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Abstract 

Background:  Image segmentation is an important part of computer-aided diagnosis 
(CAD), the segmentation of small ground glass opacity (GGO) pulmonary nodules is 
beneficial for the early detection of lung cancer. For the segmentation of small GGO 
pulmonary nodules, an integrated active contour model based on Markov random 
field energy and Bayesian probability difference (IACM_MRFEBPD) is proposed in this 
paper.

Methods:  First, the Markov random field (MRF) is constructed on the computed 
tomography (CT) images, then the MRF energy is calculated. The MRF energy is used 
to construct the region term. It can not only enhance the contrast between pulmonary 
nodule and the background region, but also solve the problem of intensity inhomo-
geneity using local spatial correlation information between neighboring pixels in the 
image. Second, the Gaussian mixture model is used to establish the probability model 
of the image, and the model parameters are estimated by the expectation maximiza-
tion (EM) algorithm. So the Bayesian posterior probability difference of each pixel can 
be calculated. The probability difference is used to construct the boundary detection 
term, which is 0 at the boundary. Therefore, the blurred boundary problem can be 
solved. Finally, under the framework of the level set, the integrated active contour 
model is constructed.

Results:  To verify the effectiveness of the proposed method, the public data of the 
lung image database consortium and image database resource initiative (LIDC-IDRI) 
and the clinical data of the Affiliated Jiangmen Hospital of Sun Yat-sen University are 
used to perform experiments, and the intersection over union (IOU) score is used to 
evaluate the segmentation methods. Compared with other methods, the proposed 
method achieves the best results with the highest average IOU of 0.7444, 0.7503, and 
0.7450 for LIDC-IDRI test set, clinical test set, and all test sets, respectively.

Conclusions:  The experiment results show that the proposed method can segment 
various small GGO pulmonary nodules more accurately and robustly, which is helpful 
for the accurate evaluation of medical imaging.

Keywords:  Small GGO pulmonary nodules, Image segmentation, Active contour 
model, MRF energy, Bayesian probability
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Background
According to statistics, lung cancer has become the most common malignant tumor in 
the world, and it is also currently known as the cancer with the highest mortality after 
diagnosis [1]. The small ground glass opacity (GGO) pulmonary nodules are an early 
manifestation of lung cancer. Compared with solid pulmonary nodules, GGO pulmo-
nary nodules have the characteristics of smaller diameter, lower contrast with surround-
ing normal lung tissue, intensity inhomogeneity, blurred boundary and irregular shape, 
which are often missed by doctors. Therefore, the detection and diagnosis of GGO pul-
monary nodules have always been the focus and difficulty of imaging studies [2]. GGO 
pulmonary nodules are likely to become malignant tumors. If detected early, diagnosed 
early, and treated early, it will help reduce the risk of cancer [3]. In addition, small GGO 
pulmonary nodules are small size, and it is difficult to perform accurate puncture treat-
ment at early stage. Therefore, multiple examinations are needed to pay close attention 
to their changes and evaluate them by medical imaging. The precise segmentation of 
GGO pulmonary nodules provides an important basis for medical imaging evaluation 
and diagnosis, so it has important clinical values.

At present, the segmentation methods of GGO pulmonary nodules mainly include 
mathematical morphology [4–6], active contour model [7, 8], and deep learning [9, 10]. 
The mathematical morphology method is based on set theory, and uses the structural 
elements of a given morphology to eliminate specific objects in the image. Kostis et al. 
[11] used the morphological algorithm with fixed size structural elements to distinguish 
small pulmonary nodules from surrounding vascular structures. Diciotti et al. [12] used 
mathematical morphological operations of corrosion and expansion to refine the seg-
mentation results of pulmonary nodules. The active contour model method drives the 
curve or surface to deform by minimizing the energy function, thereby the target bound-
ary can be reached. Farag et al. [13] proposed a level set-based pulmonary nodule seg-
mentation algorithm to achieve adaptive segmentation of pulmonary nodules. Keshani 
et  al. [14] used SVM classifier and active contour model to segment pulmonary nod-
ules. Nithila et al. [8] used active contour model and fuzzy C-means clustering to seg-
ment pulmonary nodules. Li et  al. [15] proposed an active contour based on adaptive 
local region energy function to segment GGO nodules. In recent years, deep learning 
method has been used to segment pulmonary nodules. Ye et al. [16] proposed a deep 
learning computer artificial intelligence system for early identification of GGO nodules. 
Roy et al. [17] proposed a collaborative combination of deep learning and shape-driven 
level set for automatic and accurate segmentation of pulmonary nodules. Wang et  al. 
[18] proposed a central focus convolution neural network to segment pulmonary nod-
ules. However, deep learning requires a large amount of labeled data, and it is still dif-
ficult to obtain a large number of pulmonary nodule labeled data. Most of the existing 
mathematical morphology and active contour model methods assume that the spatial 
location of each pixel in the image is statistically independent [19], which ignores the 
spatial structure information between pixels.

Markov random field (MRF) uses a neighborhood system to describe the relation-
ship between neighboring pixels, which can well model the spatial structure informa-
tion between pixels. Because of its small volume and easily affected by other factors 
such as blood vessels, pleura and surrounding highlight tissue, the segmentation of small 
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GGO pulmonary nodules is vulnerable to boundary leakage. Making full use of the spa-
tial structure information between pixels will help solve this problem. It is worth noting 
that the MRF has been widely used in other fields such as prostate glands [20] and brain 
MR image segmentation [21]. But it is still rarely used in the segmentation of pulmonary 
nodules. Zhu et al. [22] proposed an MRF method based on simulated annealing algo-
rithm (abbreviated as MRF_SA) for segmentation of GGO pulmonary nodules, which 
achieved good results. However, no comprehensive research has been conducted on 
various complex types of GGO pulmonary nodules. In addition, the blurred boundary 
problem is not considered in [22].

Based on the literature [22], we incorporate MRF energy into the region term of active 
contour model, and propose an integrated active contour model based on Markov ran-
dom field energy and Bayesian probability difference (IACM_MRFEBPD). First, the 
K-means method is used to pre-segment the image to solve the sub-optimal problem of 
traditional MRF segmentation, which improves the segmentation efficiency. Based on 
this, MRF model is constructed. Labeling field and feature field are established, and MRF 
energy is calculated. Instead of the intensity information, the MRF energy is used for 
constructing the region term of the active contour model. The MRF prior of the labe-
ling field and the Gaussian mixture model of the feature field are based on local statisti-
cal information of the image. So the intensity inhomogeneity can be solved. In addition, 
MRF energy can enhance the contrast of the pulmonary nodule and the background 
region. Therefore, the low contrast problem can be solved. Second, the probability model 
of GGO pulmonary nodules and surrounding background regions is constructed using 
the Gauss mixture model and the model parameters are estimated by the expectation 
maximization (EM) algorithm. Then, the Bayesian probability difference of each pixel 
is calculated and used as the boundary detection function of the active contour model. 
Probability difference is 0 at the boundary; thereby the blurred boundary problem can 
be effectively solved. Therefore, the proposed method can segment the small GGO pul-
monary nodules with intensity inhomogeneity, low contrast and blurred boundary.

Results
Experimental data and evaluation indicator

To verify the effectiveness of the proposed method, we use the public data of the Lung 
Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) [23] 
and the clinical data of the Affiliated Jiangmen Hospital of Sun Yat-sen University to per-
form experiments. The public data contain 632 CT images, and the clinical data contain 
32 CT images. So the experimental data total 664 CT images. The GGO lung nodules 
selected in all CT images are less than 15 mm in diameter, and most are less than 3 mm. 
To train the deep learning model, we divide all data into training and test sets. The train-
ing set contains 376 LIDC-IDRI CT images, and the test set contains 256 LIDC-IDRI 
and 32 clinical CT images. The identifier (ID) number of the LIDC-IDRI data is given 
in Table 4 (see “Appendix”), where XX–YY represents the YYth CT image of the XXth 
patient. Related parameters of CT images such as tube current and tube voltage can be 
easily found by the ID numbers.

The proposed method is compared with the other five methods, including literature 
[24] (abbreviated as LGDF), literature [25] (abbreviated as SFCM_LCM), literature 
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[26] (abbreviated as LRBAC), literature [22] (abbreviated as MRF_SA), and U-net 
model based on deep learning framework. The result manually segmented by radiolo-
gist is used as the gold standard. The pulmonary nodules less than 3 mm are located 
by LIDC-IDRI, but no gold standard is given. So most CT images have no gold stand-
ard. To solve this problem, we use the segmentation results of two radiologists in the 
Affiliated Jiangmen Hospital of Sun Yat-sen University as the gold standard. First, 
the two radiologists separately performed the segmentation, and then the combined 
results of the two people were used as the final gold standard.

In this paper, the intersection over union (IOU) score is used for evaluation indicator. 
The following is the calculation formula for IOU:

where Am is the region segmented by experienced radiologist, Aa the region segmented 
by methods, TP the true-positive, FP the false-positive and FN the false-negative. The 
larger the IOU, the better the segmentation effect.

Model parameter setting

To set reasonable parameters for the proposed method, the comparative experiments 
are conducted on some important parameters. When calculating the MRF energy, the 
β (beta) in formula (6) has a certain effect on the experimental results. Figure 1 shows 
the segmentation results of LIDC-IDRI-0380-000037 when beta changes from 0.1 to 1.0. 
As can be seen from Fig. 1, when β = 0.5, the segmentation effect is the best. After mul-
tiple trials and comparisons, we choose β = 0.5 for the segmentation of all CT images. 
When calculating the Bayesian posterior probability difference, k in formula (10) deter-
mines whether the GGO with vascular adhesion and pleural adhesion, and the GGO 
surrounded with highlight tissue can be correctly segmented. Figure 2 shows the seg-
mentation results of k = 2 and k = 3 in these three cases. As can be seen from Fig. 2, to 
correctly segment these three types of GGO, the value of k should be set to 3. �1 , �2 , µ 
and ν in formula (15) are set to 1 as the suggest in [27]. The selection of other parameters 

(1)IOU = |Am ∩ Aa|
|Am ∪ Aa|

= TP

(TP+ FP+ FN)

Table 1  IOU scores of LIDC-IDRI data

CT image LGDF SFCM_LCM LRBAC MRF_SA This paper U-net

1 LIDC-
IDRI-0759-000099

0.7882 0.5176 0.6941 0.7412 0.7412 0.6589

2 LIDC-
IDRI-0294-000127

0.8289 0.4807 0.6558 0.6795 0.8373 0.8567

3 LIDC-
IDRI-0743-000132

0.9153 0.5776 0.7931 0.8632 0.839 0.6348

4 LIDC-
IDRI-0743-000201

0.8678 0.306 0.4181 0.6401 0.8021 0.7633

5 LIDC-
IDRI-0400-000075

0.8841 0.5077 0.6769 0.8507 0.9104 0.7159

6 LIDC-
IDRI-0375-000033

0.8343 0.3893 0.4765 0.6443 0.8627 0.715

Mean ± Std All LIDC-IDRI test set 0.7217 0.4849 0.5692 0.6556 0.7444 0.6926
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will be discussed in “Methods” section. The parameter setting of the compared algo-
rithm is consistent with the original literature. 

The parameter settings of U-net are as follows: batch size: 10, learning rate: 0.0001, 
loss function: binary cross-entropy. The segmentation result of the U-net method is 
related to the iteration number. Figure 3 shows the average IOU value of LIDC-IDRI test 
set, clinical test set, and the entire test set when the iteration number changes from 150 
to 500. When the iteration number is 200, the average IOU value is the largest. So the 
iteration number of the U-net method is set to 200.

Segmented results of LIDC‑IDRI data

Figure 4 shows the segmented results of 6 images with 6 methods. Figure 4a is the origi-
nal image, and Fig. 4b is the segmented result by radiologist, which is the gold stand-
ard. Segmented results marked with red box are obtained by the proposed method. In 
the first image, the pulmonary nodule had mild vascular adhesion and the nodule was 
close to the pleura. The LGDF method (Fig. 4c) incorrectly segmented some of the blood 
vessels and a boundary leakage occurred at the pleura. Both the SFCM_LCM method 
(Fig. 4d) and the MRF_SA method (Fig. 4f ) produced boundary leakage at the pleura. 
The U-net method (Fig. 4h) incorrectly segmented some of the blood vessels. Segmented 
results of the LRBAC method (Fig. 4e) are comparable to the proposed method. In the 
second image, the pulmonary nodule was relatively close to the pleura. Except that the 
proposed method can correctly segment, the U-net method mistakenly segmented some 
lung parenchyma and other algorithms produced the boundary leakage at the pleura. In 
the third image, the pulmonary nodule was relatively isolated but intensity inhomogene-
ity, and the shape was irregular. The SFCM_LCM method cannot correctly identify the 
shape of the pulmonary nodule; other methods worked comparable intuitively, but the 
U-net method mistakenly segmented some lung parenchyma. In the fourth image, the 
shape of the pulmonary nodule was extremely irregular, and with vascular adhesions. 
The proposed method and U-net correctly segmented, while other methods segmented 
some blood vessels. At the same time, other methods produced different degrees of 
under-segmentation due to blurred boundary. In the fifth image, the pulmonary nodule 

Fig. 1  Segmented results with different beta values
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was relatively small, and with low contrast. The proposed method achieved better seg-
mentation effect, while other methods produced under-segmentation, and the SFCM_
LCM method was more serious. In the sixth image, boundary of the pulmonary nodule 
was blurred, and the boundary over-band was relatively large. In addition, the shape was 
irregular. The proposed method achieved a better segmentation effect and the U-net 
produced a certain over-segmentation, while other methods produced different degrees 
of under-segmentation, and the segmented boundary shrunk toward the interior of the 
pulmonary nodule.

In summary, the segmented boundary of the SFCM_LCM method is severely inwardly 
contracted and the shape of the pulmonary nodule cannot be identified. The proposed 
method has achieved better segmentation results, followed by the LRBAC method.

Fig. 2  Segmented results with different k values

Fig. 3  Average IOU with different iteration number
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To better evaluate the performance of various methods, Table 1 gives the IOU scores 
for 6 LIDC-IDRI CT images in Fig. 4 and the average IOU for LIDC-IDRI test set. In 
addition, Table 1 shows the ID numbers of 6 CT images in Fig. 4. The optimal IOU score 
is highlighted in boldface. It can be seen from table that the proposed method achieved 
the best results, followed by LGDF. The effect of SFCM_LCM is the worst; the main rea-
son is that there exists serious under-segmentation.

Segmented results of clinical data

Figure 5 shows the segmented results of 8 images with 6 methods. Figure 5a is the origi-
nal image, and Fig. 5b is the segmented result by radiologist. Segmented results marked 
with red box are obtained by the proposed method. In the first three images, the pul-
monary nodules were isolated, and with low contrast. Intuitively, all methods achieved 
the same effect, but the SFCM_LCM method produced a certain boundary leakage, and 
the segmented boundary shrunk inward. In the fourth image, blood vessel adhesion 
around the pulmonary nodule was relatively serious. The proposed method achieved 
good results, but other methods produced boundary leakage. In the fifth image, the pul-
monary nodule was heavily adhered to the pleura and surrounded by blood vessels and 
other highlight tissues. Except for the proposed method, other methods all produced 
boundary leakage. In addition, the U-net produced serious under-segmentation. In the 
sixth image, the pulmonary nodule was close to the surrounding highlight tissue. Except 
for the SFCM_LCM method and the proposed method, other methods all produced 
boundary leakage, but the segmented boundary of SFCM_LCM method shrunk to the 

Fig. 4  Segmented results of LIDC-IDRI data
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internal of the pulmonary nodule. In the seventh image, the pulmonary nodule was iso-
lated, and with low contrast and small size. Except for the U-net method, other methods 
can segment the pulmonary nodule, but the segmented boundaries had different degrees 
of leakage, and the segmented boundary shrunk to the inside of the pulmonary nod-
ule. In the eighth image, the pulmonary nodule was relatively large, but with intensity 
inhomogeneity, and there are many dark spots inside, which may be caused by bubbles 
or necrotic tissue. Furthermore, there are blood vessels adjacent to the nodules but not 

Fig. 5  Segmented results of clinical data

Table 2  IOU scores of clinical data

CT image LGDF SFCM_LCM LRBAC MRF_SA This paper U-net

1 P-001-001 0.7537 0.6784 0.7753 0.7453 0.5874 0.8078

2 P-002-025 0.9253 0.8375 0.9167 0.888 0.9205 0.7917

3 P-003-122 0.8661 0.6546 0.8314 0.8367 0.8392 0.8007

4 P-004-072 0.3525 0.6267 0.4153 0.3136 0.6379 0.2582

5 P-005-035 0.7993 0.7993 0.3152 0.3316 0.7964 0.3991

6 P-006-024 0.6705 0.7703 0.6627 0.6061 0.6403 0.6429

7 P-007-001 0.9048 0.7561 0.9048 0.9048 0.7619 0.375

8 P-008-029 0.8623 0.8136 0.7412 0.5339 0.7221 0.7706

Mean ± Std All clinical test set 0.707 0.6057 0.5602 0.6456 0.7503 0.6453
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connected. Except for our method, other methods produced boundary leakage, and sur-
rounding blood vessels were segmented. It is worth noting that the two methods based 
on MRF (MRF_SA and the proposed method) can correctly identify and segment the 
dark spots in the pulmonary nodule. It may be that the MRF effectively utilizes the spa-
tial structure information of the image.

In the segmentation results of these 8 clinical CT images, the U-net effect is not good, 
with serious boundary leakage and under-segmentation.

Table 2 shows the IOU scores of 8 clinical CT images in Fig. 5 and the average IOU for 
clinical test set. It can be seen that the proposed method achieved better segmentation 
results with the highest average IOU, followed by LGDF. Although the proposed method 
has no obvious advantages in the segmentation results of a single CT image, it is stable 
in the segmentation results of multiple CT images. The IOU scores of other methods are 
very high for some CT images, but are very low in some case. In summary, the proposed 
method has good robustness.

Table 3 shows the average IOU of LIDC-IDRI data, clinical data, and all test sets. The 
proposed methods all achieved the highest average IOU, followed by LGDF.

Discussion
Based on the above-segmented results of LIDC data and clinical data, the proposed 
method has achieved better segmented results. In the segmentation experiments of 
clinical data, all methods have different degrees of boundary leakage, which are due to 
the influence of various factors such as blood vessels, pleura, and surrounding highlight 
tissue, etc. Therefore, the segmentation of small GGO pulmonary nodules is still very 
challenging.

LGDF method [24] uses Gaussian distributions with different mean and variance to 
describe local intensity information of the image, and uses truncated Gaussian kernel 
to define local attributes. The mean and variance of local intensity are considered as a 
function of spatial variation to deal with intensity inhomogeneity and spatially varying 
noise. However, the performance of the LGDF method depends more on the value of 
the local window size. When the value is not appropriate, the kernel function cannot 
be significantly reduced to zero. So it will cause boundary leakage. This phenomenon is 
particularly evident in the experiments of clinical data. In addition, the low contrast and 
blurred boundary are also the cause of the boundary leakage.

SFCM_LCM method [25] uses a spatially constrained fuzzy clustering method for the 
initialization and parameter control of the level set function, which promotes the evo-
lution of the level set and improves the robustness of segmentation. At the same time, 
a local regular term is introduced to solve the problem of intensity inhomogeneity. 
However, the fuzzy nature of SFCM_LCM makes it impossible to correctly recognize 

Table 3  Average IOU scores of LIDC_IDRI test set, clinical test set and all test sets

CT image LGDF SFCM_LCM LRBAC MRF_SA This paper U-net

1 LIDC_IDRI test set 0.7217 0.4849 0.5692 0.6556 0.7444 0.6926

2 Clinical test set 0.707 0.6057 0.5602 0.6456 0.7503 0.6453

3 All test set 0.7201 0.4983 0.5682 0.6545 0.745 0.6873
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the shape of pulmonary nodules. Therefore, for irregularly shaped pulmonary nodules, 
SFCM_LCM segmentation results are relatively poor.

LRBAC method [26] is a very effective local segmentation method, which increases the 
segmentation ability of intensity inhomogeneity images by introducing local statistical 
information. However, to achieve narrow-band control, the level set function in LRBAC 
needs to be re-initialized as a symbol distance function every few iterations during the 
process of model solving, and the calculation cost is high. At the same time, errors in the 
re-initialization process will cause the narrow-band control to be unstable, which affects 
the stability and robustness of the segmentation results. In addition, experiments have 
found that the segmentation results of LRBAC are sensitive to the selection of the local 
domain radius. If the local radius is too small, the segmentation may be insufficient, and 
if the local radius is too large, the segmentation may be excessive. In the actual pulmo-
nary nodule segmentation, it is difficult to set a separate local radius for each segmenta-
tion. Finally, it should be noted that, compared with the global segmentation method, 
the local segmentation method is usually more sensitive to the initial contour. Therefore, 
the initial contour greatly affects the segmentation results of LRBAC.

Compared with MRF_SA method [22] and other MRF-based methods, the proposed 
method has two differences. First, the initial segmentation is helpful for the optimization 
of the MRF, and prevents the calculation from being stopped if it falls into a local mini-
mum. Second, the MRF energy is calculated only once, and the MRF energy of each pixel 
no longer changes during the evolution of the contour. Unlike other MRF methods, this 
paper aims to use MRF energy to enhance the contrast of pulmonary nodules and back-
ground regions, rather than calculating the optimal solution of MRF in the framework of 
active contour models [21].

There are three main reasons why the proposed method has achieved good segmenta-
tion results. First, Markov’s prior is equivalent to performing a probabilistic morphologi-
cal closing operation on the image, making spatially adjacent pixels more inclined to the 
same region, reducing the possibility of suspicious boundaries caused by noise and other 
tissues, such as blood vessels. Second, MRF energy calculation makes full use of the 
spatial structure information between pixels, which can enhance the contrast between 
pulmonary nodules and the background regions. So the problem of low contrast can be 
solved. At the same time, it is assumed that each pixel in the image conforms to a Gauss-
ian mixture distribution when modeling the MRF feature field and this will make full use 
of local statistical information, which is helpful to solve the problem of intensity inho-
mogeneity. Third, the Bayesian probability difference is used for constructing boundary 
detection term. Probability difference is 0 at the segmentation boundary, which can well 
solve the blurred boundary problem. So the proposed method can deal with GGO pul-
monary nodules with low contrast, intensity inhomogeneity and blurred boundary.

Finally, based on Bayesian posterior probability and initial segmentation by K-means 
method, the initial contour of the curve evolution can be obtained. Since the initial con-
tour is located near the target boundary of image segmentation, the curve evolution can 
obtain the global minimum energy, which improves the stability and robustness of the 
proposed method. In the future work, we will continue to optimize the solution of the 
proposed model [28, 29].
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Conclusion
An integrated active contour model based on MRF energy and Bayesian probability dif-
ference is proposed in this paper. First, the MRF is constructed on the CT images and 
MRF energy is calculated. Instead of the intensity information, the MRF energy is used 
for constructing the region term. Second, the Gaussian mixture model is used to estab-
lish the probability model of pulmonary nodule image and the Bayesian posterior prob-
ability difference of each pixel is calculated. Next, the probability difference is used for 
constructing the boundary detection term. Finally, under the framework of the level set, 
the integrated active contour model is constructed. The experimental results of LIDC-
IDRI data and clinical data show that the proposed method can segment various types of 
GGO pulmonary nodules more accurately and robustly than other methods. However, 
the proposed method does not specifically test for a certain type of GGO pulmonary 
nodules (such as GGO pulmonary nodules with different degrees of vascular adhesion) 
with a large number of samples, the robustness, stability and reliability of the proposed 
method need to be further verified. In the future work, when segmenting GGO pulmo-
nary nodules with different degrees of vascular adhesion, we can combine MRF with 
shape information to accurately segment pulmonary nodules and blood vessels.

Methods
Assuming that C is a closed contour curve, the image region Ω is divided into region Ω1 
and Ω2 by the curve, where Ω1 represents the interior of the curve and Ω2 represents 
the exterior of the curve. MRF energy instead of intensity information is used for con-
structing region term, which drives the curve to move to the target boundary. Bayesian 
probability difference instead of gradient information is used for constructing boundary 
detection term. The probability difference is 0 at the boundary, which stops the curve 
from evolving. Therefore, the energy function of the integrated active contour model can 
be defined as

where ER(φ) is the region term, EE(C) is the boundary detection term, µ and � are two 
parameters that control the region term and the boundary detection term, respectively, 
and φ is the level set function. Figure  6 shows the image segmentation process of the 
integrated active contour model. The construction of region term and boundary detec-
tion term will be discussed later.

Construction of the region term based on MRF energy

Traditional MRF is solved by multiple iterations, which is easy to fall into local optimum 
solution during the iterative process. The initial segmentation of the image can make the 
initial boundary near the real boundary, which improves the efficiency and stability of 
optimization solution, and effectively avoids the local optimal situation. Therefore, the 
initial segmentation can improve the accuracy and robustness of segmentation. In this 
paper, the K-Means algorithm is used to perform the initial segmentation of the original 
image, and then the MRF is constructed.

The image can be regarded as a two-dimensional MRF, whose pixel values are only 
related to its neighboring pixels. Assuming that the image size is M ∗ N  , the set of pixels 

(2)E(φ,C) = �ER(φ)+µEE(C)
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in the image is represented by S , and S = {s(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N } . Each element s 
in the set S is represented by neighborhood system. The potential clique c is a subset of 
S , in which c can be expressed as single-point potential clique, double-point potential 
clique and three-point potential clique, etc. As the order of the neighborhood system 
increases, the number of potential cliques will increase rapidly. Next, the MRF energy 
will be calculated using the neighborhood system and potential energy function.

First, constructing an MRF requires the construction of two fields, that is, labeling 
field and feature field. The labeling field is used to classify the image to be segmented, 
and the feature field is used to perform feature analysis on the classified region. The labe-
ling field is represented by X , and X = {xs, s ∈ S} . The labeling field value of any pixel is 
represented by xs . The labeling space is represented by Λ = {1, 2, . . . , L} , which divides 
the image into L regions and Λ is the set of random variables xs , so xs ∈ Λ [22]. The fea-
ture field (or observation field) is represented by Y  , and Y = {ys, s ∈ S} . The feature field 
value of any pixel is represented by ys . According to the Bayesian theory, the maximum 
posteriori probability can be expressed as

where Y  is the observed image, so it can be regarded as a constant, which has no effect 
on maximizing the posterior probability. Therefore, the above formula can be written as 
follows:

P(X) is called segmentation model, which is modeled as MRF prior. It will be seen that 
P(X) is a Gibbs distribution. Conditional probability P(Y |X) is a data model, usually a 
Gaussian distribution; that is to say, the distribution of pixel value obeys Gaussian dis-
tribution after given label category [22]. To better fit the distribution of the pixel values, 
a mixed Gauss distribution is used for P(Y |X) in this paper. In the following, we will 
model the labeling field (segmentation model P(X) ) and the feature field (data model 
P(Y |X) ), respectively.

(3)X̂ = arg max
x

P(X |Y ) = arg max
x

P(X)P(Y |X)
P(Y )

(4)X̂ = arg max
x

P(X |Y ) ∝ arg max
x

P(X)P(Y |X).

Images to be 
segmented

energy function and its 
gradient descent flow 

calculation

Iterative 
segmentation

Construction of the region 
term based on MRF energy

Construction of the 
boundary detection term

based on Bayesian 
probability difference

Fig. 6  Image segmentation process
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By Hammersley–Clifford theorem, the prior probability P(X) can be obtained [30], 
that is

where Vc(xs) is the potential function of the potential clique c containing xs , and all 
potential clique set is represented by C . There are many ways to model Vc(xs) (labeling 
field modeling), such as Ising model, Potts model, MLL model, etc. In this paper, we use 
Potts model, which is consistent with literature [22]. The Potts model only considers the 
binary potential function, which is defined as

Next, the second-order neighborhood system is used and the corresponding potential 
cliques are two-point. β denotes the parameter of the two-point potential clique, usually 
between 0.5 and 1.0. In our experiment, β is set to 0.5.

Assuming that each pixel of the image obeys the independent and identical distribu-
tion, also obeys the Gauss mixture distribution. The conditional distribution of the fea-
ture field under a given labeling field is given as follows:

The parameters µm and σm are the mean and variance of the m th target region, respec-
tively. In our experiment, m is set to 2, which is consistent with the literature [19].

Substituting (5) and (7) into (4), and taking logarithms on both sides of (4), we can get

where U1(X ,Y ) = ln P(Y |X) =
∑

s∈S

(

ln(
√
2πσm)+ (ys−µm)

2

2σ 2
m

)

 , U2(X) =
∑

c∈C
Vc(xs) ; 

U1(X ,Y ) is conditional energy function (i.e., feature field energy), U2(X) is prior energy 
function (i.e., labeling field energy), U(X ,Y ) = U1(X ,Y )+U2(X) is MRF energy.

In summary, the calculation steps of MRF energy can be obtained as follows:

1.	 K-Means algorithm is used to initial segmentation, where K = 3, we divide the lung 
parenchyma, lung nodules and other lung tissue (blood vessels, pleura and highlight 
tissue, etc.) into three categories;

(5)P(X) =
∏

s∈S
P(xs) =

∏

s∈S

exp

[

−
∑

c∈C
Vc(xs)

]

L
∑

xs=1

exp

[

−
∑

c∈C
Vc(xs)

] ,

(6)Vc(xs) = V2(xi, xj) =
{

0 xi = xj
β xi �= xj

.

(7)P(Y |X) =
∏

s∈S
P(yS |xS) =

∏

s∈S

1√
2πσm

exp

[

−
(

ys − µm

)2

2σ 2
m

]

.

(8)

X̂ = arg max
x

(ln P(X)+ ln P(Y |X))

= arg max
x

{

−
∑

c∈C
Vc(xs)−

[

∑

s∈S

(

ln(
√
2πσm)+

(

ys − µm

)2

2σ 2
m

)]}

= arg min
x

{

∑

c∈C
Vc(xs)+

[

∑

s∈S

(

ln(
√
2πσm)+

(

ys − µm

)2

2σ 2
m

)]}

= arg min
x

(U1(X ,Y )+U2(X))
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2.	 Solving the parameters (mean µm and variance σm ) of the Gaussian mixture model 
using the expectation maximization method;

3.	 The total MRF energy U(X ,Y ) is obtained from Eq. (8).

The MRF energy U(X ,Y ) of each pixel can be calculated by (8). For the convenience 
of distinguishing and discussing later, the U(X ,Y ) energy matrix is flattened into one-
dimensional vector u(x) , where 1 ≤ x ≤ M ∗ N  represents the coordinate position of 
each pixel. MRF energy instead of intensity information is used for constructing region 
term of active contour model [31]; the region term can be constructed as follows:

f1(x) and f2(x) are the mean values of MRF energy inside and outside of the contour 
curve, respectively. M1(φ) = H(φ) represents the inside of the curve, and 
M2(φ) = 1−H(φ) represents the outside of the curve, where H(φ) is Heaviside func-
tion, H(φ) = 1

2

(

1+ 2
π
arctan φ

ε

)

.

It can be seen intuitively from Fig. 7 that MRF energy can significantly enhance the 
contrast between small GGO pulmonary nodule and background region. To further 
confirm the contrast enhancement effect, the intensity values and MRF energy val-
ues of pulmonary nodule and background region were compared and analyzed. Fig-
ure 7a is a CT image of a patient, the region drawn in the box is where the pulmonary 
nodule is located at. Figure 7b, c shows the intensity image and energy image of the 
region that is drawn in the box, respectively. Box  1 and 2 in Fig.  7b represents the 
pulmonary nodule region (segmented region) and the pulmonary parenchyma region 
(background region), respectively. Box 3 and 4 in Fig. 7c is similar. Figure 7d, e shows 
the intensity values corresponding to box 1 and 2, respectively, and Fig. 7f, g shows 
the energy values corresponding to box 3 and 4, respectively. Comparing the inten-
sity value of box 1 (Fig. 7d) and the energy values of box 3 (Fig. 7e), it can be found 
that the energy values of the pulmonary nodule are significantly increased. Compar-
ing the intensity values of box  2 (Fig.  7f ) and the energy values of box  4 (Fig.  7g), 
it can be found that the energy values of the pulmonary parenchyma are reduced. 
Therefore, MRF energy can significantly enhance the contrast between pulmonary 
nodule and pulmonary parenchyma. In addition, the conditional probability P(Y |X) is 
selected as the Gaussian mixture distribution when modeling the feature field of MRF. 
It effectively utilizes the local statistical information, which can reduce the suspicious 
boundary caused by factors such as intensity inhomogeneity and noise.

Construction of the boundary detection term based on Bayesian probability difference

Assuming that the intensity of image pixels obeys the Gaussian mixture model 
(GMM) distribution [32], the specific form is a linear combination of Gaussian 
distributions:

(9)ER(φ)=
∑

i=1,2

∫

Ω

(

u(x)− fi(x)
)2
Mi(φ)dx
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where µk and Σk represent the mean and variance of the k th Gaussian distribution, 
respectively. αk represents the coefficients of the Gaussian mixture term, and 0 ≤ αk ≤ 1 , 
K
∑

k=1

αk = 1.

X = {x1, x2, . . . , xn} denotes a dataset consisting of n pixels of an image, 
Z = {z1, z2, . . . , zn} is a dataset consisting of n implicit data (i.e., implicit variables), and 
θ =

{

αk ,µk ,Σk |k = 1, 2, . . . ,K
}

 is the parameters of Gaussian mixture distribution. 
The optimal parameter θ can be obtained by solving the maximum of logarithmic likeli-
hood function. The likelihood function is as follows:

(10)p(x) =
K
∑

k=1

αkN (x|µk ,Σk)

(11)L(θ) = ln p(X |θ) = ln
∑

z

p(X ,Z|θ).

Fig. 7  Contrast enhancement by MRF energy
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The above formula can be solved effectively by EM algorithm [33], and then the opti-
mal parameter set θ can be obtained. Further, pk(xi|θk) can be obtained by θ , which rep-
resents the k th Gaussian component. For sample xi , p(k|xi, θ) is the posterior probability 
of the k th Gaussian component, which is defined as follows:

Therefore, for any pixel x , the Bayesian posterior probability of the pixel x that belong-
ing to the pulmonary nodule class can be calculated, denoted as p(1|x, θ) . Similarly, the 
Bayesian posterior probability of the pixel x that belonging to the background region 
class can be calculated, denoted as p(2|x, θ) . Thus, the boundary stopping function 
based on Bayesian probability difference can be obtained as follows:

According to the edge-based active contour model [34], the boundary detection terms 
can be constructed as follows:

Figure 8 is an effect diagram of the boundary detection function based on Bayes-
ian probability difference. Figure 8a is a CT image of a patient, the region drawn in 
the box is where the pulmonary nodule is located at, and the pulmonary nodule has 
a blurred boundary. Figure 8b is an enlarged image of the region drawn in the box, 
A–B line segment passes through the pulmonary nodule, point A is the left boundary, 
and B is the right boundary. The X and Y coordinates of points A and B in the image 
are (20, 19) and (20, 33), respectively. Figure 8c is an intensity graph of pixels on the 
C–D line segment. Figure  8d is a Bayesian probability difference graph of pixels on 
the C–D line segment. As we can be seen from Fig. 8, the Bayesian probability dif-
ference on points A and B is 0, so the probability difference can effectively detect the 
blurred boundary of the pulmonary nodule. The intensity values of points A and B did 
not change significantly, so the gradient calculated by the intensity values would not 
change much. Therefore, the blurred boundary of the GGO pulmonary nodule cannot 
be effectively detected by the gradient information.

Construction and solution of energy function

The final energy function of the integrated active contour model can be obtained by 
substituting (9) and (14) into (2), specifically as follows:

(12)
p(k|xi, θ) =

αkpk(xi|θk)
K
∑

k=1

αkpk(xi|θk)
.

(13)S = |p(1|x, θ)− p(2|x, θ)|.

(14)EE(C) =
∮

C
g(|∇I(C(s))|)ds=

∮

C
Sds =

∫

Ω

Sδ(φ)|∇φ|dx.
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At the right of (15), the first two terms are region term, the third one is boundary 
detection term, and the fourth one is the regular term which guarantees that the level set 
function φ is kept as the symbolic distance function [35], i.e., guaranteeing that |∇φ| = 1 . 
u(x) is defined by (9), and S is defined by (13). Next, we will solve the energy function.

First, level set function φ is fixed. Taking the partial derivative of the energy func-
tional E(φ) with respect to f1(x) and f2(x) , respectively, and making them equal to 
zero, we can get that

Second, f1(x) and f2(x) are fixed. Taking the derivative of the energy functional E(φ) 
with respect to φ , φ is solved by gradient descending flow, details as follows:

(15)

E(φ) = �1

∫

Ω

(

u(x)− f1(x)
)2
H(φ)dx

+ �2

∫

Ω

(

u(x)− f2(x)
)2
(1−H(φ))dx

+ µ

∫

Ω

Sδ(φ)|∇φ|dx + ν

∫

Ω

1

2
(|∇φ| − 1)2dx.

(16)f1(x) =
∫

Ω
u(x)H(φ)dx
∫

Ω
H(φ)dx

, f2(x) =
∫

Ω
u(x)(1−H(φ))dx
∫

Ω
(1−H(φ))dx

.

Fig. 8  Boundary detection based on Bayesian probability difference
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where δ(φ) = ε
π

1
ε2+φ2 is the derivative of H(φ) , also known as the Dirac Delta function.
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Appendix
Table 4 gives the ID numbers of all data in LIDC-IDRI. The meaning of the numerical 
sequence in the table has been explained in the experimental data description section.

(17)

∂φ

∂t
= � · δ(φ)

(

(

u(x)− f2(x)
)2 −

(

u(x)− f1(x)
)2
)

+ µ · δ(φ)div
(

S
∇φ

|∇φ|

)

+ν ·
(

∇2φ − div

( ∇φ

|∇φ|

))
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Table 4  ID numbers of LIDC-IDRI data

Training set Training set Training set Training set Training set Test set Test set Test set Test set
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0013-000065
0015-000197
0016-000066
0016-000067
0016-000082
0016-000098
0017-000203
0018-000118
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0020-000168
0021-000070
0024-000004
0024-000080
0026-000050
0026-000087
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0026-000162
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0027-000048
0027-000079
0027-000119
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0030-000002
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0036-000230
0038-000001
0038-000017
0040-000014
0040-000100
0042-000043
0042-000075
0042-000091
0042-000114
0043-000002
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0055-000026
0055-000032
0055-000060
0055-000128
0056-000054
0056-000080
0056-000130
0056-000157
0056-000227
0059-000031
0059-000075
0059-000097
0060-000016
0060-000104
0061-000031
0061-000090
0063-000005
0063-000067
0063-000076
0063-000108
0065-000036
0065-000042
0067-000202
0068-000005
0068-000165
0070-000058
0070-000069
0070-000073
0070-000075
0070-000099
0072-000065
0072-000094
0073-000064
0074-000043
0075-000048
0075-000081
0075-000095
0076-000133
0076-000151
0076-000249
0076-000282
0076-000294
0080-000079
0081-000080
0083-000184
0085-000017
0085-000041
0085-000068
0085-000089
0085-000100
0086-000099
0086-000215
0087-000050
0087-000066
0088-000073

0088-000079
0088-000133
0090-000006
0090-000029
0090-000129
0091-000006
0091-000070
0092-000034
0093-000074
0093-000120
0094-000357
0095-000062
0096-000004
0096-000050
0097-000003
0099-000001
0099-000003
0099-000024
0099-000058
0099-000068
0107-000062
0108-000109
0109-000104
0111-000111
0124-000025
0124-000061
0124-000082
0126-000026
0126-000059
0128-000038
0128-000063
0128-000085
0129-000039
0129-000058
0132-000002
0132-000106
0135-000006
0135-000035
0141-000020
0141-000064
0141-000152
0142-000058
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0145-000090
0197-000085
0197-000086
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0206-000044
0206-000050
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0209-000125
0210-000061
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0214-000033
0214-000051
0215-000044
0215-000180
0220-000031
0222-000079
0225-000044
0225-000048
0227-000062
0229-000105
0232-000005
0232-000076
0235-000071
0310-000036
0317-000099
0329-000080
0329-000097
0335-000053

0340-000259
0342-000069
0343-000126
0345-000090
0345-000106
0345-000118
0345-000251
0345-000257
0346-000014
0346-000038
0346-000090
0347-000033
0347-000049
0347-000117
0349-000051
0349-000110
0352-000140
0352-000236
0353-000026
0353-000076
0356-000101
0356-000117
0356-000160
0356-000181
0358-000143
0358-000264
0360-000030
0360-000076
0360-000083
0360-000192
0365-000083
0375-000092
0375-000338
0375-000378
0379-000051
0380-000084
0381-000078
0385-000003
0385-000062
0385-000074
0385-000080
0385-000183
0385-000236
0385-000257
0385-000271
0385-000415
0386-000361
0386-000405
0386-000455
0387-000081
0388-000017
0388-000167
0390-000041
0390-000079
0392-000101
0392-000202
0392-000224
0394-000072
0394-000141
0394-000209
0394-000213
0395-000113
0398-000018
0398-000040
0398-000041
0398-000050
0398-000057
0398-000079
0398-000081
0398-000091
0398-000092
0398-000099
0398-000106
0398-000113
0398-000115
0398-000125

0398-000129
0398-000133
0398-000150
0398-000171
0398-000178
0398-000182
0398-000195
0398-000209
0398-000216
0398-000218
0398-000219
0399-000021
0400-000095
0403-000303
0405-000161
0406-000170
0406-000255
0406-000368
0406-000445
0406-000458
0409-000256
0411-000004
0411-000031
0411-000043
0411-000060
0411-000079
0411-000097
0411-000330
0412-000214
0412-000216
0416-000033
0416-000050
0416-000132
0419-000084
0420-000185
0423-000107
0424-000030
0424-000100
0424-000242
0426-000103
0427-000128
0427-000207
0429-000037
0429-000099
0429-000247
0429-000251
0432-000074
0434-000030
0434-000222
0434-000375
0434-000377
0434-000378
0438-000022
0438-000050
0438-000495
0439-000087
0439-000094
0443-000093
0443-000151
0443-000385
0443-000505
0445-000061
0448-000015
0448-000287
0449-000089
0450-000077
0451-000051
0451-000056
0451-000117
0452-000081
0452-000218
0452-000297

0001-000038
0003-000116
0005-000033
0005-000071
0005-000083
0005-000095
0006-000042
0006-000108
0008-000042
0012-000018
0012-000040
0012-000067
0012-000073
0012-000081
0013-000101
0014-000038
0014-000070
0016-000004
0016-000042
0016-000044
0016-000063
0016-000130
0027-000095
0031-000031
0031-000119
0033-000065
0035-000110
0035-000119
0042-000001
0042-000118
0044-000015
0044-000027
0045-000080
0045-000086
0046-000053
0046-000087
0046-000104
0048-000026
0048-000139
0048-000188
0048-000189
0055-000073
0055-000086
0056-000170
0056-000192
0061-000074
0061-000075
0063-000112
0064-000122
0068-000139
0070-000095
0075-000245
0076-000037
0076-000047
0076-000109
0081-000036
0093-000035
0099-000089
0099-000103
0105-000005
0105-000077
0107-000022
0111-000025
0112-000009
0113-000128
0122-000024
0126-000107
0128-000184
0129-000060
0129-000117
0135-000102
0137-000059
0139-000069
0144-000038
0144-000073
0197-000078

0207-000011
0208-000004
0208-000016
0214-000025
0222-000098
0230-000082
0234-000065
0241-000105
0250-000032
0294-000127
0315-000057
0337-000012
0345-000029
0345-000101
0346-000035
0346-000041
0346-000068
0347-000090
0347-000094
0347-000116
0348-000008
0348-000019
0348-000038
0348-000062
0348-000077
0351-000051
0352-000033
0352-000240
0352-000260
0355-000022
0356-000011
0356-000016
0356-000083
0360-000091
0360-000113
0360-000132
0360-000156
0360-000243
0360-000258
0360-000278
0365-000002
0365-000067
0368-000016
0368-000018
0368-000027
0368-000035
0368-000059
0368-000071
0375-000033
0375-000170
0379-000039
0380-000021
0380-000037
0380-000131
0380-000165
0381-000003
0386-000113
0386-000354
0386-000371
0390-000038
0395-000079
0395-000085
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