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Abstract 

Background:  Radiotherapy treatment planning dose prediction can be used to 
ensure plan quality and guide automatic plan. One of the dose prediction methods is 
incorporating historical treatment planning data into algorithms to estimate the dose–
volume histogram (DVH) of organ for new patients. Although DVH is used extensively 
in treatment plan quality and radiotherapy prognosis evaluation, three-dimensional 
dose distribution can describe the radiation effects more explicitly. The purpose of this 
retrospective study was to predict the dose distribution of breast cancer radiotherapy 
by means of deformable registration into atlas images with historical treatment plan-
ning data that were considered to achieve expert level. The atlas cohort comprised 
20 patients with left-sided breast cancer, previously treated by volumetric-modulated 
arc radiotherapy. The registration-based prediction technique was applied to 20 
patients outside the atlas cohort. This study evaluated and compared three different 
approaches: registration to the most similar image from a dataset of individual atlas 
images (SIM), registration to all images from a database of individual atlas images with 
the average method (WEI_A), and the weighted method (WEI_F). The dose predic-
tion performance of each strategy was quantified using nine metrics, including the 
region of interest dose error, 80% and 100% prescription area dice similarity coefficients 
(DSCs), and γ metrics. A Friedman test and a nonparametric exact Wilcoxon signed rank 
test were performed to compare the differences among groups. The clinical doses of all 
cases served as the gold standard.

Results:  The WEI_F method could achieve superior dose prediction results to those 
of WEI_A. WEI_F outperformed SIM in the organ-at-risk mean absolute difference 
(MAD). When using the WEI_F method, the MAD values for the ipsilateral lung, heart, 
and whole lung were 197.9 ± 42.9, 166 ± 55.1, 122.3 ± 25.5, and 55.3 ± 42.2 cGy, 
respectively. Moreover, SIM exhibited superior prediction in the DSC and γ metrics. 
When using the SIM method, the means of the 80% and 100% prescription area DSCs, 
33γ metric, and 55γ metric were 0.85 ± 0.05, 0.84 ± 0.05, 0.64 ± 0.13, and 0.84 ± 0.10, 
respectively. The plan target volume and spinal cord MAD when using SIM and WEI 
were 235.6 ± 158.4 cGy versus 227.4 ± 144.0 cGy ( p > 0.05 ) and 61.4 ± 44.9 cGy versus 
55.3 ± 42.2 cGy ( p > 0.05 ), respectively.

Conclusions:  A predicted dose distribution that approximated the clinical plan could 
be generated using the methods presented in this study.
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Background
Breast cancer is the most common malignancy in women, ranking first in female mor-
bidity and mortality [1]. The main treatment method of early-stage breast cancer is 
multidisciplinary comprehensive treatment consisting of surgery, chemotherapy and 
radiotherapy [2, 3]. Regarded as a standard treatment method for early-stage breast can-
cer, total breast irradiation after breast-conserving surgery can effectively improve local 
control rate and long-term survival rate [4].

Although two-dimensional tangent irradiation and three-dimensional conformal radi-
otherapy have been confirmed appropriate therapy for breast cancer, new techniques 
are developed to achieve better target coverage and normal tissues spare. New irradia-
tion methods, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc 
therapy (VMAT) have been introduced. Compared to former techniques, the IMRT and 
VMAT can deliver a more uniform and conformity dose distribution inside the target 
and a superior protection of organs of interest (OARs) [5, 6]. The quality of the treat-
ment plan depends on the algorithms of the treatment planning system (TPS), the deliv-
ery techniques, and in particular, the experience and skill of the planner [7].

Traditionally, the criteria of the dose limitation and target coverage of normal tis-
sues have followed the Radiation Therapy Oncology Group guidelines, which use a set 
of uniform standards for patients with same-sited tumors. However, owing to the large 
anatomy variations among individuals, while uniform standards may be suitable for sev-
eral patients, they are always either easily exceeded or unachievable for others. Planners 
generally require sufficient trail-and-error time to avoid the risk of degraded plan quality 
and to generate an optimal plan. Moreover, peer review is recommended to ensure the 
consistency of the plan quality among different planners and institutions [8]. Although 
such procedures can effectively improve the quality of radiotherapy, with the develop-
ment of new technology, such as remote radiotherapy, a rapid and an automatic indi-
vidualized evaluation tool is urgently required.

To improve the current situation of patient-specific achievable criteria deficiencies, 
several studies have focused on incorporating historical treatment planning data that 
were considered to have achieved expert level into algorithms to estimate the organ dose 
for new patients [9–15]. These researches explain that predicted dose values could be 
used to estimate the plan quality and guide-automated treatment planning. However, 
most of those studies were devoted to predicting the dose–volume histogram (DVH), 
which is used extensively in treatment plan quality and radiotherapy prognosis evalu-
ation, but remains limited. At present, oncologists and physicists are attempting to 
describe the radiation effects more explicitly, using models related to three-dimensional 
(3D) dose distribution geometry, such as normal tissue complication probability [16] 
and 3D cluster formation [17].

In recent years, several studies have been concerned with the prediction of dose distri-
bution from patient computed tomography (CT) images and regions of interest (ROIs) 
[18–24]. Shiraishi and Moore used several voxel parameters that indicate the volume 
and location of ROIs to train artificial neural networks for prostate and stereotactic 
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radiosurgery/radiotherapy cases, and predicted dose distributions at the area nearby 
plan target volume (PTV) boundary [18]. With the fully convolutional network, con-
toured voxel matrix and historical dose matrix were input into the network to train the 
prediction models, the features were selected and extracted automatically by networks. 
The deep learning-based methods are commonly used to predict 3D dose distribution 
for prostate, head and lung cancer radiotherapy [19, 20, 22].

With a well-trained model, deep learning-based methods could predict dose predic-
tion in seconds, but the training process takes a lot of time and needs amount of data. 
Moreover, the interpretation deficiency of end-to-end deep learning network obstructs 
its application in clinic. Compared with deep learning-based methods, atlas-based meth-
ods could be implemented with less prepared cases, which was more flexible for institu-
tions to build their own atlas dataset for each treatment site. The atlas-based approach 
has been successfully used in automatic medical image segmentation [25]. McIntosh and 
Purdie used an atlas-based method to transfer dose distribution from historical plans to 
a new patient for three sites containing whole breast IMRT, but such methods have not 
been extensively investigated [19]. Yoganathan and Zhang further elaborate the 3D dose 
prediction model based on atlas and deformable image registration (DIR) for VMAT 
breast and prostate cancer patients [21]. They arbitrarily chosen a reference patient from 
dataset and registered other patients’ CT to the chosen one. A test patient was regis-
tered to the reference one and the deform vector filed was used to determine the simi-
larity weight between new patient and atlas patients. Thereafter, the predicted dose was 
obtained using weighted summation of deformed atlas doses.

The purpose of this work was to further investigate the atlas-based dose prediction 
method for breast cancer. We used three variation atlas-selection models to predict the 
3D dose distribution for breast patients, and the predicted results were compared with 
the clinical plans. The 3D moment invariants (3DMI), which are often used in visual pat-
tern recognition, were first used to select atlas images in this study.

Results
Feature selection

There were a total of 190 CT volume image pairs for all 20 atlas cases. In each pair, 
one image was defined as the atlas image in turn, and the other was defined as the new 
image, so that 380 groups could be used for statistical analysis. The predicted dose dis-
tribution for the new image was calculated from the atlas image and compared to the 
clinical plan dose. The results of the Spearman’s rank correlation between the geometric 
features and dosimetric errors are listed in Table 1.

As all 11 features were significantly correlated with most of the dose prediction result 
measures, none of these was excluded for further analysis. Thereafter, the features were 
tested using the KMO metric and Bartlett’s sphericity test, which yielded results of 0.734 
and p = 0.000, respectively, demonstrating that these 11 features exhibited correlation, 
and factor analysis could be used to decrease the feature number. The number of vari-
ables used to characterize the patient geometry was reduced from 11 to 4 by applying 
factor analysis. Using the Kaiser eigenvalues criterion, four factors were extracted, with 
eigenvalues of 4.124, 1.843, 1.422, and 1.022. These factors collectively explained 76.47% 
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Table 1  Spearman’s rank correlation test

PTV Ipsilateral lung Heart Lung Spinal cord

Image similarity metric

 ρ 0.378* 0.307* 0.191* 0.431* 0.395*

 p 0.000 0.000 0.000 0.000 0.000

PTV DSC

 ρ 0.365* 0.333* 0.275* 0.408* 0.392*

 p 0.000 0.000 0.000 0.000 0.000

Ipsilateral lung OVH MSD

 ρ 0.197* 0.236* 0.155* 0.215* 0.005

 p 0.000 0.000 0.000 0.000 0.914

Heart OVH MSD

 ρ 0.142* 0.160* 0.102* 0.172* 0.234*

 p 0.005 0.001 0.041 0.001 0.000

PTV length difference

 ρ 0.293* 0.338* 0.355* 0.249* 0.209*

 p 0.000 0.000 0.000 0.000 0.000

Povz

 ρ 0.191* 0.428* 0.395* 0.369* 0.356*

 p 0.000 0.000 0.000 0.000 0.000

J1_diff

 ρ 0.135* 0.280* 0.131* 0.343* 0.269*

 p 0.007 0.000 0.009 0.000 0.000

J2_diff

 ρ 0.111* 0.222* 0.095 0.316* 0.239*

 p 0.026 0.000 0.057 0.000 0.000

J3_diff

 ρ 0.088 0.065 0.022 0.180* 0.289*

 p 0.080 0.196 0.658 0.000 0.000

B3_diff

 ρ 0.137* 0.087 0.054 0.240* 0.314*

 p 0.006 0.081 0.282 0.000 0.000

B4_diff

 ρ 0.192* 0.221* 0.165* 0.351* 0.350*

 p 0.000 0.000 0.001 0.000 0.000

0.8 DSC 1.0 DSC 33 γ 55 γ

Image similarity metric

 ρ − 0.468* − 0.484* − 0.282* − 0.392*

 p 0.000 0.000 0.000 0.000

PTV DSC

 ρ − 0.663* − 0.655* − 0.271* − 0.321*

 p 0.000 0.000 0.000 0.000

Ipsilateral lung OVH MSD

 ρ − 0.235* − 0.281* − 0.249* − 0.242*

 p 0.000 0.000 0.000 0.000

Heart OVH MSD

 ρ − 0.195* − 0168* − 0.065 − 0.087

 p 0.000 0.001 0.195 0.084

PTV length difference

 ρ − 0.405* − 0.327* − 0.343* − 0.319*

 p 0.000 0.000 0.000 0.000
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of the variance in all 11 original features. The results of the feature factor analysis are 
listed in Table 2.

Considering that the features with component values larger than 0.7 were the main 
components for each factor, F1 was mainly composed of J1_diff , J2_diff , and B4_diff . As the 
3DMIs of the three features represented the PTV shape, F1 could be interpreted as a 
PTV shape factor. F2 was mainly composed of the ipsilateral lung OVH MSD and B3_diff , 
and the factor represented the spatial relationship between the PTV and ipsilateral lung. 
As the main components of F3 were the PTV length difference and Povz , this factor could 
be explained as a PTV consistency factor on the z-axis. The main components of F4 were 
the image similarity metric and PTV DSC, in that this factor could be explained as a 

* Represents significant correlation

Table 1  (continued)

0.8 DSC 1.0 DSC 33 γ 55 γ

Povz

 ρ − 0.455* − 0.368* − 0.282* − 0.271*

 p 0.000 0.000 0.000 0.000

J1_diff

 ρ − 0.231* − 0.245* − 0.174* − 0.203*

 p 0.000 0.000 0.000 0.000

J2_diff

 ρ − 0.214* − 0.231* − 0.152* − 0.182*

 p 0.000 0.000 0.002 0.000

J3_diff

 ρ − 0.193* − 0.202* − 0.051 − 0.089

 p 0.000 0.000 0.314 0.075

B3_diff

 ρ − 0.223* − 0.201* − 0.066 − 0.132*

 p 0.000 0.000 0.186 0.008

B4_diff

 ρ − 0.348* − 0.310* − 0.200* − 0.243*

 p 0.000 0.000 0.000 0.000

Table 2  Rotated component matrix of factor analysis

Factor

F1 F2 F3 F4

Image similarity metric 0.411 − 0.040 0.493 0.323

PTV DSC 0.245 − 0094 0.578 0.308

Ipsilateral lung OVH MSD 0.076 0.878 0.145 − 0.138

Heart OVH MSD 0.012 0.137 0.030 0.891

PTV length difference − 0.101 0.074 0.816 − 0.082

Povz 0.161 0.098 0.792 − 0.083

J1_diff 0.963 0.099 0.115 0.016

J2_diff 0.955 0.113 0.067 0.035

J3_diff 0.495 0.693 − 0.029 0.346

B3_diff 0.177 0.764 − 0.077 0.489

B4_diff 0.834 0.273 0.173 0.085
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global consistency factor. The four factors were then combined into a comprehensive 
score using Eq. (9).

Dose prediction validation

Three dose prediction algorithms were evaluated. The atlas-selection method was exam-
ined using similarity selection (SIM) and all images with a weighted combination (WEI). 
For the similarity selection, the comprehensive score F  was used as the selection gauge. 
For all images with weighted combinations, the weight was examined using the aver-
age weight (WEI_A) and metric weight by means of Eq. (12) (WEI_F). The quantitative 
MAD results are presented in Table 3.

Table 3  Quantitative MAD results with  standard deviation σ of  three dose prediction 
methods

* Represented significant correlation

Method PTV (cGy) Ipsilateral lung 
(cGy)

Heart (cGy) Lung (cGy) Spinal cord (cGy)

SIM

 Mean 235.6 250.7 202.8 152.9 61.4

 σ 158.4 68.2 64.4 47.7 44.9

WEI_A

 Mean 267.5 213.0 174.1 130.9 57.1

 σ 176.4 50.8 55.7 26.2 39.9

WEI_F

 Mean 227.4 197.9 166.0 122.3 55.3

 σ 144.0 42.9 55.1 25.5 42.2

 p 0.004* 0.002* 0.002* 0.002* 0.116

SIM–WEI_ A

 p 0.627 0.015* 0.019* 0.073 –

SIM–WEI_F

 p 0.232 0.002* 0.006* 0.012* –

WEI_ A–WEI_F

 p 0.000* 0.001* 0.001* 0.001* –

Method 0.8 DSC 1.0 DSC 33 γ 55 γ

SIM

 Mean 0.85 0.84 0.64 0.84

 σ 0.05 0.05 0.13 0.10

WEI_A

 Mean 0.86 0.82 0.55 0.75

 σ 0.05 0.08 0.14 0.12

WEI_F

 Mean 0.87 0.84 0.58 0.78

 σ 0.05 0.07 0.15 0.13

 p 0.015* 0.002* 0.000* 0.000*

SIM–WEI_A

 p 0.135 0.156 0.002* 0.001*

SIM–WEI_F

 p 0.017* 0.654 0.015* 0.015*

WEI_A–WEI_F

 p 0.002* 0.000* 0.000* 0.000*
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All of the dose error metrics exhibited significant differences among the groups of 
prediction methods, except for the MAD of the spinal cord. The results of the post hoc 
analysis of the Wilcoxon signed rank test for the other dose error metrics are presented 
in Table 3. The results demonstrated that using the WEI_F method could achieve supe-
rior dose prediction results to those of WEI_A. Compared to WEI_F, the SIM method 
exhibited inferior performance in the ipsilateral lung, heart, and lung MADs, but supe-
rior performance in the 0.8 DSC, 33γ, and 55γ.

Discussion
Atlas selection and image registration have been successfully applied in automatic image 
segmentation, providing highly accurate results [26, 27]. The new segmentation can be 
transformed from atlas segmentation by means of the transformation generated from 
the registration between the new and atlas images. This method is dependent on the 
strong correlation between medical images and organ segmentation. In radiotherapy, 
two patients with identical medical images should intuitively be treated with the same 
plan, and the dose distribution for a special patient depends on the relationship of the 
target–normal tissue position. However, unlike in image segmentation, many influenc-
ing factors exist from the image to planning the dose distribution; for example, the deliv-
ery technique, beam orientation, dose computation algorithm, optimized algorithm, and 
skill of the planner. To limit these influencing factors, patients enrolled in this study were 
treated with the same delivery technique (VMAT), dose computation algorithm, and 
optimized algorithm in identical TPSs. Under these circumstances, the most uncertain 
factors affecting the dose distribution were the planner experience and skill, contain-
ing the beam angles, and optimizing the parameter selection. Although the correlation 
between the medical image and dose distribution was more complex and less direct, the 
feasibility of using DIR to generate patient-specific dose distributions for radiotherapy 
was validated in this study.

In this study, three atlas-selection methods were tested for 3D dose prediction. A total 
of 11 objective similarity metrics for different patients constituted a comprehensive 
score F  , which was used in WEI_F to reduce the probabilistic atlas to a deterministic 
atlas. The results of WEI_F were superior to those of WEI_A, demonstrating that the F  
calculation method used in this study was reasonable, and the atlas image that is more 
similar to the new image should receive a larger weight. WEI_F outperformed SIM in 
the OAR MADs, with the exception of the spinal cord, while SIM could provide supe-
rior prediction in the DSC and γ metrics. The OAR MAD evaluated the area outside 
the PTV, while the DSC and γ metrics focused more on the high-dose area, which is 
near and inside the PTV boundary. As the SIM method only used the information of the 
most similar single atlas images, and WEI_F considered all of the cases in the dataset, 
the results implied that the dose distribution in the area of the dose higher than 80% of 
the prescription dose was more strongly related to the patient-specific geometry than 
the lower dose area. This is reasonable because, in a VMAT plan, dose drops rapidly in 
the region near the PTV margin, which causes the dose distribution to vary substantially 
among individual patients. Moreover, our dose prediction methods registered images 
with PTV constraints, causing the algorithm to focus more on the high-dose area. The 
dose distribution usually exhibits a steep gradient in the area near the PTV boundary, 
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and becomes flat with the voxels far from the PTV. The MAD of the spinal cord indi-
cated no significant difference among the three methods. Because the spinal cord has 
a greater distance to the PTV than the other organs investigated in this study, the dose 
distribution in the spinal cord is more flat and less individual for different patients, and 
the atlas-selection methods have little impact on the spinal cord dose prediction.

Figure 1 presents an example of the comparison of the clinical plan and predicted 
dose distributions with the corresponding DVH. As WEI_A exhibited inferior perfor-
mance to WEI_F for all of the evaluation metrics, the WEI_A results were excluded 
from further discussion. In this case, the SIM and WEI_F methods could provide a 
dose distribution that approximated that of the clinical plan. The number and quality 
of cases in atlas database were the crucial factors for predicted results. Construct-
ing an atlas database containing variation images would be helpful for obtaining 
improved prediction results. To enhance the prediction model capability and obtain 

Fig. 1  Comparison of clinical plan and predicted dose distributions, with corresponding DVHs
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more reliable validation results, our future work will focus on collecting more patient 
cases and investigating the optimal number for the atlas database. Expanding the 
database could increase the accuracy of the framework with the increased patient 
diversity.

The general findings of this study are consistent with previous literatures. The 
summary of breast cancer radiotherapy dose prediction results is shown in Table 4. 
Although the different patient datasets and treatment protocols that exist prevented 
direct comparisons with our study, we demonstrated the feasibility of accurately pre-
dicting the dose distributions for breast cancer treatment with purposed methods.

To the best of the authors’ knowledge, this is the first study on DIR-based dose pre-
diction using 3DMI. Compared with structural similarity index used by Yoganathan 
and Zhang [21], which was calculated over a 2D slice and was averaged to obtain a 3D 
metric, the 3DMI could quantify the shape of 3D structure directly and accurately. 
Beside of the multi-atlas method used in previous studies, our study evaluates the 
performance of single-atlas method in dose prediction. The results demonstrated the 
single-atlas performed superior in high-dose area than multi-atlas method.

The 40 involved plans were made by different dosimetrists. Since all plans were 
satisfying the institutional critical and reviewed by two senior dosimetrists and 
one oncologist, the variation between planers was supposed few and ignored in the 
prediction result evaluation. However, for a specific case, subjective fluctuations 
remained owing to the preferences of each planner. Several different plans could be 
all considered as achieving expert level. These plans were a series of Pareto optimized 
plans, which could be composed into the Pareto front [28–30]. Therefore, in certain 
cases, although the predicted dose distribution exhibited errors compared to the clin-
ical plan, it could be acceptable in clinical applications. The feasibility of generating a 
series of dose distributions on the Pareto front with DIR will be tested and validated 
in our future work.

There are several limitations to this study. First, the methods were applied on left-
breast cancer only and the validation dataset was limited. The next phase of our study 
will involve more validation cases, other sites and multiform delivery techniques. Sec-
ond, although the predicted results were close to the clinical accepted plans, it could 
not be guaranteed as the best achievable. Further validations were needed to deter-
mine whether the predicted results could be used for plan quality control. Third, the 

Table 4  Summary of breast cancer radiotherapy dose prediction results

The better results were printed in italics. Notice that the results were based on different patient datasets and treatment 
protocols

McIntosh and Purdie [19] Yoganathan 
and Zhang [21]

Our’s

Methods Contextual atlas regression forest – SIM WEI_F

Training/atlas cases 144 19 20 20

55 γ 0.79 ± 0.08 – 0.84 ± 0.10 0.78 ± 0.13

0.8 DSC 0.86 ± 0.05 – 0.85 ± 0.05 0.87 ± 0.05

MAD over entire CT 
volume (cGy)

– 900 ± 110 48.26 ± 226.90 42.45 ± 181.62
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present study has not tested whether the predicted dose distribution could be trans-
formed to treatment parameters and be used to generate clinical plan. This work is a 
foundation for further study, and related automatic plan research would be conducted 
in our future work.

Conclusions
This study investigates the atlas-based dose prediction method for breast cancer treated 
using VMAT. The 3DMI were first used to select atlas images for dose prediction in 
proposed method. The method has presented an achievable dose distribution predic-
tion framework based on DIR. With different atlas-selection approaches, SIM exhib-
ited superior prediction in target region while WEI_F outperformed other methods in 
OARs. Constructing an atlas database containing variation images is helpful for obtain-
ing improved prediction results. The achievable dose distributions that were obtained 
from proposed prediction framework provided an effective foundation for treatment 
plan quality assurance, and for guiding automatic planning to reduce the planning time.

Methods
The purpose of this retrospective study was to predict the achievable radiotherapy dose 
distribution for early-stage left-sided breast cancer patients. The proposed dose pre-
diction framework included three major steps: database building, atlas selection, and 
deformable registration. In the first step, a dataset was constructed with historical cases 
containing patient CT images and expert plans. Thereafter, an initial alignment of the 
new images and all images in the dataset was achieved using a rigid registration method. 
Finally, the atlas image was selected from the dataset and registered to a new image, and 
the registration displacement could be used to generate the predicted dose distribution 
for the new patient.

Database

A total of 40 randomly selected patients with left-sided breast cancer (stage T1M0N0), 
previously treated using VMAT at Zhejiang Cancer Hospital (Zhejiang, China) from 
2016 to 2018, were enrolled in this study. Clinical treatment plans were generated for 
all patients using the RayStation (RaySearch Laboratories, Stockholm, Sweden) TPS, 
with 6 MV X-rays on a Trilogy Linear Accelerator (Varian Medical Systems, Palo Alto, 
USA). The prescription dose was 5000 cGy (200 cGy/fraction); the oncologist delineated 
the clinical target volume (CTV), PTV, heart, left lung, whole lung, and spinal cord. The 
CTV encompassed the visible breast tissue and tumor bed. The PTV was constructed by 
adding a 10-mm margin to the CTV for all plans. All PTVs were clipped 5 mm from the 
skin surface. The VMAT plans were delivered using double arcs with a gantry spacing of 
4° between control points, and the beam range was adapted to the patient-specific situ-
ation. The basic characteristics of patients, contours, and plans are listed in Table 5. All 
plans were optimized further using a trial-and-error process to achieve optimal sparing 
of normal tissues. Two experienced dosimetrists and one senior oncologist at Zhejiang 
Cancer Hospital reviewed the plans. Normal tissues in all plans conformed the as low as 
achievable principle. In this study, 20 cases were chosen randomly and comprised the 
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library of previously planned cases (atlases). Other 20 cases were used as a test set for 
validation. The data involved in this study were categorized into three 3D matrices: CT 
image, ROI labels, and dose distribution. It was achieved using functions in the Sim-
pleITK of python [31, 32].

Image registration

In a given image registration frame, a fixed image was defined as the object that was 
assumed to be static, while a floating image was defined as the object that would be 
transformed to be superimposed onto the target image. The matrices of the fixed and 
floating images were denoted by 

⇀

I fixed and 
⇀

I floating in a particular registration. The 
registration algorithm used in this study consisted of three major steps. First, rigid 
registration was used to bring two images into global correspondence. Thereafter, 
based on the linear transformation result of the rigid registration, the reference image 
was deformed with nonlinear transformation to achieve local correspondence to the 
target image. Finally, as the PTV received the greatest optimization weight during the 
treatment plan design, the floating image would be further deformed using PTV as a 
task-specific constraint.

In the first step, initial alignment of the images was achieved using a similarity 3D 
transform rigid registration method, whereby a rotation (with three angles), a translation 
(with three vectors), and isotropic scaling (with one factor) were applied to the space. 
The mean squared deviation (MSD) criterion based on image gray value was used as an 
optimization metric [33]. MSD is zero in case of the floating image exactly coinciding 

with the fixed image. The rigid transformation was denoted by fR , and fR
(

⇀

I floating

)

 was 

used as the initial condition for the deformable registration in the following step.
Based on the rigid registration, local image deformation was achieved using the 

Demons deformable registration, which is a widely used image registration method in 
radiotherapy [34]. The deformable transformation was denoted by fD . In addition to 
the image intensity, the PTV region was considered as a constraint area by means of 
further optimization. The delineated PTVs of the floating and fixed images were 
extracted as region masks. In the mask images, voxels belonging to PTV have value 1 
while other voxels have value 0. A further transformation fP was generated through 

Table 5  Basic characteristics of patients, contours, and plans

Average Range

Age 57 49–62

Body mass index 21.3 19.7–24.7

PTV volume (cm3) 628 325–1185

Heart volume (cm3) 558 383–714

Ipsilateral lung volume (cm3) 995 607–1539

Whole lung volume (cm3) 2224 1373–3299

Beam start angle (°) 300 290–310

Beam stop angle (°) 133 125–145
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registration of the mask images. Hence, fD
(

fR

(

⇀

I floating

))

 represented the registra-

tion result without the PTV constraint, while the result with the PTV constraint 

could be obtained by fP
(

fD

(

fR

(

⇀

I floating

)))

 . All the above methods were imple-

mented using the library from the SimpleITK system [31, 32].

Patient similarity metrics

Geometry features

Similarity metrics between two patients were required to select the atlas image. In total, 
11 features were extracted to characterize the different scales of the patient geometry, 
which are described in the following text. (1) The MSD was used as the image similarity 
metric, which described the global difference between two images. (2) The dice similar-
ity coefficient (DSC) of two PTVs was used to describe the PTV similarity. The DSC was 
defined as

where VPTV 1 is the PTV area in the atlas image and VPTV 2 is the PTV area in the new 
image. The DSC was calculated after rigid alignment between two images; DSC = 1 
when PTV1 and PTV2 coincided with one another, and DSC = 0 when the two areas did 
not intersect. (3) The overlap volume histogram (OVH) is a general, sophisticated, and 
robust shape relationship descriptor associated with an OAR, measuring its proximity 
to a target [9]. The OVH value represents the percentage of the OAR volume that over-
laps with a uniformly expended target. As the dose constraints of the ipsilateral lung and 
heart are the most important factors that affect the results of left-breast tangent VMAT 
plans, the MSD of the left lung–PTV OVH (MSDOVH) and (4) MSDOVH of the heart–
PTV were considered as features to describe the geometric relationship of the OARs and 
PTVs. The MSDOVH was calculated using

where O1i% and O2i% are the overlap values at i % volume of the atlas case and the new 
cases.

In coplanar treatment, the jaws in the head–foot direction can block most of the radia-
tion, so the dose distribution gradient is usually greater in the head–foot direction than 
in the other directions. Therefore, the relative positions between PTVs in the new image 
and atlas image in the head–foot direction would have a substantial impact on the dose 
prediction. A similar concept was also used in the DVH prediction [13–15]. Two fea-
tures were used to describe the PTV relative positions in the head–foot direction: (5) the 
length difference between two images and (6) the z-axis (head–foot direction) overlap 
metric. The z-axis overlap metric was introduced as follows:

(1)DSC =
2(VPTV 1 ∩ VPTV 2)

VPTV 1 + VPTV 2
,

(2)MSDOVH =
1

99

99
∑

i=1

(|O1i% − O2i%|),
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where ZPTV1 and PTV2 is the z-axis overlap length of two PTVs, and ZPTV1 and ZPTV2 are 
the z-axis lengths of two PTVs. Similarly to feature (2), feature (6) was calculated follow-
ing rigid alignment between two images, and PTV2 in Eq.  (3) was affine transformed 
from the original image during the rigid alignment. The overlap in the z-axis is illus-
trated in Fig. 2.

Equations (7) to (11): 3DMIs were used to quantify the spatial characteristics in the shape 
of PTVs. 3DMIs are mathematical shape descriptors that are designed to be invariant to 
scaling, translation, and rotation [35, 36]. 3DMIs are combinations of terms describing 
the variance, skewness, and kurtosis of a distribution, and are often used in visual pattern 
recognition. For a 3D distribution, in this study a PTV mask image, the moments of order 
n = p+ q + r are given by

where 
(

x, y, z
)

 are the spatial coordinates of each voxel. f
(

x, y, z
)

= 1 when 
(

x, y, z
)

 inside 
the target area and f

(

x, y, z
)

= 0 when 
(

x, y, z
)

 outside the target area. The first-order 
moments can be used to find the centroid coordinates of the object in each direction as 
follows:

To obtain invariance to position in the image, central moments are used and are defined 
as follows:

(3)Povz =
2× ZPTV1 and PTV2

ZPTV1 + ZPTV2
,

(4)mpqr =

+∞
∫

−∞

+∞
∫

−∞

+∞
∫

−∞

xpyqzr f
(

x, y, z
)

dxdydz,

(5)x̄ =
m100

m000
, ȳ =

m010

m000
, z̄ =

m001

m000
.

Fig. 2  An example of Povz . Here are two coronal diagrams, and the two images had been aligned through 
rigid registration
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To eliminate the influence of PTV volume, the moments are commonly normalized by

Finally, the normalized central moments need to be combined specifically to obtain 
invariance to rotation. Here, the definitions of Sadjadi and Hall [37] for three second-
order moments and of Ng et al. [38] for third- and fourth-order moments invariant to 
rotation were used as follows:

The differences of five 3DMIs between two PTVs were considered as features for 
describing the geometric similarities of target areas.

With the exception of features (2) and (6), all of the values of the features decreased 
when the two patients were more similar. To maintain the consistency of the numerical 
change direction, all values of features (2) and (6) were replaced with the reciprocals of 
the original values.

Feature selection

To maintain simplicity in the atlas-selection method, features without significant cor-
relations with the prediction results could be excluded to select the atlas image. The 
Spearman’s rank correlation was used to evaluate the correlations among the 11 fea-
tures and dose prediction result measures introduced in Validation study. The statisti-
cal analysis was performed within the 20 atlas cases. The correlation significances were 
assessed by the p value. The correlations with p < 0.05 were considered as significant. 
Furthermore, factor and correlation analyses were applied to characterize the correlated 
features with less factors. All the correlated features were tested with Bartlett’s sphericity 
test and the Kaiser–Meyer–Olkin (KMO index). If the KMO measure > 0.5 and the Bar-
tlett’s sphericity significance < 0.05, factor analysis would be used to decrease the feature 
number. Factor analysis is a statistical method that is used to describe variability among 
observed, correlated variables in terms of a potentially lower number of unobserved var-
iables known as factors. The factor analysis used principal components to extract the 
maximum variance from the features. To minimize the number of features with high 
loadings on any given factor, a varimax rotation was utilized, whereby the factors with 
eigenvalues less than 1 were excluded. A comprehensive score as a linear combination 

(6)µpqr =

+∞
∫

−∞

+∞
∫

−∞

+∞
∫

−∞

(x − x̄)p
(

y− ȳ
)q
(z − z̄)r · f

(

x, y, z
)

dxdydz.

(7)ηpqr =
µpqr

µ

p+q+r
3 +1

000

.

(8)

J1 = η200 + η020 + η002,

J2 = η200η020 + η200η002 + η020η002 − η
2
101 − η

2
110 − η

2
011,

J3 = η200η020η002 − η002η
2
110 − η020η

2
101 − η200η

2
011 + 2η110η101η011,

B3 = η
2
300 + η

2
030 + η

2
003 + 3η

2
210

+ 3η
2
201 + 3η

2
120 + 6η

2
111 + 3η

2
102 + 3η

2
021 + 3η

2
012,

B4 = η
2
400 + η

2
040 + η

2
004 + 4η

2
310 + 4η

2
301 + 6η

2
220 + 12η

2
211

+ 6η
2
202 + 4η

2
130 + 12η

2
121 + 12η

2
112 + 4η

2
103 + 4η

2
031 + 6η

2
022 + 4η

2
013.
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of the remaining factors was calculated to quantify the patient similarities. The compre-
hensive score was defined as

where i is the number of remaining factors and �i represents the eigenvalues of Fi . 
Finally, the quantitative index was used as a gauge for the atlas image selection. All of the 
mathematical manipulations were performed with SPSS v19 (IBM, Armonk, NY, USA).

Atlas‑selection models

For the cases that were already planned, each voxel in the image had a corresponding dose 
value. These images were referred to as atlas images, while the image to be predicted was 
referred to as the new image. The atlas image coordinates were mapped by deformable regis-
tration onto new images, thereby providing the dose distribution of the latter. The dose distri-
bution matrix of the atlas image was denoted by 

⇀

Datlas . The transform function following 
image registration was fP(fD(fR())) , while the predicted dose distribution matrix of the new 

image could be calculated by 
⇀

Dpredict = fP

(

fD

(

fR

(

⇀

Datlas

)))

 . During the image registration 

procedure, the new image acted as the fixed image, while the atlas image acted as the floating 
image. Two strategies were introduced to generate the predicted dose distribution, as follows:

Most similar image from database (SIM)

The new image was rigidly registered to all the images in the atlas database, and the patient 
similarity metric factors between the new image and each database image were calculated 
individually. The image with the maximum factors was considered as the most similar atlas 
image. Thereafter, the most similar atlas image was used for dose prediction. Figure 3a pre-
sents a flowchart of the major steps in the process.

All images from database with weighted dose distribution (WEI)

The new image was deformably registered to the database images, and each registration 
produced a dose distribution. The set of all registrations was combined into a probabilis-
tic dose that assigned a probability distribution of the dose value to each voxel in the new 
image. This probabilistic atlas was reduced to a deterministic atlas by assigning the dose 
that received the weighted average among all database images to each voxel. Figure 3b pre-
sents a flowchart of the major steps in the process. The dose value in voxel i was defined as

where n is the total number of images in the database, dj is the dose transformed from 
floating image j, and ωj is the weight factor. Two types of definition methods for ωj were 
used in this study. In the first, ωj was defined as 1/n , which means that all n atlas images 
contributed equally to the new dose. In the second, ωj was calculated from the compre-
hensive score Fj , described in Sect. “Feature selection”. First, Fj was scaled to the range of 
(0, 1) using the following function:

(9)F =

∑

i �iF
∑

i �i

(10)di =

n
∑

j=1

ωjdj ,
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where Fmax and Fmin are the maximum and minimum of Fj between all atlas images and 
new images. Because Fj decreased as the similarity between two images increased, Fmin 
was the comprehensive score for evaluating the similarity between the new image and 
most similar atlas image. This transformation caused F ′

j to be in the range of (0, 1). For a 

(11)F
′

j =
Fmax − Fj

Fmax − Fmin
,

Fig. 3  Flowchart of major steps in dose distribution prediction process: a SIM and b WEI
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given database of atlas images, F ′

j = 1 when j was the most similar atlas image to the new 
image, and F ′

j = 0 when j was the least similar atlas image. Thereafter, ωj was defined as

where n is the total number of atlas images. This definition caused the atlas image that 
was more similar to the new image to contribute a greater weight when the final result 
was calculated.

Validation study

The predicted dose distribution was compared to the clinical plan dose for every reg-
istration. As one dose measure predicted the quality, the mean absolute difference 
(MAD) was measured for the PTV, heart, whole lung, ipsilateral lung, and spinal 
cord. The MAD for a given ROI was defined as

where n is the number of voxels in the ROI, and Dpi and Di are the predicted and clinical 
plan doses for voxel i , respectively.

As a second measure of segmentation quality, the DSC was computed for 80% and 
100% of the prescription dose area. For a given dose, the DSC was defined as

where Vp is the area of the predicted dose that is larger than the given dose, and Vm is the 
area of the clinical plan dose that is larger than the given dose. For perfect prediction, 
the DSC had a value of 1. A lesser overlap resulted in smaller DSC values.

The 3D gamma analysis metric was also used to measure the dose distribution simi-
larity quantitatively [39, 40]. The gamma metric between a predicted dose-to-voxel dp 
and a clinical plan dose is defined as dm in point rm defined as

where rp is a search over a neighborhood of voxels in the predicted dose space dp , �rM 
the spatial distance threshold criterion, and �dM the dose difference threshold criterion. 
The gamma factor between two distributions is the percentage of voxels with γ (rm) ≤ 1 , 
which is the percentage of voxels with dose difference less than �dM to at least one voxel 
in a spatial no larger than �rM in the predicted dose image. To concentrate on the most 
crucial area of dose clinically including PTV coverage and dose falloff at the periphery 
of PTV, the gamma at 80% of prescription dose area was assessed at tolerance levels of 
�rM = 3 mm , dp = 3% (33γ) and �rM = 5 mm , dp = 5% (55γ), respectively.

(12)ωj =
F

′

j
∑n

k=1

(

F
′

k

) ,

(13)MAD(ROI) =
1

n

n
∑

i=1

(|Dpi − Di|),

(14)DSC(dose) =
2
(

Vp ∩ Vm

)

Vp + Vm
,

(15)γ (rm) = min











�

�

�

�

�

�rp − rm
�

�

2

�r2M
+

�

�dp − dm
�

�

2

�d2M











∀
�

rp
�

.
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To determine whether the evaluation parameters were statistically different among 
the different atlas generation methods, a Friedman test was performed, which is 
the nonparametric alternative to one-way analysis of variance with repeated meas-
ures. If the hypothesis of equal groups was rejected (p < 0.05), post hoc analysis was 
performed to compare the differences among groups using a nonparametric exact 
Wilcoxon signed rank test. A significance level of p = 0.05 was used for this test. Sta-
tistical analyses were conducted using SPSS v19 (IBM, Armonk, NY, USA).

Abbreviations
IMRT: Intensity-modulated radiotherapy; VMAT: Volumetric-modulated arc therapy; OAR: Organ of interest; TPS: Treat-
ment planning system; DVH: Dose–volume histogram; 3D: Three-dimensional; CT: Computed tomography; ROIs: Regions 
of interest; DIR: Deformable image registration; 3DMI: 3D moment invariants; CTV: Clinical target volume; PTV: Plan target 
volume; MSD: Mean squared deviation; DSC: Dice similarity coefficient; OVH: Overlap volume histogram; KMO: Kaiser–
Meyer–Olkin; SIM: Most similar image from database; WEI: All images from database with weighted dose distribution; 
MAD: Mean absolute difference; WEI_A: Average weight combination; WEI_F: Metric weight combination.

Acknowledgements
The authors sincerely thank all study participants.

Authors’ contributions
BX, WZ, GC, and HQ contributed to the study concept, design, and data interpretation. WB and WS worked on the 
acquisition of data. GC and HQ worked on the data analysis. BX and HQ worked on the preparation of the manuscript. All 
authors read and approved the final manuscript.

Funding
This work was supported in part by the National Key Research and Development Program of China (2016YFC0105103 
and 2017YFC0113201), the Zhejiang Province Key Research and Development Program (2019C03003), the Zhejiang 
Medical and Health Discipline Platform Project (2018ZD014), and the Zhejiang Basic Public Welfare Research Program 
(LSY19H180002).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable 
request.

Ethics approval and consent to participate
This study was approved by the Ethics Committee of Zhejiang Cancer Hospital with number IRB-2019-72.

Consent for publication
Not applicable.

Competing interests
The authors declared no competing interests.

Author details
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technol-
ogy, Sichuan University, Chengdu 610064, China. 2 Institute of Cancer and Basic Medicine (ICBM), Chinese Academy 
of Sciences, Hangzhou 310022, China. 3 Department of Radiation Physics, Cancer Hospital of the University of Chinese 
Academy of Sciences, Hangzhou 310022, China. 4 Department of Radiation Physics, Zhejiang Cancer Hospital, Hang-
zhou 310022, China. 

Received: 7 March 2020   Accepted: 16 May 2020

References
	1.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of 

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https​://
doi.org/10.3322/caac.21492​.

	2.	 Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N. Twenty-year follow-up of a 
randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of 
invasive breast cancer. N Engl J Med. 2002;347(16):1233–41.

	3.	 Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E. Twenty-year follow-up of a 
randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J 
Med. 2002;347(16):1227–32.

	4.	 Darby S, Mcgale P, Correa C, Taylor T, Arriagada R, Clarke M, Cutter D, Davies C, Ewert M, Godwin J. Effect of radio-
therapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of 
individual patient data for 10,801 women in 17 randomised trials. The Lancet. 2011;378(9804):1707–16.

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492


Page 19 of 20Bai et al. BioMed Eng OnLine           (2020) 19:39 	

	5.	 Mansouri S, Naim A, Glaria L, Marsiglia H. Dosimetric evaluation of 3-D conformal and intensity-modulated radio-
therapy for breast cancer after conservative surgery. Asian Pac J Cancer Prev. 2014;15(11):4727–32.

	6.	 Fong A, Bromley R, Beat M, Vien D, Dineley J, Morgan G. Dosimetric comparison of intensity modulated radiotherapy 
techniques and standard wedged tangents for whole breast radiotherapy. Oncology. 2009;53(1):92–9.

	7.	 Nelms BE, Robinson G, Markham J, Velasco K, Boyd S, Narayan S, Wheeler J, Sobczak ML. Variation in external 
beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol. 
2012;2(4):296–305. https​://doi.org/10.1016/j.prro.2011.11.012.

	8.	 Hoopes DJ, Johnstone PA, Chapin PS, Kabban CM, Lee WR, Chen AB, Fraass BA, Skinner WJ, Marks LB. Practice 
patterns for peer review in radiation oncology. Pract Radiat Oncol. 2015;5(1):32–8. https​://doi.org/10.1016/j.
prro.2014.04.004.

	9.	 Wu BB, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M, Taylor R, Jacques R, McNutt T. Patient geometry-
driven information retrieval for IMRT treatment plan quality control. Med Phys. 2009;36(12):5497–505. https​://doi.
org/10.1118/1.32534​64.

	10.	 Reddy NM, Nori D, Chang H, Lange CS, Ravi A. Prostate and seminal vesicle volume based consideration of 
prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy. Med Phys. 
2010;37(7):3791–801. https​://doi.org/10.1118/1.34511​25.

	11.	 Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality evaluation tool for prostate adaptive IMRT based 
on machine learning. Med Phys. 2011;38(2):719–26. https​://doi.org/10.1118/1.35397​49.

	12.	 Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Predicting dose-volume histograms for organs-at-
risk in IMRT planning. Med Phys. 2012;39(12):7446–61. https​://doi.org/10.1118/1.47618​64.

	13.	 Yuan LL, Ge YR, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient 
organ-at-risk dose sparing variation in IMRT plans. Med Phys. 2012;39(11):6868–78. https​://doi.org/10.1118/1.47579​
27.

	14.	 Wang JZ, Jin XC, Zhao KK, Peng JY, Xie J, Chen JC, Zhang Z, Studenski M, Hu WG. Patient feature based dosi-
metric Pareto front prediction in esophageal cancer radiotherapy. Med Phys. 2015;42(2):1005–11. https​://doi.
org/10.1118/1.49062​52.

	15.	 Bai X, Shan G, Chen M, Wang B. Approach and assessment of automated stereotactic radiotherapy planning for early 
stage non-small-cell lung cancer. Biomed Eng Online. 2019;18(1):101. https​://doi.org/10.1186/s1293​8-019-0721-7.

	16.	 Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal 
tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9. https​://doi.
org/10.1016/j.ijrob​p.2009.07.1754.

	17.	 Chao M, Wei J, Narayanasamy G, Yuan YD, Lo YC, Penagaricano JA. Three-dimensional cluster formation and 
structure in heterogeneous dose distribution of intensity modulated radiation therapy. Radiother Oncol. 
2018;127(2):197–205. https​://doi.org/10.1016/j.radon​c.2018.03.011.

	18.	 Shiraishi S, Moore KL. Knowledge-based prediction of three-dimensional dose distributions for external beam 
radiotherapy. Med Phys. 2016;43(1):378. https​://doi.org/10.1118/1.49385​83.

	19.	 McIntosh C, Purdie TG. Contextual atlas regression forests: multiple-atlas-based automated dose prediction in radia-
tion therapy. IEEE Trans Med Imaging. 2016;35(4):1000–12. https​://doi.org/10.1109/TMI.2015.25051​88.

	20.	 Dan N, Long T, Jia X, Lu W, Gu X, Iqbal Z, Jiang S, Dan N, Long T, Jia X. Dose prediction with U-net: a feasibility study 
for predicting dose distributions from contours using deep learning on prostate IMRT patients. arXiv preprint. 2017. 
arXiv​:1709.09233​.

	21.	 Yoganathan SA, Zhang R. An atlas-based method to predict three-dimensional dose distributions for cancer 
patients who receive radiotherapy. Phys Med Biol. 2019;64(8):085016. https​://doi.org/10.1088/1361-6560/ab10a​0.

	22.	 Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD. DoseNet: a volumetric dose prediction algorithm using 3D 
fully-convolutional neural networks. Phys Med Biol. 2018;63(23):235022. https​://doi.org/10.1088/1361-6560/aaef7​4.

	23.	 Barragán-Montero AM, Nguyen D, Lu W, Lin MH, Norouzi-Kandalan R, Geets X, Sterpin E, Jiang S. Three-dimensional 
dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam 
configurations. Med Phys. 2019;46(8):3679–91.

	24.	 Chen X, Men K, Li Y, Yi J, Dai J. A feasibility study on an automated method to generate patient-specific dose distri-
butions for radiotherapy using deep learning. Med Phys. 2019;46(1):56–64. https​://doi.org/10.1002/mp.13262​.

	25.	 Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, Yang J. Vision 20/20: perspectives on auto-
mated image segmentation for radiotherapy. Med Phys. 2014;41(5):050902. https​://doi.org/10.1118/1.48716​20.

	26.	 Rohlfing T, Brandt R, Menzel R, Maurer CR Jr. Segmentation of three-dimensional images using non-rigid reg-
istration: methods and validation with application to confocal microscopy images of bee brains. Med Imag. 
2003;5032:363–74.

	27.	 Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D. Multi-atlas based segmentation of brain images: 
atlas selection and its effect on accuracy. Neuroimage. 2009;46(3):726–38. https​://doi.org/10.1016/j.neuro​image​
.2009.02.018.

	28.	 Craft D, Halabi T, Bortfeld T. Exploration of tradeoffs in intensity-modulated radiotherapy. Phys Med Biol. 
2005;50(24):5857–68. https​://doi.org/10.1088/0031-9155/50/24/007.

	29.	 Craft DL, Halabi TF, Shih HA, Bortfeld TR. Approximating convex pareto surfaces in multiobjective radiotherapy plan-
ning. Med Phys. 2006;33(9):3399–407. https​://doi.org/10.1118/1.23354​86.

	30.	 Monz M, Kufer KH, Bortfeld TR, Thieke C. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT 
planning. Phys Med Biol. 2008;53(4):985–98. https​://doi.org/10.1088/0031-9155/53/4/011.

	31.	 Lowekamp BC, Chen DT, Luis IE, Daniel B. The design of SimpleITK. Front Neuroinf. 2013;7(7):45.
	32.	 Yaniv Z, Lowekamp BC, Johnson HJ, Beare R. SimpleITK image-analysis notebooks: a collaborative environment for 

education and reproducible research. J Digit Imag. 2017;31(3):1–14.
	33.	 Yang X, Miao D, Cao F, Ma Y. Study on the matching similarity measure method for image target recognition. Berlin: 

Springer; 2005. p. 289–92.
	34.	 Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal. 

2011;2(3):243.

https://doi.org/10.1016/j.prro.2011.11.012
https://doi.org/10.1016/j.prro.2014.04.004
https://doi.org/10.1016/j.prro.2014.04.004
https://doi.org/10.1118/1.3253464
https://doi.org/10.1118/1.3253464
https://doi.org/10.1118/1.3451125
https://doi.org/10.1118/1.3539749
https://doi.org/10.1118/1.4761864
https://doi.org/10.1118/1.4757927
https://doi.org/10.1118/1.4757927
https://doi.org/10.1118/1.4906252
https://doi.org/10.1118/1.4906252
https://doi.org/10.1186/s12938-019-0721-7
https://doi.org/10.1016/j.ijrobp.2009.07.1754
https://doi.org/10.1016/j.ijrobp.2009.07.1754
https://doi.org/10.1016/j.radonc.2018.03.011
https://doi.org/10.1118/1.4938583
https://doi.org/10.1109/TMI.2015.2505188
http://arxiv.org/abs/1709.09233
https://doi.org/10.1088/1361-6560/ab10a0
https://doi.org/10.1088/1361-6560/aaef74
https://doi.org/10.1002/mp.13262
https://doi.org/10.1118/1.4871620
https://doi.org/10.1016/j.neuroimage.2009.02.018
https://doi.org/10.1016/j.neuroimage.2009.02.018
https://doi.org/10.1088/0031-9155/50/24/007
https://doi.org/10.1118/1.2335486
https://doi.org/10.1088/0031-9155/53/4/011


Page 20 of 20Bai et al. BioMed Eng OnLine           (2020) 19:39 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	35.	 Hu MK. Visual pattern recognition by moment invariants. Inf Theory IRE Trans. 1962;8(2):179–87.
	36.	 Flusser J, Zitova B, Suk T. Moments and moment invariants in pattern recognition. New York: Wiley; 2009.
	37.	 Sadjadi FA, Hall EL. Three-dimensional moment invariants. IEEE Trans Pattern Anal Mach Intell. 1980;2(2):127.
	38.	 Ng B, Abugharbieh R, Huang X, McKeown MJ. Spatial characterization of FMRI activation maps using invariant 3-D 

moment descriptors. IEEE Trans Med Imaging. 2009;28(2):261–8. https​://doi.org/10.1109/TMI.2008.92909​7.
	39.	 Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 

1998;25(5):656–61. https​://doi.org/10.1118/1.59824​8.
	40.	 Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003;30(9):2455–

64. https​://doi.org/10.1118/1.15987​11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TMI.2008.929097
https://doi.org/10.1118/1.598248
https://doi.org/10.1118/1.1598711

	Radiotherapy dose distribution prediction for breast cancer using deformable image registration
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Feature selection
	Dose prediction validation

	Discussion
	Conclusions
	Methods
	Database
	Image registration
	Patient similarity metrics
	Geometry features
	Feature selection

	Atlas-selection models
	Most similar image from database (SIM)
	All images from database with weighted dose distribution (WEI)

	Validation study

	Acknowledgements
	References




