests.

Results
Comparison of DIC‑measured strains between intact and implanted femurs

Before comparing DIC-measured strains between intact and implanted femurs, DIC 
strains of the several tests concerning the same case and loading level (1000 N was con-
sidered) were compared via linear correlation analyses. Slopes were close to 1 and thus 
the fields obtained from different repetitions showed a good agreement. Figure 2 depicts 
the typical numerical and experimental fields for the intact and implanted bones in each 
of the two fields of view. In the DIC analysis, the non-implanted femoral bone, serv-
ing as a reference model of healthy bone exhibited higher strain response to loading in 
the proximal medial area than any of the implanted femurs. The quantitative full-field 
strain analysis demonstrates a clear trend of increased strain along the longitudinal axis 
of the femur from proximal to distal at the medial side. In the proximal medial aspects 
of the femur (zones of interest M1, M2) there was a statistically significant decrease in 
the mean principal compressive strain of implanted bones compared to that of the intact 

Fig. 1  Femoral stems. a Trilock BPS stem. b Minima S stem



Page 4 of 18Tatani et al. BioMed Eng OnLine           (2020) 19:65 

femur. The percentage variance in the mean compressive strain at these proximal medial 
zones was greater for the Trilock BPS compared to the Minima S. At zones M3 to M7, 
implanted specimens exhibited a strain response most closely matching that of the intact 
femur. At these distal zones, the percentage variance of strain was less pronounced in 
both groups of implanted femurs.

At the L1 zone of interest, the attachment of the metallic blade to the greater tro-
chanter prevented DIC equipment to visualize this zone, and hence the measured strain 
data are lacking from this part of the bone. On the lateral aspect of the femur a decrease 
in principal tensile strains was observed in the implanted femurs at almost all meas-
urement zones compared to the intact bone. The decrease in strain response was more 
pronounced for the Trilock BPS implanted specimens and significant differences were 
observed compared to the Minima S at almost each measurement zone. Strain response 
at each zone of interest along the medial and lateral femoral cortex is presented in Fig. 3, 
with statistical analysis presented in Table 1.

FE model validation

The obtained best-fitting polynomial curves of the experimental and calculated strain 
data relative to the long axis of the bone are presented in Fig. 4a, c for the medial and 
the lateral side, respectively. The validation of the numerical models was conducted via 
linear correlation analyses of the measured and calculated principal strains for each con-
struct (Intact Femur, Minima S and Trilock BPS implanted bones) in each field of view. 
More specifically, FE simulation results and experimental measurements concerning 
minimal strains at the medial path of the bone were compared for the intact, Minima 

Fig. 2  DIC-measured and FE-predicted strains for each specimen in each of the two fields of view
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S and Trilock BPS implanted bones, respectively (Fig.  4b). Similarly, analytically and 
experimentally derived maximum strains at the lateral path of the bone were compared 
for the same three cases as above (Fig.  4d). The numerical model validation relies on 
the reasonable agreement observed between the numerical and experimental data in the 
majority of cases with the exception of the Trilock BPS implanted femur in the lateral 
surface (slope = 0.611, R2 = 0.718).

Discussion
This study was designed to investigate the biomechanical properties of two different 
design short stems, based on biomechanical testing and finite element models. These 
two methods should be combined to yield more precise measurements, as recom-
mended by previous studies focusing on the evaluation of strain patterns induced after 
the implantation of a hip prosthesis [40, 41].

The DIC technique has been introduced into the field of biomechanics for accurate 
determination of surface strain in inhomogeneous, anisotropic, non-linear materials 
such as bone. The strain distribution patterns induced by different materials have been 
studied previously in the laboratory setting using strain gauge analysis [28, 42–45], pho-
toelastic coating techniques [46, 47] and finite element analysis [48–50]. Traditionally, 
strain gauges have been considered the ‘gold standard’ in the experimental testing for 
evaluation of the biomechanical behavior of bone in vitro since their introduction in the 
late 1950s [51]. Although they are known to be reliable and despite their widespread use, 
strain gauges require surface preparation and provide strain results only at the restricted 
area of application. This lack of full-field strain data is considered to be a limitation of 
the technique. Digital image correlation is an optical full-field technique that allows 
noncontact, three-dimensional deformation measurements of objects subjected to 
external loads. To date, DIC has been used in many applications in biomechanics, such 
as a measurement tool of strains on bone surface with or without validation of finite ele-
ment corresponding models [24, 31, 52–59] and also to evaluate relative micromotion 
between the implant and the surrounding bone [24, 60]. In this study, we employed the 
three-dimensional DIC measurement technique to find the differences in strain patterns 
generated in composite femurs implanted with two different design femoral prostheses. 
The results showed that the DIC technique captured the strain on the bone surface well, 
providing full-field plots for each case, as opposed to application point results which 
would have been achieved using strain gauges.

The clear distal load transfer after the implantation of both short stems demonstrated 
in this study is congruent with previous studies, which have found a similar distally shift-
ing load distribution pattern as a result of implant insertion [24, 61, 62]. Despite the fact 
that short-stem femoral implants have displayed a better biomechanical behavior pre-
serving a strain distribution closer to the intact bone according to previous studies [24, 
28, 42, 43, 63–65], the implantation of a stiffer material absorbs the load and transfers 
it distally, leaving the proximal region of the calcar somewhat stress-shielded. The data 
presented here demonstrate that strain shielding and proximal unloading of the femur 
occurred even when using short-stem implants. Although there is a lack of evidence that 
stress-shielding effect could directly influence the clinical results, it is of predominate 
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concern that a resorption of proximal femoral bone stock may negatively affect the sta-
bility and long-term survival of femoral implants [28, 66, 67].

The results of the current study have potential clinical implications. While strain dis-
tribution patterns after the implantation of femoral implants in total hip arthroplasty 
have been previously investigated, this study determined quantitatively the specific 
strain data derived by two short femoral stems, which belong to the same category of 
cervico-metaphyseal-diaphyseal short stems. It seems that, even these subtle variations 
regarding stem length and geometric design are sufficient to produce significant strain 
changes. Although the clinical implication of the aforementioned differences in biome-
chanical behavior cannot be predicted, the clinicians must be really hesitant before mak-
ing general recommendations about the clinical results of short femoral implants, even 
if they belong to the same category. Taking into consideration that the reduced strain in 
a region of bone is the definition of stress shielding, the patterns of strain distribution 
derived after the implantation of these stems could be correlated with the clinical results 
of future in vivo studies focusing on the bone remodeling response surrounding these 
implants.

Quantitatively, full-field strain distributions were in good agreement to the FE-
predicted strain patterns in the majority of cases. Although a reduced correlation was 
observed for the Trilock BPS implanted femur in the lateral surface, the discrepancies 
could be explained by the fact that high spread values were obtained in this case.

This study, however, has certain limitations. At first, composite femoral bones were 
chosen instead of cadaveric human specimens. We acknowledge that the strain pat-
terns induced after mechanical testing of these specimens are not equivalent to in vitro 
cadaveric models or in  vivo clinical conditions. However, mechanical testing on syn-
thetic femurs is considered a valid method of studying the biomechanical behavior of 
implanted femurs [68, 69]. According to previous studies, composite femurs have been 
independently tested and shown a biomechanical behavior similar to that of human 
cadaveric specimens during loading [68, 70, 71]. The composite bones present a lot 
of advantages compared to cadaveric specimens, including minimal inter-specimen 
variability, consistent material properties, high availability and low cost. Additionally, 
composite bones are independent from parameters that can substantially alter their 
properties, such as storage method, air temperature and humidity and time from harvest 

Fig. 3  DIC-measured strain response to single-leg stance loading in a medial and b lateral measurement 
regions
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[70]. In this study, where a direct comparison between two implant systems was made, 
the proven low inter-specimen variability of composite femurs can provide more con-
sistent results, eliminating confounding factors.

In the presented experimental testing setup and in accordance with previous reports 
[26, 31, 64, 72] the physiological load applied to the femoral bone was reduced to a sim-
pler configuration, where only the abductors were included. Despite the complexity of 
the biomechanics involving the hip, recent in  vitro biomechanical studies evaluating 
femoral prostheses tend to be as simple as possible, not fully accounting for the numer-
ous soft-tissue interactions which actively contribute to hip joint stability and femoral 
loading characteristics. Furthermore, abductor muscle forces have been demonstrated 
to exert the greatest impact on strain patterns in the proximal femur and thus the other 
soft tissues could be ignored in a first approximation [73].

In this study, the phase of gait to be simulated was chosen to be the single-leg stance 
that represents a simplified model of the natural physiological loading state. The fact is 
that there is no general agreement about the optimal loading condition for the evalu-
ation of changes in strain patterns on the proximal femur [74]. This simplified loading 
phase already described in the literature [75] combines simultaneous compression and 
bending forces and results in a more physiological loading condition than isolated com-
pression or bending loading.

Experimental studies evaluating strain patterns in femoral bones after insertion of 
femoral prostheses are valuable in the assessment of their biomechanical behavior. Nev-
ertheless, we acknowledge that neither experimental studies nor numerical analyses can 
uncritically predict the clinical performance of an implanted material. We are also aware 
that cortical strain measurement cannot directly reflect the in vivo performance because 

Table 1  Percentage strain for  each prosthesis compared to  the  control femur and  strain 
comparison for each zone of interest, p-values

a  Not significant

Key zone 
of interest

Implanted Minima S femoral stem Implanted Trilock BPS femoral stem Minima S 
to Trilock BPS 
(p-value)Percentage strain 

against controls 
(%)

Mann–
Whitney test 
against controls 
(p-value)

Percentage strain 
against controls 
(%)

Mann–
Whitney test 
against controls 
(p-value)

Medial side

 M1 68.7 0.001 57.1 0.000 0.029

 M2 84.1 0.005 69.2 < 0.0001 < 0.0001

 M3 101.0 0.029 89.4 < 0.0001 < 0.0001

 M4 102.5 0.529a 97.8 0.139a < 0.0001

 M5 99.1 0.459a 98.2 0.752a 0.153a

 M6 98.3 0.13a 96.7 < 0.0001 0.000

 M7 106.1 0.001 101.6 0.556a 0.003

Lateral side

 L2 87.5 < 0.0001 79.2 < 0.0001 0.935a

 L3 89.1 < 0.0001 57.8 < 0.0001 < 0.0001

 L4 98.2 0.000 82.2 < 0.0001 < 0.0001

 L5 98.1 0.043 92.6 0.004 0.002

 L6 95.4 0.000 81.2 < 0.0001 < 0.0001

 L7 100.3 0.131a 87.7 < 0.0001 0.006
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composite models represent a nonviable bone without the capacity to be remodeled. 
For this purpose, a simultaneous clinical study is already running, aiming to assess 
the remodeling process around these specific implants in vivo, by means of a detailed 
radiological analysis [76]. Nevertheless, this testing setup provides useful data for the 
biomechanical behavior of these implants, which in turn may indicate their clinical per-
formance in the first postoperative period.

Concerning finite element models, the usual limitations are present. The mate-
rial properties of bone are orthotropic rather than isotropic, as specified in this finite 

Fig. 4  Medial field of view. a Best-fitting polynomial curves of the FE-predicted and DIC-measured strain 
data relative to the long axis of the bone for the intact and implanted bones with Minima S and Trilock 
BPS. b Linear regression analysis. Lateral field of view. c Best-fitting polynomial curves of the FE-predicted 
and DIC-measured strain data relative to the long axis of the bone for the intact and implanted bones 
with Minima S and Trilock BPS. d Linear regression analysis; R2*: coefficient of determination in polynomial 
regression, R2: coefficient of determination in linear regression analyses



Page 9 of 18Tatani et al. BioMed Eng OnLine           (2020) 19:65 	

element model. Nevertheless, the developed numerical model could be considered valid 
and reliable as provided by the reasonable agreement observed between the numerical 
and experimental data.

Conclusions
This study provides evidence to support the use of DIC technique as a preclinical evalu-
ation tool of the biomechanical behavior induced by different implants. The results of 
this study also support DIC’s potential for biomechanical FE model validation. Design 
differences between Trilock BPS and Minima S conditioned different strain pattern dis-
tributions and thus our primary hypothesis that design-specific variations in these spe-
cific short stems are sufficient to produce dissimilar strain patterns was confirmed. An 
obvious decrease of strain in the medial proximal aspect of the femur was noted for both 
stems, demonstrating that proximal unloading of the femur could not be avoided. At the 
lateral surface, both implanted specimens exhibited a persistent decrease in principal 
tensile strains at almost all measurement zones compared to the intact bone. Neverthe-
less, alteration in strain patterns induced after the implantation of the Trilock BPS stem 
was greater compared to the Minima S stem at all regions of interest on the lateral cor-
tex. Being aware that the findings of this study could not be used uncritically to predict 
the in  vivo performance of these femoral implants, our ongoing randomized, clinical 
study aims to add information regarding the clinical effects of the differences observed 
in femoral strain patterns between the two prostheses.

Methods
Experimental study

The experimental work was undertaken in the Laboratory of Technology and Strength of 
Materials at the Department of Mechanical Engineering and Aeronautics. Short stems 
with predominantly metaphyseal fixation, such as the TRI-LOCK Bone Preservation 
Stem and the Minima S Femoral Stem were chosen for the purpose of the study.

Tri-Lock BPS is a short tapered-wedge stem. It is made of titanium alloy with a highly 
porous pure titanium (“GRIPTION®”) coating on the proximal 50% portion that is engi-
neered to provide an enhanced coefficient of friction when compared to POROCOAT® 
porous coating, which is on the original Tri-lock stem. Compared to its clinically suc-
cessful predecessor, the Tri-Lock stem, the BPS stem is shorter, has a narrower distal 
segment, and features a curved distal tip. It is available in 13 stem sizes (size 0–12/length 
95–119  mm) with standard and high offset options for all stem sizes. The high offset 
option provides direct lateralization, increasing offset without affecting either the leg 
length or the neck-shaft angle.

Minima S Monolithic Femoral Stem is a short, curved, four tapered proximally porous-
coated titanium femoral stem with 12 stem sizes (size 1–12/length 82–118  mm) in 
standard and lateralized configuration available. The standard versions have a neck–
shaft angle of 134°, while the lateralizing versions have a neck-shaft angle of 131°.

Although both stems belong to the same short stem family, Minima S stem is even 
shorter compared to Trilock BPS, has an anatomic shape following the natural curvature 
of the medial calcar, preventing breach of the greater trochanter and a medially sidecut-
ted tip to reduce the risk of contact with the cortical medial wall.
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A total of seven fourth-generation medium composite femurs from Sawbones Europe 
(Malmö, Sweden) with identical design and material properties were used, as previous 
described in similar biomechanical studies [66, 70, 77–81]. For each prosthesis, three 
different composite femoral bones were randomly allocated to receive either the Tri-
Lock BPS or the Minima S Femoral Stem. The intact femur was used as a bench top 
experimental estimate of the non-implanted state.

To provide a proper primary fixation and restore the hip biomechanics as accurately 
as possible, the choice of the correct implant size and offset is imperative. Changes of 
the neck offset after the implantation of the femoral stem relative to the intact reference 
bone could have an influence to the moment arm of the force applied on the femoral 
head, altering the strain distribution on the proximal femur. To account for these critical 
parameters, implants’ templates provided by the manufacturers (DePuy Orthopaedics 
Inc. Warsaw, USA and Lima corporate Villanova di San Daniele, Italy) were superim-
posed on calibrated radiographs of the intact femurs. Reference points were the femoral 
axis and the center of the femoral head, marked by means of a best-fitting circle to the 
intact femoral head. The implant size was determined as a size 4 high offset with a − 2, 
28 mm diameter femoral head for the Trilock BPS stem. The size of 4 high offset with a 
− 4, 28 mm diameter femoral head was chosen for the Minima S femoral stem.

For the experimental preparation, the distal condyles of the intact femur were 
embedded into a steel cylinder using an ultra-low viscosity casting resin (Smooth-
Cast Urethane Series 300 potting material, Smooth- On Inc, Easton, PA, USA). For 
a standardized embedding procedure, a custom alignment fixture was manufactured 
based on a previous reported femur-aligned reference system [82]. The embedding 
procedure was performed ensuring that the central axis of the femur through fossa 
piriformis coincided with the central axis of the cylinder and the posterior condylar 
surface was used for rotational alignment. For the correct positioning of the femur 
at the correct directions a system of arms, a laser level and a goniometer were used. 
Using the customized fixture, the femurs were positioned neutral on the sagittal plane 
and angled at 11° of adduction in frontal plane, which corresponded to the physiolog-
ical inclination during single-leg stance [83].

Six different composite femoral bones (three for each prosthesis) were prepared 
to accommodate the prostheses and all implantations were performed by the same 
investigator. Each prosthesis was implanted into the prepared femur with a tight fit, 
without macro-movement evident when a compressive force was applied. The accu-
racy of implantation of the femoral stems in the composite femurs in terms of cor-
rect implant size and positioning was verified using calibrated radiographs of both the 
intact and implanted femurs. The radiographs of the best-fitting template-matched 
radiographs of the intact femurs were superimposed on those of the implanted femurs 
(see Additional file 1). After the radiographic evaluation, the implanted femurs were 
fixed into the steel cylinder using the same embedding technique as described above. 
The proximal end of each femur was then prepared for DIC compatibility. For the cre-
ation of the speckle pattern, the surface of each specimen was initially covered using 
matte white color. To form a thin and uniform background, the femurs were sprayed 
from a distance of 50 cm and left to dry for 10 min before black speckles were applied. 
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Then, the random speckle pattern was created using matte black commercial spray 
paint can. In the resulting speckle pattern, the speckle size was 0.7–1.0 mm.

A custom-made mechanic jig was designed and manufactured according to the 
standardized protocol for testing conditions during functional validation of hip pros-
theses reported by Cristofolini and Viceconti [83] (Fig.  5). It consisted of a metal 
beam with an acetabular component properly attached to its undersurface, creat-
ing an articulation with the femoral head. The acetabular cup containing the femo-
ral head had an inclination of 45° and 0° anteversion and its center was positioned 
110 mm lateral to the load axis. The jig was supported on the femoral head through 
the acetabular cup and was attached medially to the load cell of the testing machine 
(Tinius Olsen electro-mechanical testing machine). The testing machine is computer-
controlled and can apply tensile or compressive forces up to 5 kN. A system of cross 
rails were attached to the testing machine to guarantee that only a vertical force was 
applied to the cantilever device, avoiding undesired horizontal forces and moments. 
A system of rulers and goniometers allowed the position and direction of the forces to 
be controlled with an accuracy of ± 0.5 mm and ± 0.5°, respectively.

In the experimental fixture, a metallic blade was adhesively bonded at the lateral 
aspect of the greater trochanter, formed an angle of 40° to the femoral diaphysis, 
which simulated the pelvis. The test fixture was designed to provide a compressive 
force to the femoral head through the acetabular cup and a tensile force simulating 
the contraction of the abductors to the greater trochanter. A bolt was utilized to con-
trol the force and a load cell was used to monitor the force exerted by the abduc-
tors under loading condition. For the geometry of the specific loading fixture, which 
is based on the study of Cristofolini [83], the contraction force had to be 1.62 times 
the vertical force. Thus, at every load level applied and due to the deformation of 
the femur, the bolt has been used to adjust the force exerted by the abductors to the 
desired level (from 0 to 1620 N). The gait phase to be simulated was chosen to be the 
single-leg stance at the moment immediately after heal strike when the highest hip 
joint load acts [84, 85].

The non-implanted and implanted femurs were each placed into the custom-made jig, 
which was again mounted in the load cell of the testing machine. Loads were applied on 
the head of the intact composite femur and on the 28 mm metal head prostheses of the 
implanted bones through the acetabular cup. During the tests, the specimens were ini-
tially loaded with 100 N and the load was increased by increments of 100 N up to a total 
of 1000 N. Each craniocaudal load was applied three times and the strain patterns were 
recorded at the maximum load level of each loading cycle.

Experimental analysis was based on 3-dimensional optical measuring system, the 
Aramis 5  M DIC system (GOM mbH, Braunschweig, Germany). DIC measurements 
were performed using two different cameras positions capturing opposite femoral sur-
faces, the lateral (tension) and the medial (compression) surface of the bone. 3D DIC 
system consisted of a stand that provided stability of the cameras, an image recording 
and power control unit and the data processing software. The cameras’ setup used lenses 
with a focal length of 17 mm. The cameras were positioned at a relative angle of 25° and 
at a measuring distance of 875 mm, which led to a resolution of the captured images of 
2448 × 2050 pixels. The field of view using the specific setup was 400 × 330  mm. The 
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facet parameters of the DIC software were adjusted (facet size 19 × 19 pixels, facet step 
15 × 15 pixels) and a post-processed filter was applied to achieve reliable results, reduc-
ing the noise affecting strain measurements. Linear strain calculation has been applied 
with three adjacent points used in the strain calculation.

The non-implanted and implanted femurs were each placed into the testing machine 
and load up to 1000  N was applied according to the configuration described above. 
Images of speckle patterns were captured for the intact and implanted bones at unloaded 
and under 1000 N of compression loading conditions. The images obtained were ana-
lyzed using the Aramis code. The intact composite femur and each of the six prepared 
femurs were tested in this way. Three trials were repeated for each specimen (intact and 
3 composite bones implanted with each prosthesis) in each field of view. DIC strains 
between the experiments for each construct were compared among themselves to assure 
repeatability. After repeatability was confirmed, DIC-measured strains from the last 
experimental repetition of each construct (intact, implanted bone with Trilock BPS and 
implanted bone with Minima S femoral stem) were used for the comparison of DIC-
measured strains between intact and implanted femurs. The measured variables were 
the minimum principal strain on the medial femoral side and the maximum principal 
strain on the lateral cortex.

Numerical analysis

The geometrical model of the femoral Sawbone #3908 (Femur—Medium left/reference 
part #3403) was used in this study. It has been used as the base for the development of 
the finite element (FE) model. This geometrical model consists of three parts; the corti-
cal bone and the proximal and distal cancellous cores. The average element size was set 
to 3 mm following a mesh-convergence study. The geometry of the two implants used 
in the present study has been acquired using the Hexagon Metrology Romer Absolute 
Arm equipped with an external high performance HP-L-20.8 laser scanner. The results 
of laser scanning were converted into 3-D solid models with the aid of a hybrid system 
using the CAD Software Catia V5 R 20. The geometry of the femur, after the neck oste-
otomy and before the implantation of each stem, has been created by the application of 
a Boolean operation, subtracting a cylindrical volume at the area of the femoral head. 
After modeling the femur, virtual implantation was performed positioning the implant 
in an orientation that replicated the tested specimen. Implant positioning in the model 
was based on the orthogonal photographs provided by the cameras during experimental 
setup and also the post-implantation antero-posterior and lateral radiographs. Paramet-
ric detailed 3D FE models of the femur and the implants have been developed using the 
commercially available ANSYS FE code. Tetrahedral elements have been used to develop 
the FE mesh, as they have been shown to discretize the femur and implants complicated 
geometries more efficiently than cubic hexahedral elements. Different linear material 
properties have been used to simulate the cortical and cancellous material of the bone. 
The femur consists of two different materials: short fiber-filled epoxy for the simulated 
cortical bone and solid rigid polyurethane foam for the simulated cancellous bone. Based 
on the data provided by the manufacturer, linear elastic, isotropic and homogeneous 
material properties were applied to the composite bone, with the simulated cancellous 
and cortical bone having Young’s modulus E = 155 MPa and E = 16.7 GPa, respectively. 
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The Young’s modulus of both femoral stems constructed by titanium alloy (Ti6Al4V) 
was set as 110 GPa and the Poisson’s ratio for all materials was set as 0.3. Fully bonded 
contact conditions were used between all the components of the tested construct.

For verification purposes, the FE model of the non-implanted femur was validated 
against the mechanical tests on intact bones. The modeled implanted femurs were used 
thereafter to calculate strains at the medial and lateral femoral surface in order to iden-
tify highly stressed areas. These strain predictions were compared with those developed 
during mechanical testing of the two implanted stems for validation.

Statistical analysis

For statistical analysis, two lines have been defined on the same part of each femur; one at 
the medial surface of the bone and one at the lateral surface. The position and direction 
of the comparison lines was based on well defined bony landmarks, the anatomical femo-
ral axis and geometrical length measurements. These data were used to find comparable 
point coordinates in the DIC vs DIC or DIC vs FE corresponding fields (Fig. 6a, b). Key 
equal zones of interest within each of the two views (medial and lateral) were selected at 
2-cm increments along these lines for quantitative strain comparison between experimen-
tal groups. Each line was divided in seven equal sections, designated as M1–M7 in medial 
side and L1–L7 in lateral side (Fig. 6c, d). Statistical analysis was performed utilizing Statis-
tical Package for Social Sciences (SPSS) software (IBM SPSS Statistics version 25). Descrip-
tive analysis was carried out for the intact and implanted femurs, at first globally along the 
medial and lateral femoral line and then for each key zone of interest, providing standard 
statistical parameters and the regression curves of strains. Modeling strain error as having 

Fig. 5  a Mechanical test setup; b detailed view of the experimental test setup showing the implanted femur 
within the customized loading apparatus allowing proximal loading via a compressive joint reaction force at 
the femoral head paired with a tensile force applied through the abductor plate on the greater trochanter; c 
configuration of the data capturing cameras
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a normal distribution was tested using Shapiro–Wilk test. The hypothesis of normality was 
rejected in 35 of the 72 cases at significance level of 5%. For this reason, a non-paramet-
ric Mann–Whitney U test with confidence level 95% (a = 0.05) was used to determine the 
influence of stem design on strain response at each individual key zone of interest. The p 
value obtained for each section corresponded to the likelihood that the difference in the 
mean principal strain for the implanted femur compared to that of the intact femur was 
due to chance. A p-value < 0.05 was deemed to give rejection with the preset statistical sig-
nificance. Prior to the FE model validation, the corresponding fields of the DIC vs FE under 
the same loading were registered together in the ARAMIS environment. Nevertheless, fol-
lowing registration, the comparison points did not have identical locations. For this reason, 
polynomial of 4th degree approximations of DIC strain data were performed to overcome 
the exact measurement point mismatch between the two methods. Using the polynomial 
approximations, reported to the range of points x of the non-implanted FE model, we were 
able to perform linear correlation analyses for each separate case (intact bone, implanted 
bones with Minima S and Trilock BPS stem) and field of view (lateral and medial). The lin-
ear regression coefficient (slope and intercept) and the coefficient of determination (R2) 
were calculated for each analysis with 95% confidence bounds.
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