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Abstract 

Vessel diseases are often accompanied by abnormalities related to vascular shape 
and size. Therefore, a clear visualization of vasculature is of high clinical significance. 
Ultrasound color flow imaging (CFI) is one of the prominent techniques for flow 
visualization. However, clutter signals originating from slow-moving tissue are one of 
the main obstacles to obtain a clear view of the vascular network. Enhancement of the 
vasculature by suppressing the clutters is a significant and irreplaceable step for many 
applications of ultrasound CFI. Currently, this task is often performed by singular value 
decomposition (SVD) of the data matrix. This approach exhibits two well-known limita-
tions. First, the performance of SVD is sensitive to the proper manual selection of the 
ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in 
the presence of large random noise in the dataset. A potential solution to these issues 
is using decomposition into low-rank and sparse matrices (DLSM) framework. SVD is 
one of the algorithms for solving the minimization problem under the DLSM frame-
work. Many other algorithms under DLSM avoid full SVD and use approximated SVD 
or SVD-free ideas which may have better performance with higher robustness and less 
computing time. In practice, these models separate blood from clutter based on the 
assumption that steady clutter represents a low-rank structure and that the moving 
blood component is sparse. In this paper, we present a comprehensive review of ultra-
sound clutter suppression techniques and exploit the feasibility of low-rank and sparse 
decomposition schemes in ultrasound clutter suppression. We conduct this review 
study by adapting 106 DLSM algorithms and validating them against simulation, 
phantom, and in vivo rat datasets. Two conventional quality metrics, signal-to-noise 
ratio (SNR) and contrast-to-noise ratio (CNR), are used for performance evaluation. In 
addition, computation times required by different algorithms for generating clutter 
suppressed images are reported. Our extensive analysis shows that the DLSM frame-
work can be successfully applied to ultrasound clutter suppression.
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Background
Angiology, which concerns vessel-related diseases, is one of the most important branches 
of medical science since vascular diseases are very common and cause death to a large 
number of people every year [1]. Vascular diseases can primarily be divided into several 
categories based on the type of vessel. Arterial diseases include aneurysms, thrombo-
sis, vasculitides, and vasospastic disorders. Venous diseases include venous thrombosis, 
chronic venous insufficiency, and varicose veins. There are also diseases associated with 
capillaries. One such example is the capillary hemangioma. Currently, the most accepted 
classification of vascular abnormalities is tumors and deformities which were adopted 
in 1996 by the International Society for the Study of Vascular Anomalies [2]. Therefore, 
many major clinical diseases have been shown to cause vascular growth abnormalities. 
For example, many cardiovascular diseases are related to aneurysms or other vascular 
variations [3, 4]; the growth of many tumors in cancer is also highly dependent on angi-
ogenesis  [5, 6]. Similarly, angiogenesis is also an important feature of diabetes-related 
diseases [7–9] and endometriosis [10]. Therefore, blood vessel imaging is indispensable 
in clinical fields and medical research [11], including but not limited to diagnosis, treat-
ment planning, surgery, and follow-up treatment results.

Several medical imaging modalities such as duplex ultrasound (DUS), computed 
tomography (CT), magnetic resonance imaging (MRI), and digital subtraction angi-
ography (DSA) have been employed thus far to ensure a proper visualization of blood 
vessels. Among different vascular imaging modalities, ultrasound has become the pri-
mary choice, for it is safe, economical, easy-to-use, and most importantly, real-time [11]. 
Duplex ultrasound is the combination of color flow imaging (CFI) and grayscale/bright-
ness mode (B-mode) imaging, whereas the CFI is used to observe the blood flow direc-
tion and velocities, and the B-mode ultrasound is used to visualize two-dimensional 
anatomy images simultaneously. By simultaneous processing frequency, phase, and 
amplitude of the backscattered ultrasound signal, CFI can rapidly identify the flow direc-
tion and velocities in the region of interest. Moreover, CFI can be used to mark flow 
abnormalities, including stenoses and occlusions  [12]. The comparison between ultra-
sound and other vascular imaging methods is shown in Table 1.

Due to the excellent performance, ultrasound CFI has been increasingly used for the 
diagnosis of vessel-related diseases  [14]. However, as one of the most promising and 
widely applicable methods with low cost and no risk, CFI still has some obvious disad-
vantages. First, due to the tissue scattering of the ultrasound beam, the intensity of the 
blood backscatter is several orders of magnitude less than that of the tissue backscatter, 

Table 1  A comparison of vessel imaging methods [11, 13]

Acquisition time is approximate with pretreatments and acquisition included

Acquisition time 
(min)

Safety Limitations

MRI 30 No risk Long imaging time. No vessel wall. Metal Prohibited

CT 5 Low risk Radiation risk. Complication risk

DSA 120 Low risk Radiation risk. Complication risk. Invasive

DUS 15 No risk Limit resolution. Prohibited at wound sites

High-level user-dependent. Obstruction of gas and solid
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which makes it hard to image blood flow clearly [12, 15]. Second, more than three pulses 
are needed to estimate the velocity because of the stochastic behavior of blood signals 
and the impact of tissue clutters [12]. The requirement for multiple pulses limits frame 
rates and the number of scan lines. Third, CFI is limited by the insonation angle which 
is the angle between the ultrasound beam and the flow direction [16, 17]. Generally, an 
accurate measurement requires Doppler angles ranging from 30° to 60°, where smaller 
angles will result in lower speeds and greater angles will produce a significant overesti-
mation of the velocity [16, 17]. Last but not least, blood signals and clutter signals will 
possess a significant overlap, that is, when the blood flow rate is very slow (such as in 
small blood vessels) or when the tissue movement is obvious. The overlap will be harm-
ful to blood vessel visualization [18, 19]. Most of these disadvantages are caused by clut-
ter, as a consequence, clutter suppression is particularly important in ultrasound blood 
flow imaging. Figure 1 shows the clutter in two CFI images and illustrates the impor-
tance of clutter filtering.

The main purpose of clutter filtering is to suppress gross-moving tissue clutter and 
beam sidelobe leakages [19]. An efficient clutter suppression is a prerequisite for CFI to 
present accurate and clear blood flow maps. The most significant effect of clutter reduc-
tion is an increase in the signal-to-noise ratio (SNR) of the blood signal, which enables 
clearer blood flow maps and reduces erroneous moving tissue signals. Meanwhile, pure 
blood flow signals also help reduce the number of pulses needed to estimate the speed, 
thereby increasing the frame rate. In addition, the overlapping frequency spectra of slow 
blood flow and fast-moving tissue will no longer hinder the microvascular flow detection 
or add bias to high-velocity flow [19, 20].

However, the perfect removal of clutter signals is still impossible for now since clut-
ter signals are 40 to 100 dB stronger than blood signals and they exhibit similar 
properties [15].

In early development of CFI clutter filtering, tissue signals and blood signals were 
assumed to have completely different frequency characteristics. This assumption 
holds that tissue and blood signals exhibit non-overlapping frequency spectra since 
the tissue is considered to be nearly stationary whereas red blood cells are rapidly 
moving  [18]. Based on this assumption, finite impulse response (FIR) and infinite 
impulse response (IIR) high-pass filters were used to filter clutter signals and enhance 

Fig. 1  A set of comparison images showing CFI with and without clutter filters. a CFI raw data in Brightness 
mode. b The same data after clutter suppression by SVD. In the upper right window, the raw CFI data contain 
a lot of tissue clutter in the background, which is suppressed by SVD in the second image



Page 4 of 38Zhang et al. BioMed Eng OnLine           (2020) 19:37 

the sensitivity of blood flow [15, 18]. Nowadays, it is recognized that FIR and IIR fil-
ters have distinct drawbacks. FIR filters require a high order to separate blood from 
clutter, whereas IIR filters take a long time to settle [18, 21]. Furthermore, both types 
of high-pass filters suffer from the insufficient number of slow time samples, which 
leads to inefficient suppression of clutter [19, 22]. Another clutter removal approach 
introduces linear regression filters  [23–25]. The regression filter eliminates clutter 
signals by taking the least square fitting of signals from the signal model [18]. Stud-
ies suggest that polynomial regression filters and IIR filters have better performance 
than FIR filters. In the case of contrast-enhanced ultrasound vascular imaging, pulse 
inversion technique has been introduced toward the end of clutter rejection [26–28]. 
In this approach, the linearity property of tissue echo is exploited for distinguishing 
tissue from blood [26, 29, 30]. Although these methods significantly improve the SNR 
of blood signals, they are not considered in this paper because of their invasiveness.

The aforementioned traditional clutter suppression algorithms, such as FIR and IIR, 
have at least one of the following issues: (1) long settling time, (2) inability to adap-
tively suppress the clutter based on data property, (3) inadequate temporal sample or 
resolution. Besides, two main reasons are resulting in the imperative innovation of 
ultrasound clutter filtering. First, new ultrasound technologies like plane wave ultra-
sound have brought a higher frame rate and imaging speed. Traditional filters cannot 
meet the higher clutter filtering performance requirements, though they do not suffer 
from the settling time due to the high frame rate. Second, the underlying assump-
tion of traditional filters does not hold in the presence of significant tissue motion 
stemming from the sonographer’s sinusoidal hand movement or the patient’s breath-
ing and heartbeat [31, 32]. In such a scenario, the frequency bands corresponding to 
tissue and blood overlap with each other without a definite boundary between them. 
Hence, high-pass filters fail to separate blood from tissue when the clutter signal 
dominates with non-zero Doppler frequency caused by substantial tissue movements.

To resolve these issues, eigen-based filters [33–35] have been proposed which take 
both spatial and temporal samples into consideration to develop an adaptive clutter 
suppression scheme. The techniques related to these eigen-based filters have been 
widely applied in the field of computer science which is mainly used for processing 
high-dimensional data. Meanwhile, these techniques are not based on incomplete 
traditional assumptions. Matrix decomposition is the principal idea behind these 
algorithms and it is assumed that clutter and blood signals lie in different subspaces. 
Therefore, eigen-based filters are considered adaptive to gross motions induced by the 
sonographer or the subject being examined. Based on different assumptions, research 
proves that eigen-based filters perform better than traditional methods [20, 22].

Most of the eigen-based filters for ultrasound clutter suppression are based on sin-
gular value decomposition (SVD) or eigenvalue decomposition and improve upon 
it [36–39]. To perform the subspace separation task, slow-time temporal ultrasound 
frames are stacked as columns of data matrix, known as the Casorati matrix [40]. The 
SVD of this Casorati matrix provides the opportunity to distinguish blood from clut-
ter. It has been reported in the literature that the most dominant singular values and 
vectors correspond to clutter, the next few represent blood and the least significant 
ones correspond to noise [41]. In these eigen-based approaches, the eigen or singular 
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values representing clutter and noise are set to zero to find the blood component of 
the echo signal [41, 42].

Many SVD-based techniques have been proposed which work with conventional line-
by-line scanning  [20, 43–45]. These methods suffer from lacking an adequate number 
of temporal samples due to low frame rate associated with focused ultrasound imag-
ing [21]. Recent clutter suppression algorithms [18, 42, 46–49] have resolved this issue 
by incorporating ultrafast plane-wave imaging. However, the blood signal in plane-wave 
ultrasound is even weaker than normal ultrasound due to the unfocused wave [50, 51]. 
The sidelobe in plane-wave imaging is also much higher than that in conventional imag-
ing due to the same reason. Therefore, plane-wave ultrasound has a higher and more 
urgent filtering requirement than traditional CFI. Recent methods have extended SVD-
based clutter suppression to a higher order by analyzing a data tensor instead of a two-
dimensional matrix  [42, 48, 52]. Since the first few singular values do not necessarily 
correspond to the clutter signal in the presence of a large temporal misalignment among 
the frames, the motion correction step has been introduced in SVD-based clutter rejec-
tion [53]. Since SVD was initially combined with plane-wave imaging in 2015, almost all 
the clutter suppression research have been based on plane-wave ultrasound since SVD 
can reach its full potential on large datasets [18].

Although SVD-based techniques are promising for suppressing clutter optimally, they 
have two major drawbacks. First, there is still no uniform and efficient standard for rank 
selection which presents boundaries of tissue and blood flow [42]. Proper subspace rank 
selection, which is done by extensive manual intervention, is crucial for the optimality 
of clutter rejection. Recent methods suggest different criteria for selecting the optimal 
ranks  [54]. In addition,  [21] proposes K-means clustering of the decomposed compo-
nents as a criterion for selecting singular values and vectors corresponding to clutter 
and blood. Though different ideas are proposed for automatic rank selection [55], there 
is still no efficient and standard method. An example that briefly explains the problem 
of SVD threshold selection is shown in Fig. 2. The selected rank will affect blood signals. 
A large threshold range cannot effectively filter clutter and noise, and a small range will 
lose part of the blood signals. The second drawback is that SVD is sensitive to noise. It 
fails to obtain the optimal result while processing data with large random noise [56].

The aforementioned issues can potentially be resolved by taking the framework called 
decomposition into low-rank and sparse matrices (DLSM) [21] into account. SVD is one 
of the calculation methods in DLSM framework and there are also approximate SVD or 
SVD-free algorithms. This is a well-established framework in the field of computer vision 
due to its robustness to large noise and information corruption  [56]. The underlying 
assumption of this approach is that steady tissue is a low-rank component and moving 
blood exhibits sparsity [50]. It has been noticed that both temporal and spatial informa-
tion can be used to separate tissue and blood signals since tissue signals have a higher 
temporal–spatial coherence than blood signals (e.g., the blood scatterers are unique and 
constantly changing). A convex optimization problem is usually solved to decompose 
the data matrix into low-rank clutter and sparse blood components. A recent technique 
has used this model for the concurrent removal of clutter and noise [57]. Furthermore, 
recent work has incorporated deep learning with low-rank and sparse decomposition for 
improved clutter suppression performance [21].
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The main purpose of this work is to demonstrate the feasibility of 106 established 
low-rank and sparse decomposition algorithms in ultrasound clutter suppression and to 
provide suggestions for most suitable DLSM models, optimization methods, and algo-
rithms for ultrasound clutter suppression. The paper is organized as follows. “Decom-
position into low-rank and sparse matrices (DLSM) framework” section illustrates 
DLSM framework including decomposition types, loss functions, and relationships 
with tensor decomposition. “Experiments” section includes detailed experimental set-
tings and results on simulation, phantom, and in  vivo rat datasets. Finally, the paper 
reveals our discoveries in “Discussion” and “Conclusion” sections including the appro-
priate DLSM algorithms for clutter suppression and the shortcomings of the remaining 
algorithms. Comments and possible solutions are also proposed in response to different 
shortcomings.

Decomposition into low‑rank and sparse matrices (DLSM) framework
Low-rank and sparse structures are attractive since they usually represent part of the 
large and high-dimensional data which we are most interested in. Noise and data cor-
ruption can be fixed when decomposing matrices into low-rank and sparse components. 
Methods like sparse representation and low-rank modeling have achieved great success 
in computer vision, natural language processing, system identification, bioinformatics, 
etc.  [58–60]. So far, many different models, optimization methods, and algorithms are 
proposed aiming at solving the low-rank and sparse matrix recovery problems. Mean-
while, many classifications have been proposed [58, 61–63] according to linearity, con-
vexity, number of subspaces, or number of addition matrices.

Fig. 2  A set of pictures showing the threshold selection of SVD. a The original simulation data in brightness 
mode. b–e The processed images by SVD with different thresholds. Parameters b and e represent the selected 
rank of blood and noise signal, respectively. The full rank of the data is 20
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Decomposition into low-rank and sparse matrices (DLSM) is one of the relatively 
detailed and comprehensive frameworks  [61] which classifies various models of 
matrix decomposition according to the number of constrained component matrices. 
DLSM framework provides a suitable framework for signal processing, system iden-
tification, computer vision, machine learning, etc. This decomposition idea is becom-
ing more popular and widely used in recent years, especially after the robust principal 
component pursuit (RPCP) was purposed in papers of Candes et  al.  [56], and Chan-
drasekharan et al. in 2009 [64]. In the beginning, these algorithms are designed to deal 
with high-dimensional data which are often regarded as an extremely high-dimensional 
data matrix. Since many dimensions are usually independent, it is possible to recover 
the matrix from corruption or noise. These ideas are based on the assumption that the 
uncorrupted information matrix is highly correlated within the observing time-window 
and therefore lies in the low-rank subspace. At the same time, the moving foreground 
objects, noise, or other special signals constitute the correlated sparse outliers.

Based on similar assumptions, several algorithms under DLSM framework have 
been validated that they can be successfully applied to ultrasound clutter suppres-
sion  [18, 22, 36, 38, 55, 65]. In medical ultrasound, tissue and blood flow also lie in 
different subspace. In terms of temporal information, tissue signals and blood signals 
have different spectral features due to the different movement patterns of blood and 
tissue. As for spatial features, the blood signal has an extremely lower spatial coher-
ence than tissue signal because the irregular movement and arrangement of red blood 
cells produce constantly changing scatterers, whereas the tissue movement is overall 
patterned. Therefore, they gain a low rank and sparsity characteristics, respectively, 
and lie in different subspaces. Due to the robust and efficient performance of DLSM 
frameworks in separating low-rank and sparse components, it can show great poten-
tial in the field of ultrasound clutter suppression.

Fig. 3  The schematic diagram of DLSM framework. DLSM framework contains 5 branches, which are models 
(or called math formulations), decomposition problems, minimization problems, loss functions, solvers (or 
called algorithms). Examples are shown beside the branches
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Overall, DLSM framework is divided into decomposition problems, minimiza-
tion problems, loss function and solvers (algorithms used to solve the optimization 
problems)  [63] as Fig.  3 shows. The permutations and combinations of models and 
optimization methods and solvers lead to various algorithms, which is the origin of 
the DLSM framework. DLSM framework and its application in the ultrasound clutter 
suppression will be briefly illustrated in the following subsections.

Preprocessing and notations

Preprocessing of ultrasound data is necessary for integration into an input matrix or 
tensor in a special shape when applying DLSM algorithms. In general, the input of the 
DLSM algorithm consists of a sequence of n consecutive ultrasound data ( F1 . . . Fn ) 
with the original size of F ∈ R

i1×i2 . For a two-dimensional DLSM algorithm, the 
input M ( M ∈ R

m×n,m = i1 × i2 ) is in matrix form in most cases which consists of 
n resized ultrasound data frames ( F ∈ R

m×1 ) arranged in order. In terms of high-
order DLSM algorithms, the input is typically an N-order tensor T ( T ∈ R

t1×t2...tn ). 
T is generally third order and concatenated by original size ultrasound frames, where 
T = [F

i1×i2
1 , . . . F

i1×i2
n ],T ∈ R

i1×i2×n . Next, the input M (or T) is decomposed into sev-
eral components through the DLSM algorithm as follows:

where 0 ≤ X ≤ 3 and K1,K2,K3 typically represent low-rank L, sparse S, and noise 
components E, respectively. The specific components Kx and the number of X depend 
on the purpose (interested in sparse or low rank components) and the decomposition 
formulation.

Decomposition formulations

Implicit decomposition

Implicit decomposition (X = 1) : Under the condition that x is equal to 1, matrix M is 
approximately equal to a target low-rank matrix L under the constraint condition, 
because the information that people interested in mainly lies in the low rank component 
in most cases. Sparse matrix S can be obtained from the difference between M and S 
(e.g., S = M − L ). However, this processing is the opposite in the application of ultra-
sound clutter suppression because the blood signal is relatively sparse. The formulation 
of this problem is as follows:

where M ≈ L , f(.) is a loss function used for the minimization term which depends on 
specific solvers or algorithms. Models like principal component analysis (PCA), non-
negative matrix factorization (NMF), and matrix completion (MC) are in this category.

For the applications targeted to sparse components, implicit decomposition sets the 
target matrix K1 as a sparse matrix S. Then low-rank matrix L is the difference between 
M and S which can be calculated as L = M − S . Sparse dictionary learning [66], sparse 

(1)M =

X
∑

x=1

Kx

(2)min f (M, L) s.t. L
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linear approximation, and compressive sensing  [66–68], etc. are built under the same 
idea.

where M ≈ S , and the difference contains noise and other information. In this case, 
implicit decomposition can be used in the compressed sensing and signal recovery simi-
lar to unsupervised clustering [69] and image recognition [70].

Before more robust explicit decomposition method was proposed, the main develop-
ment of ultrasound clutter suppression was based on PCA or SVD or eigenvalues, which 
belong to implicit decomposition  [19, 22, 35, 38, 39, 45]. Although many experiments 
have proved that these eigen-based filters greatly improve the performance than tradi-
tional IIR and regression filters, many authors realize that the filtering method based 
on implicit decomposition is not robust to accelerated tissue movements and different 
kinds of noise  [22, 35, 39]. Moreover, their expensive computational complexity is not 
suitable for real-time processing.

Explicit decomposition

Explicit decomposition (X = 2) : Under this condition, M is usually decomposed into a 
low-rank matrix K1 = L and a sparse matrix K2 = S ( M ≈ L+ S ). This is called explicit 
decomposition because there are two constraints. One is sparse constraint over S and 
the other is low-rank constraint over L. Therefore, explicit decomposition is more robust 
than implicit decomposition. The formulation of explicit decomposition is as follows:

where M ≈ L+ S and f(.) represents loss function. The explicit decomposition includes 
robust principal component analysis (RPCA), robust non-negative matrix factorization 
(RNMF), robust matrix completion (RMC), and robust subspace tracking (RST) [59, 71].

These methods generally work better and are more robust than implicit decomposi-
tion because of the additional constraints  [71]. In this way, RPCA has been used as a 
powerful tool in MRI, CT, and ultrasound imaging  [72–74]. Many optimization algo-
rithms have been proposed for cluster suppression in ultrasound imaging using RPCA, 
RMC [21, 55, 75].

Stable decomposition

Stable decomposition (X = 3) : Due to the fact that there are always noise and corruption 
caused by special cases in the real world, an additional matrix K3 is added to represent 
unexpected components. K3 could represent distortion, shadows, and noise according 
to special situations ( M ≈ S + L+ N  ). It is more stable than the explicit decomposition 
since more detailed information is separated and taken into account. The stable decom-
position can handle more complex situations in the real life such as dynamic videos and 
maritime monitoring videos which are corrupted by complicated noise.

(3)min f (M, S) s.t. S

(4)min f (L)+ f (S) s.t. L, S

(5)min f (S)+ f (L)+ f (N ) s.t. L, S
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Stable decomposition methods include Stable Principal Component Analysis (Sta-
ble PCA) or Stable Non-negative Matrix Factorization (Stable NMF) and Three Term 
Decomposition (TTD). These methods can deal with more complex situations. In terms 
of US imaging, it is usually assumed that signal M contains clutter signals L (low-rank), 
blood signals S (sparse), and noise N. Since ultrasound signals have complex noises and 
dynamic clutter signals, this assumption M = S + L+ N  is more acceptable when there 
are meticulous requirements such as microvascular imaging. Although some literature 
mentions the stable decomposition of blood (L, S, E respectively represent blood flow 
signals, clutter signals, and noise), they do not illustrate whether constraints are added 
to noise component. Therefore, the stable decomposition formulation is still a promising 
research area for ultrasound clutter suppression.

Models under DLSM framework

As of today, many models, also called problem formulations, have been proposed. 
According to different math formulations and features, methods are usually classi-
fied under families such as robust principal component analysis (RPCA), non-negative 
matrix factorization (NMF), matrix completion (MC), and Subspace Tracking (ST). Dif-
ferent models have different functions and aims. However, it has been proved that the 
solutions of many robust models can be mutually expressed in closed forms  [76]. For 
instance, RPCA via principal component pursuit [56] can be considered as MC models 
using l1-norm loss function [63]. In addition, these models can be flexibly generated in 
any decomposition formulations. For example, adding constraints on noise components 
based on the RPCA will change it from explicit decomposition to stable decomposition.

Robust principal component analysis

Principal component analysis (PCA) generates a set of linearly uncorrelated variables 
which is called principal components, from a set of observations by orthogonal transfor-
mation. Similar mathematical tools include SVD and eigenvalue decomposition. RPCA 
is based on the extension of PCA (expansion from implicit decomposition to explicit 
decomposition), which aims to recover low-rank components and reduce the impact 
of grossly corrupted data. RPCA can be approached by principal component pursuit 
(PCP) [56, 64], Bayesian RPCA [77–79], and so on. RPCA problem is generally expressed 
as follows:

where L is low-rank matrix and S is sparse matrix. According to the nature of L and S, 
the most intuitive way to solve the RPCA problem is to minimize the rank of L and the l0
-norm of S:

where � is a balanced parameter. However, this formulation is NP-hard. Therefore, opti-
mization problems like PCP are needed.

The convex optimization principal component pursuit (PCP) was first proposed by 
Candes et  al.  [56, 63, 80] to address the RPCA problem. It becomes one of the most 

(6)M = L+ S

(7)min
L,S

rank(L)+ ��S�l0 s.t. M − L− S = 0
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famous methods of face recognition and background modeling in recent years. PCP uses 
the following formula to convexly optimize RPCA problem:

where �.�∗ and ‖.‖l1 are the nuclear norm and l1-norm, respectively. Although this 
method excels in computer vision, there are still some limitations to sparse compo-
nents recovery. First, it requires expensive computational algorithms. Second, it is a 
batch method which is not suitable for real-time applications, especially for plane-wave 
ultrasound with high frame rates. Third, it has very high requirements for low rank and 
sparse properties; however, the complex blood flow or noise may make it difficult for 
ultrasound data to meet such requirements. To accelerate the algorithms and achieve 
higher precision, different solvers have been developed  [81–83]. Solvers for real-time 
implementations have also been proposed [84, 85].

The stable principal component pursuit (SPCP) is a stable expanded form based on 
PCP, which mainly aims at reducing the impact of noise. SPCP adds noise term E based 
on PCP and constrains it by Frobenius norm.

Matrix completion

The main purpose of matrix completion (MC) is to recover low-rank observation matrix 
of its missing entries. The Netflix movie rating matrix recover problem is one of the most 
classic examples. The classic low-rank matrix completion problem can be seen as finding 
the lowest rank of the matrix L which matches the matrix M, for all the measured entries 
in set � . The mathematical formulation of MC problem is as follows:

Due to the implicit decomposition of MC is not robust to noise which only affects a 
small-scale data  [86, 87], MC is generally extended to explicit decomposition by add-
ing restrictions, which is called robust matrix completion (RMC). The common RMC 
obtains stronger robustness than MC by adding sparse constraints, and its formulation 
after convex optimization is as follows:

where P�(M) is the projection of the complete dataset on the measured entries � . 
Although the form of decomposition is the same as PCP, the unique constraints of RMC 
make it supervised while the PCP is unsupervised learning [63], which is consistent with 
the purpose of RMC.

Nonnegative matrix factorization

The nonnegative matrix factorization (NMF) is also a widely used matrix factorization 
and dimension reduction model under DLSM framework. The main unique feature of 
NMF is that low-rank factor matrix is subject to nonnegative constraints consistent with 
the physically natural features in many fields  [88, 89]. The NMF problem is generally 
expressed as follows:

(8)min
L,S

�L�∗ + ��S�l1 s.t. M − L− S = 0

(9)min
L

rank(L) s.t. Lm,n = Mm,n ∀i, j ∈ �

(10)min
L,S

�L�∗ + ��S�l1 s.t. P�(L+ S) = P�(M)
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where W ∈ R
m×k and H ∈ R

n×k are two nonnegative matrices, and k < min{m, n} due 
to the goal of dimension reduction. The most common formulation for the optimization 
problem of NMF is as following:

where ‖.‖2F is the Frobenius norm. The problem (14) is a non-convex problem and it is 
NP-hard to find its global minimum [88, 90]. Consequently, optimization algorithms and 
solvers are developed for the local minimum.

Subspace tracking

The subspace tracking (ST) can be regarded as the dynamic RPCA designed to handle 
increasing new data or dynamic subspaces. The data at each moment t are processed as 
the increments and then discarded. This idea addresses the problem when new obser-
vations come in asynchronously in online streaming environments. It makes subspace 
tracking more efficient and less computationally expensive on extremely long data 
sequences  [91]. Since ST can recover subspaces from incomplete frame vectors, it has 
the potential to further improve efficiency by downsampling the input frames [63]. The 
general formulation for the ST problem is as follows:

where mt is input frame data at time t, and lt , st , et are low-rank, sparse, and noise com-
ponents of mt . The number of k is determined according to different decomposition 
forms, and the constraint conditions and approximate approximations on each compo-
nent are determined according to different optimization methods.

Low‑rank representation

Low-rank representation (LRR) can also be called low-rank optimization or low-rank 
minimization. Other unclassified models can be regarded as LRR. LRR is a minimization 
problem in mathematics. In LRR, the cost function measures the fit between the input 
matrix M and the approximation matrix L  [63]. The mathematical formulation of LRR 
problem is as follows:

where M is the input matrix, M̂ the approximate matrix, ‖.‖F the Frobenius norm, and r 
the rank. The basic form of LRR is similar to other models; therefore, most of the other 
unclassified models can be regarded as a category in LRR. For instance, RPCA and NMF 
can be obtained by similar architectures. Constraints other than rank constraints can be 

(11)M ≈ WH⊤

(12)min
W ,H

f (W ,H) = �M −WH⊤�2F s.t. W ≥ 0,H ≥ 0

(13)mt =

X
∑

x=1

kx = lt + st + et for t = 1, 2, . . . , n; X ∈ 1, 2, 3

(14)min �M − M̂�F s.t. rank(L) ≤ r
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added for specific applications. LRR can be extended into an explicit or stable form by 
adding constraints on the sparse and noise components.

The extension to tensor

In DLSM framework, only some of the single-dimensional information is used when 
images are pretreated into data matrix M as vectors. This means that some multidi-
mensional information is not taken into account in the process of decomposition. To 
improve the results, the tensor decomposition is proposed.

Tensor DLSM

When it comes to tensor, the most intuitive idea is to change all matrices to tensors 
directly since a tensor can be seen as a combination of several matrices. It is very simi-
lar to DLSM framework which subjects to T = L+ S + E . The tensor DLSM extends all 
components to a tensor form as Fig. 4.

where T, L, S and N represent the data tensor, low-rank tensor, sparse tensor and noise 
tensor, respectively. Similar to the matrix DLSM framework, it can be optimized and 
solved by a minimization problem. Some other classic matrix decomposition optimiza-
tion methods have also been extended to tensor. The tensor robust principal compo-
nent method  [92] has been proposed based on tensor singular value decomposition 
(t-SVD)  [93]. It has been demonstrated the effectiveness of image denoising. Another 
robust low-rank tensor recovery model based on RPCA has also been published for 
complex multilinear data analysis [94]. Rank sparsity tensor decomposition (RSTD) [95] 
and some other ideas based on stable principal component pursuit (PCP) also have been 
utilized in image processing.

Tensor decomposition

There are two classical tensor decomposition forms which are CANDECOMP/
PARAFAC (CP) decomposition and Tucker decomposition [96]. Given a tensor 
T ∈ R

t1×t2×···tn , the CP decomposition and Tucker decomposition can be modeled as 
follows:

•	 Tucker decomposition 

(15)T = L+ S + E

Fig. 4  The illustration of tensor decomposition
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where g ∈ R
r1×r2×···rn is the core tensor, r is the rank of factor matrix Ui ∈ R

ti×ri , and 
ε represents the residuals. Figure 5 is a schematic representation of the Tucker decom-
position. The Tucker decomposition is usually regarded as a non-convex optimization 
problem [63]. Two most famous and widely used solvers for Tucker decomposition are 
Tucker-ALS based on alternating least squares  [96] and Tucker-ADAL based on alter-
nating direction augmented Lagrangian  [94]. SVD based on Tucker decomposition is 
generally called high-order singular value decomposition (HOSVD) [97, 98], which cal-
culates the singular values of the three expansions U1,U2,U3 of a three-dimensional ten-
sor under Tucker decomposition. HOSVD-based ultrasound clutter optimization has 
been proposed [52, 99] and proved to be more robust to low sampling rates than SVD.

•	 CP decomposition 

where R is the number of the components, Ui ∈ R
ti×ri , ε represents the residuals, and 

U1 ◦U2 · · · ◦UR is the CP model [71]. Figure 6 is a schematic representation of the CP 
decomposition. CP decomposition is similar in form to Tucker decomposition since the 

(16)T = g ×

N
∏

i=1

Ui + ε

(17)T = U1 ◦U2 · · · ◦ UR + ε

Fig. 5  The illustration of Tucker decomposition

Fig. 6  The illustration of CANDECOMP/PARAFAC (CP) decomposition
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number of components in the factor matrices is the same [96]. The original CP problem 
is NP-hard. Therefore, the Frobenius norm is generally used to relax the low-rank con-
straint. Similar to Tucker decomposition, CP decomposition problem can also be solved 
by alternating least squares, called CP-ALS. To the best of our knowledge, there is cur-
rently no well-known article applying CP decomposition to ultrasound clutter filtering.

 

Minimization problems

The decomposition problems generally turn into minimization problems or optimiza-
tion problems in its original form or its Lagrangian form [63].

where �i are the regularization parameters, fi(.) are the loss functions for low-rank, 
sparse, and noise components, Ci are the constraints on Ki . Consistent with the decom-
position problems, the minimization problems can be divided into three categories 
according to the number of constraints and loss functions imposed.

•	 x = 1 is the case of implicit decomposition: minL �1f1(L) s.t. C1

	 where C1 is �M − L�2 = 0 or other forms. For sparse decomposition, the low-rank 
components are replaced by sparse components. This problem can be NP-hard, 
non-convex, or under specific constraints. Therefore, other formats of the loss 
functions are applied to relax the constraints when the problem is NP-hard or 
non-convex. For example, the loss function f is rank loss function in original MC 
model as minL rank(L) s.t. �M − L�2 = 0.

•	 x = 2 is the case of explicit decomposition: minL,S �1f1(L)+ �2f2(S) s.t. C2

	 where C2 is �M − L− S�2 = 0 or other forms. For example, the f1 and f2 loss 
functions are rank and l0 − norm loss functions in original RPCA model as 
minL,S rank(L)+ ��S�l0 s.t. �M − L− S�2 = 0.

•	 x = 3 is the case of stable decomposition: minL,S �1f1(L)+ �2f2(S)+ �3f3(N ) s.t. C3

	 where C3 is �M − L− S − E�2 = 0 or other forms. For example, the f1 
and f2 loss functions are rank and l0 − norm in original RPCA model as 
minL,S rank(L)+ ��S�l0 s.t. �M − L− S�2 = 0 . The stable decomposition is gen-
erally adding constraints on the noise component based on the robust decomposi-
tion. The Frobenius norm loss function ( ��M − L− S�2F = 0 ) is used in most cases.

Although there are some algorithms that can solve non-convex problems through math-
ematical approximation  [100], in general, non-convex problems are difficult to solve 
with weak convergence. This is also an important role that minimization problems play.

Loss functions

The loss function can be seen as a constraint of the decomposed matrices. In DLSM 
framework, loss functions are used on the minimization matrices as norm formats. For 
example, in implicit decomposition, explicit decomposition, and stable decomposition, 

(18)min
Ki

x
∑

i=1

�ifi(Ki) s.t. Ci
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the functions f(S), f(L), f(E), represent the loss functions or norms on sparse component, 
low-rank component, and noise component, respectively. However, in most cases, the 
original loss function will be replaced by other forms of the loss function to optimize 
and solve the problem. The common loss function forms (or norm forms) can be listed 
as follows:

•	 l0 norm loss function (‖M‖l0) is the number of non-zero entries.
•	 l1norm loss function (�M�l1 =

∑

i,j |Mi,j|) is the Manhattan distance.
•	 l2norm loss function (�M�l2 =

√

∑

i,j M
2
i,j) is also called the Frobenius norm ( lF

norm loss function (�M�lF =
√

∑

i,j M
2
i,j) ).

•	 l∞norm loss function (�M�l∞ = maxi,j|Mi,j|) is also called the max norm 
( (�M�max = maxi,j|Mi,j|)).

•	 l∗norm loss function (�M�l∗) is the sum of singular values.

Solvers

The models are solved by specific algorithms, which are called solvers in DLSM [63, 71] 
framework. Solvers are generally applied to the models after the minimization prob-
lem has been optimized and the loss function has been relaxed. Solvers can be broadly 
divided into regularization-based approaches and statistical-based approaches [101]. As 
for regularization approaches, the data matrices are regularized by convex surrogates 
with different features  [63]. Typical regularization approaches include singular value 
thresholding (SVT)  [102], accelerated proximal gradient (APG)  [103], and augmented 
Lagrange multiplier (ALM) [83]. In terms of statistical-based approaches, prior distribu-
tions are used to capture low-rank or sparse properties and predict the joint distribution 
of the measured entries and unknown variables. Meanwhile, posterior distributions of 
the unknown variables can be approximated by Bayesian-based methods [63].

Although many solvers are proposed to solve the optimization problems under DLSM 
framework, most of the mainstream algorithms for ultrasound clutter suppression 
are based on SVD. SVD-based clutter suppression algorithms that are proposed and 
reviewed [19, 20, 22, 38, 43] based on traditional CFI before 2011. In these algorithms, 
SVD is used as one of the steps or iterations within many of the algorithms we evalu-
ated. After 2015, with the rapid development of ultrasound technologies like plane-wave 
ultrasound, SVD was combined with ultrafast plane-wave imaging, which can provide 
a huge amount of data at a high frame rate, to improve the effectiveness of SVD and 
overcome the limitation of low frame rate [18, 51, 104, 105]. Due to the excellent perfor-
mance of SVD on large datasets, SVD-based clutter suppression algorithms based on the 
plane-wave ultrasound have become a popular and mainstream research area. The SVD-
based algorithms have been used in functional ultrasound [106, 107], super resolution 
ultrasound localization microscopy  [104, 108] and high-sensitivity microvessel perfu-
sion imaging [18, 51] due to its excellent performance in the ultrasound clutter suppres-
sion and the microvascular imaging [21].
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Due to the obvious disadvantages of SVD, DLSM framework contains many approxi-
mate SVD and non-SVD algorithms for higher efficiency and lower computational cost, 
which have the potential for real-time ultrasound clutter suppression.

Experiments
DLSM framework has been successfully utilized to video surveillance, face recogni-
tion, texture modeling, video inpainting, audio separation, and latent semantic index-
ing [109]. However, only a few algorithms under DLSM framework have been applied to 
ultrasound clutter suppression. Herein, we apply DLSM algorithms as the clutter filter 
for CFI. To that end, we test if DLSM algorithms can be used for clutter suppression 
and conduct simulation experiments, phantom experiments, and in  vivo experiments. 
Finally, we will conclude a list of algorithms that are suitable for ultrasound clutter 
suppression.

Experiment data

Three datasets are used in this experiment which are simulation data, phantom data, 
and in vivo rat data. For each dataset, raw RF-data, complex envelope data, and B-mode 
data formats are used for analysis. The specific parameters and obtaining process of 
three datasets and a brief introduction of three data formats are given in the following 
subsections.

Simulation data

The simulation data include a set of ultrasound simulation frames as Fig. 7 shows. The 
ultrasound simulation data are generated by the Field II simulation program imple-
mented in MATLAB [110, 111]. A cube A ∈ R

60×60×60 is built to represent the tissue 
filled with scatterers given the fact that each voxel is 1mm3 . A vessel through the middle 
of the cube with a radius of 20mm is generated by scatterers flowing to the right. The 

Fig. 7  The illustration of the simulation data. a The simulation cube with tissue scatterers and blood 
scatterers. The red blood scatterers are in the middle and moving to the right. The simulated sound waves 
focus in the center. b A series of simulation data frames obtained from simulation experiments
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max velocity in the center of the vessel is 15mm/s . Assuming sound waves travel from 
the top to the bottom and focus on the center. Probe frequency and sampling frequency 
are set to 7.27mHz and 40mHz , respectively. The frame rate is set to 1000 fps and 64 
active elements are used for beamforming.

Phantom data

The phantom was created to simulate a cube of tissue including one blood vessel which 
travels across the cube in the middle. Knox unflavored gelatin, water, and sugar-free 
Metamucil psyllium fiber supplement were gently heated and mixed to prepare the 
phantom gel which represents soft tissue. An intra-venous tube simulating a venous 
structure model runs through the gel cube. Probe frequency and sampling frequency are 
set to 10 MHz and 40 MHz, respectively. The Alpinion E-Cube R12 ultrasound system 
is used in ultrasound data collection with an L3-12H linear array probe. Figure 8 briefly 
illustrates the phantom experiment.

Rat data

The acquisition of the rat data was under the supervision of the Animal Care Facility 
of Concordia University. A 27-week-old Sprague–Dawley male rat was anesthetized for 
ultrasound scanning. The experiment followed the guidelines of the Canadian Council 

Fig. 8  The illustration of the phantom experiments. a The illustration of phantom data collection experiment. 
b The B-mode image of the first frame in phantom data

Fig. 9  The illustration of the in vivo rat experiments. a The illustration of the in vivo rat data collection 
experiment. b A schematic representation of sparse component of the in vivo rat data
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on Animal Care and was approved by the Animal Ethics Committee of Concordia Uni-
versity (#30000259) . The probe frequency and the sampling frequency were set to 10 
MHz and 40 MHz, respectively. Similarly, as with phantom data, the Alpinion E-Cube 
R12 research ultrasound system with an L3-12H linear array probe was used. The sche-
matic diagram of the in vivo rat experiment is shown in Fig. 9.

Data formats

Both real and simulated ultrasound data are available in three formats, which are raw 
RF data, complex envelope data, and B-mode data. Common ultrasound probes gener-
ally consist of a piezoelectric transducer array that emits and receives signals. The back-
scatter signal which is processed by the preamplifier and the time gain compensation 
is referred as radio-frequency (RF) signal. The RF signal then processed by an envelope 
detector becomes complex envelope data. Last, the complex envelope data are log-
compressed into a grayscale format. And the data are further passed through intensity 
mapping and post-processing filtering. The final readable image is commonly called 
brightness mode (B-mode) image. RF frames generally have a very large size since the 
sampling rate of the RF data is usually extremely high. This high sampling rate is not 
necessary for envelope data as it does not have high-frequency contents. Therefore, 
envelope and B-mode images can be downsampled by a large factor. RF data may also be 
downsampled by a small factor, but the Nyquist sampling rate should be considered to 
avoid aliasing.

Experiment methods

In “Decomposition into low-rank and sparse matrices (DLSM) framework” section, 
DLSM framework is introduced and built as Fig.  3 shows. The DLSM algorithms are 
classified in four groups which are implicit decomposition, explicit decomposition, sta-
ble decomposition, and  tensor decomposition. In this experiment, all algorithms are 
selected from LRSLibrary  [61, 63, 71] which provides a group of low-rank and sparse 
matrix decomposition algorithms in moving object detection. In LRSLibrary, these algo-
rithms are further subdivided into robust PCA (RPCA), subspace tracking (ST), matrix 
completion (MC), three-term decomposition (TTD), low-rank representation (LRR), 
nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and 
standard tensor decomposition (TD) according to the models. Due to the flexible con-
version between models and their similar mathematical formulations, in this paper, TTD 
can be a subcategory in stable PCA under stable decomposition. Similarly, NTF belongs 
to the subcategory under the tensor decomposition (TD) model.

In the first step, the DLSM algorithms are applied to three formats of simulation data 
to verify the performance of all algorithms compared to sparse component with ground 
truth and give a computing time contrast. Then, all algorithms are used on phantom data 
to find out if DLSM suits ultrasound data with real ultrasound features. In the third step, 
rat data are used for verification and comparison. The acquired data have three formats 
which are RF data format, complex envelope data format, and B-mode data format. The 
results of different data formats and different datasets are grouped for comparison to 
find the optimal conditions of ultrasound clutter suppression.
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All experiments are processed by a normal desktop computer with an i7-4770 CPU @ 
3.40 GHz and 16.0 GB RAM.

Evaluation metrics

Two main indicators are used to evaluate the performance of various algorithms, which 
are signal-to-noise ratio (SNR)  [112] and contrast-to-noise ratio (CNR). The SNR and 
CNR are calculated as follows:

where µ1 and σ1 are the mean intensity value and the standard deviation of the back-
ground window, µ2 and σ2 are the mean intensity value and the standard deviation of the 
target window.

Experiment results

The results of 106 DLSM algorithms on three datasets and their three formats are 
reported in this section. The results of all algorithms include the SNR, CNR, calculation 
times, and images for visual observation. Since all the output images are sparse com-
ponents of the same data and are very similar, we classify the results according to their 
performance and report the number of algorithms in each category instead of SNR and 
CNR of all algorithms.

The results of all algorithms are divided into several categories. The results which fall in 
the first category are considered to be good results as they give the correct sparse matrix 
with a pure blank background which means high robustness to noise and dynamic back-
ground and strong decomposition ability. The cases when the output sparse component 
is more than 100 times higher than background pixel values are also regarded as good 
results. The results which fall in the second category are considered to be defective. 
These results either contain background noise which is supposed to be part of the low-
rank components, or are noisy and algorithms failed to decompose. The results in the 
third category are not considered because some algorithms failed to run due to some 
limitations like non-negative limitations or real input limitations. Algorithms with this 
type of results are called restricted algorithms in this section.

The information that all algorithms, including their model classifications, are from 
LRSLibrary [61, 63, 71], and they have all been proved to be successfully applied to mov-
ing object detection on traffic video.

Simulation experiments

The experiments first applied simulation data to verify the availability and approximate 
performance of all algorithms. Meanwhile, the computation cost and time of these algo-
rithms on ultrasound clutter suppression are also tested. The first experiment applied 
all 106 DLSM algorithms to the RF simulation data. Among 106 algorithms, 11 of them 
were out of memory and failed to run. These algorithms cannot deal with the large 
size of simulation data because they use the full singular value decomposition or QR 
decomposition and require a huge memory to initialize (7.9 GB). Meanwhile, there are 

(19)SNR =
µ1

σ1
, CNR =

|µ1 − µ2|
√

σ 2
1 + σ 2

2 /2
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6 algorithms that require non-negative input and cannot take RF data as input. Con-
sequently, a total of 17 of these two kinds of algorithms are classified as restricted 
algorithms.

In terms of the remaining 89 algorithms, only 19 of them are able to output relatively 
pure sparse components that match the ground truth without any processes of RF sim-
ulation data. To be precise, only three algorithms (abbreviation: LRR-ROSL, RPCA-
IALM, RPCA-IALM-BLWS) give a truly pure background as zero matrices (all entries in 
sparse matrices except the ones presenting simulated vessel are 0). The other 16 results 
highlight simulated vessel with a non-zero background. Since the value of the back-
ground pixels is 1000–10,000 times less than the value of sparse component, we consider 
it to be a pure result without low-rank components. The possible reason is the particular 
small values of RF simulation data and low dynamic range. In general, these results with 
the CNR values above 1.6 are classified as good results in Table  2. The results of the 
other 44 algorithms are very noisy with the CNR values less than 1.1. As for these algo-
rithms, the sparse parts in simulation data are not clearly determined and the clutter is 
not well suppressed. The remaining 24 algorithms give blank output due to low dynamic 
range and other reasons. Almost all the DLSM algorithms give an SNR of about 0.759, so 
SNR is not reported in detail here.

Due to the extremely small data values and dynamic ranges, a large number of algo-
rithms are invalidated. Therefore, in the second step, the order of magnitude and 
dynamic range of RF simulation data are expanded to re-examine the performance of all 
algorithms.

After processing RF data, 56 algorithms show good results. Among these algo-
rithms, 16 of them give correct sparse components with a zero-valued background, 
others give sparse components 1000–10,000 times greater than background pixel 
values. The results of the remaining 33 algorithms are noisy. These algorithms either 
do not correctly isolate sparse components or contain inseparable background noise 
with similar values. Most good results have a CNR greater than 1.3, while noisy 
results generally have a CNR less than 1. Similarly, almost all the DLSM algorithms 
with good results give an SNR of about 0.759. There are a few good results with a 
CNR less than 1. The algorithms with such results only highlight the sparsest parts 
which reduce the mean intensity values of the target window. However, these results 

Table 2  The 19 algorithms with the CNR values above 1.6

The algorithms with * give pure background. The remaining algorithms are arranged in alphabetical order of abbreviations

Group Abbreviation Time CNR Group Abbreviation Time CNR

RPCA IALM* 0.590 1.681 MC IALM-MC 6.537 1.680

RPCA IALM-BLWS* 2.278 1.680 TTD MAMR 1.861 1.740

LRR ROSL* 0.359 1.688 NMF PNMF 13.556 1.733

RPCA DECOLOR 3.013 1.602 RPCA PRMF 1.280 1.687

RPCA EALM 9.068 1.677 RPCA RegL1-ALM 3.634 1.686

RPCA flip-SPCP-max-QN 71.933 1.688 MC RPCA-GD 4.747 1.627

RPCA flip-SPCP-sum-SPG 214.900 1.688 RPCA SSGoDec 0.034 1.736

RPCA GoDec 0.072 1.736 TD Tucker-ADAL 6.131 1.736

RPCA GreGoDec 0.199 1.736 TD Tucker-ALS 0.101 1.736

TD HoSVD 4.461 1.736
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are considered to be good because the unhighlighted sparse components still have 
higher intensities than backgrounds. The results after increasing dynamic range are 
listed in Table 3. Examples of different kinds of results in simulation experiments are 
shown in Fig. 10.

The complex envelope simulation data are obtained by Hilbert transform based on the 
RF data. For this reason, the complex envelope data do not have the problem of minia-
ture pixel values and low dynamic range. However, the SNR and CNR of the complex 
envelope simulation data are lower than the SNR and CNR of RF simulation data. Except 
for the 11 algorithms that are limited by frame size, 24 of the remaining algorithms 
show good results. In addition, 13 algorithms are affected by complex numbers gener-
ated by the Hilbert transform and thus failed to run. The results of other algorithms are 
noisy. After enlarging the dynamic range of the complex envelope simulation data, 8 
algorithms which failed on original simulation data give good results on the preproc-
essed data. These algorithms are sensitive to the changes of dynamic ranges. The results 
on complex envelope simulation data are shown in Table 4. Obviously, the CNR in the 
results of complex envelope simulation data is far less than the CNR on the RF data.

Table 3  The 16 algorithms with pure background after increasing dynamic range

The algorithms with * give pure background on original data. The remaining algorithms are arranged in alphabetical order 
of abbreviations

Group Abbreviation Time CNR Group Abbreviation Time CNR

RPCA IALM* 0.604 1.681 RPCA FPCP 0.102 1.392

RPCA IALM-BLWS* 1.647 1.680 RPCA FW-T 0.647 0.611

LRR ROSL* 0.408 1.688 TD HoRPCA-S-NCX 116.955 1.689

RPCA APG 4.155 1.667 RPCA Lag-SPCP-QN 0.517 0.377

RPCA APG-PARTIAL 3.559 1.661 RPCA Lag-SPCP-SPG 0.955 0.354

RPCA AS-RPCA 1.890 1.682 TD OSTD 0.663 0.479

NMF DRMF 2.580 1.640 RPCA PCP 27.078 1.677

RPCA DUAL 100.797 1.682 RPCA SVT 453.337 1.682

Fig. 10  The output result images of simulation data. a The output of sparse component obtained by the 
IALM algorithm on original simulated RF data. It is a typical good result representing correct decomposition 
and pure sparse components. b The output of sparse component obtained by the ADM algorithm on original 
simulated RF data. It is a typical noisy result with background noise as sparse components. c The output of 
sparse component obtained by the OSTD algorithm on processed simulated RF data with larger dynamic 
range. The algorithms with a CNR less than 1 in Table 3 give such results with pure background because they 
only show the sparsest parts
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The third step of the simulation experiment is using B-mode data. As for the results 
of B-mode simulation data, 40 DLSM algorithms have successfully detected the simu-
late vessel on original B-mode simulation data. Meanwhile, 12 algorithms are affected 
by high peak values in the background and keep static peaks into sparse components. 
These algorithms give pure sparse matrices after suppressing peak values. After 
enlarging the dynamic range of the original B-mode data, another 10 algorithms suc-
cessfully detect correct sparse components. Therefore, 62 algorithms can successfully 
separate the correct sparse components. The other algorithms which give very noisy 
results may need parameter adjustment and threshold process. The results of simula-
tion experiment on B-mode data are reported in Table 5.

Table 4  The algorithms with good results on complex envelope simulation data

The results on original data are listed in the left column and the results on processed data are listed in the right column. The 
algorithms with * give pure background. The algorithms are arranged in alphabetical order of abbreviations

Group Abbreviation Time CNR Group Abbreviation Time CNR

TTD 3WD 5.061 0.079

RPCA ALM 19.662 0.049

NMF Deep-Semi-NMF 0.169 0.049 NMF Deep-Semi-NMF 0.221 0.049

LRR EALM 10.096 1.723 LRR EALM 0.580 0.049

NMF ENMF 42.921 0.049 NMF ENMF 45.057 0.049

RPCA flip-SPCP-max-QN 358 0.151 RPCA flip-SPCP-max-QN 294 0.151

RPCA flip-SPCP-sum-SPG 403 0.151 RPCA flip-SPCP-sum-SPG 630 0.151

RPCA FPCP* 0.138 0.154 RPCA FPCP 0.181 0.049

RPCA GoDec 0.116 0.049 RPCA GoDec 0.127 0.049

RPCA GreGoDec 0.396 0.049 RPCA GreGoDec 0.430 0.092

TD HoRPCA-S-NCX* 201 0.059 TD HoRPCA-S-NCX* 210 0.059

TD HoSVD 3.083 0.049 TD HoSVD 3.074 0.049

LRR IALM 3.999 0.049

MC IALM-MC 10.481 0.051 MC IALM-MC 10.784 0.051

NMF iNMF 1.675 0.040 NMF iNMF 1.916 0.040

RPCA Lag-SPCP-QN* 77.200 0.176

RPCA Lag-SPCP-SPG* 92.931 0.186

MC LMaFit 0.512 0.071 MC LMaFit 0.547 0.071

NMF NeNMF 0.141 0.049 NMF NeNMF 0.158 0.049

NMF nmfLS2 0.512 0.049 NMF nmfLS2 0.563 0.049

NMF NMF-MU 3.206 0.049 NMF NMF-MU 3.379 0.049

NMF NMF-PG 0.431 0.049 NMF NMF-PG 164 0.032

RPCA noncvxRPCA 1.044 0.048 RPCA noncvxRPCA 0.193 0.089

NMF PNMF 24.802 0.048 NMF PNMF 25.377 0.048

RPCA R2PCP* 2.251 0.058

LRR ROSL* 1.018 0.058 LRR ROSL* 1.039 0.058

NMF Semi-NMF 0.210 0.030 NMF Semi-NMF 2.305 0.029

RPCA SSGoDec 3.772 0.049 RPCA SSGoDec 3.729 0.051

RPCA TFOCS-EC 26.941 0.132

RPCA TFOCS-IC 26.162 0.094

TD Tucker-ADAL 10.290 0.049 TD Tucker-ADAL 458 0.039

TD Tucker-ALS 0.217 0.049 TD Tucker-ALS 0.216 0.049

RPCA VBRPCA 4.031 0.046 RPCA VBRPCA 6.471 0.069
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Phantom experiments

The next set of experimental data used for testing is phantom data. The phantom data 
are used to test whether DLSM framework is suitable for ultrasound clutter suppression 
with real ultrasound noise and other ultrasound features. The phantom data also con-
sist of three formats, which are RF phantom data, complex envelope phantom data, and 
B-mode phantom data. Except for 11 inapplicable algorithms due to size limitation, the 
other 95 algorithms have a huge difference in computing time ranging from less than 0.1 
s to more than 500 s.

As for RF phantom data, the order of magnitude of all pixels is first adjusted into 
the range of 10±3 . However, the structured peak pixels that are caused by bright struc-
ture generated at the rebound reflection interface still affect many algorithms. 36 
algorithms clearly show the simulated vessel with a pure background with an aver-
age CNR of 3.5. Meanwhile, 43 algorithms only highlight bright edges as the sparse 

Table 5  The algorithms with good results on B-mode simulation data

The algorithms with ◦ are affected by high peak values and get good results after suppressing peaks. The algorithms with • 
only get good results after increasing the dynamic range. The algorithms with * give pure background

Group Abbreviation Time CNR Group Abbreviation Time CNR

TTD 3WD◦ 2.027 1.486 RPCA Lag-SPCP-QN* 2.809 0.494

LRR ADM 0.563 3.401 RPCA Lag-SPCP-SPG* 8.961 0.456

RPCA ALM• 18.748 1.827 MC LMaFit 0.424 1.889

RPCA APG◦* 4.229 1.855 MC LRGeomCG 0.811 1.885

RPCA APG-PARTIAL◦* 3.696 1.860 RPCA LSADM◦ 1.454 1.847

RPCA AS-RPCA 2.180 1.803 TTD MAMR 1.642 1.781

RPCA DECOLOR 3.450 1.717 NMF ManhNMF 1.422 1.903

NMF Deep-Semi-NMF 0.195 1.903 RPCA MoG-RPCA 1.710 1.934

NMF DRMF◦* 2.461 1.842 NMF NeNMF 0.073 1.903

RPCA DUAL◦* 89.410 1.824 NMF NMF-ALS 1.848 1.903

LRR EALM• 0.321 1.903 NMF NMF-ALS-OBS 1.987 1.903

RPCA EALM◦ 4.324 1.840 NMF nmfLS2 0.206 1.903

NMF ENMF 9.056 1.903 NMF NMF-MU 1.643 1.903

LRR FastLADMAP 0.769 1.903 NMF NMF-PG 32.465 1.899

RPCA flip-SPCP-max-QN 102.000 1.835 RPCA noncvxRPCA 0.100 1.903

RPCA flip-SPCP-sum-SPG 230.000 1.835 RPCA NSA1• 0.255 1.902

MC FPC 34.877 1.442 TD OSTD•* 0.764 1.451

RPCA FPCP* 0.150 1.875 RPCA PCP◦* 9.978 1.842

RPCA FW-T◦* 0.722 0.370 NMF PNMF 13.424 1.903

RPCA GA• 0.028 1.904 RPCA PRMF 1.336 1.857

RPCA GoDec 0.096 1.903 RPCA R2PCP•* 1.269 2.024

RPCA GreGoDec 0.282 1.903 RPCA RegL1-ALM 3.918 1.833

TD HoRPCA-S-NCX 112.090 1.836 TTD RMAMR• 5.369 1.561

TD HoSVD 4.493 1.903 LRR ROSL* 0.369 1.830

LRR IALM 1.880 1.903 MC RPCA-GD◦ 4.946 1.891

RPCA IALM◦* 0.701 1.840 NMF Semi-NMF 0.134 1.331

RPCA IALM-BLWS◦* 1.800 1.843 RPCA SSGoDec 1.206 1.903

MC IALM-MC 5.729 1.848 RPCA TFOCS-EC• 6.388 1.903

NMF iNMF 1.148 1.770 TD Tucker-ADAL 74.711 1.903

RPCA L1F• 1.022 0.817 TD Tucker-ALS 0.118 1.903

LRR LADMAP 0.446 1.903 RPCA VBRPCA 0.306 0.343
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components with an average CNR of 0.4. The structured peak pixels of RF phantom 
data can compromise the calculation of some algorithms when these bright edges 
have a pixel value 103 times larger than the remaining pixel values. Therefore, the 
peak values are processed logarithmically to achieve the gray balance and reduce 
the dynamic range. After logarithmic processing, 22 additional algorithms are able 
to display sparse components correctly excluding bright and static edges. Among 
them, 19 algorithms are previously affected by peaks, and 3 algorithms are defective 
on the original data. The results of remaining algorithms are still noisy, and parameter 
adjustment should be applied to these algorithms for better performance. The results 
of RF phantom experiments are shown in Table 6.

The complex envelope phantom data are then used for experiments. The number of 
good results of the complex envelope phantom data is less than the number of good 
results of RF phantom data. 26 algorithms successfully detected the simulated ves-
sel and 33 algorithms only showed bright edges, which is an intra-venous (IV) tube 

Table 6  The algorithms with good results in RF phantom experiments

The algorithms with ◦ are the 3 new algorithms work on processed data, which are defective on original data. The 
algorithms with • are sensitive to structured peak pixels and work after logarithmic processing

Group Abbreviation Time CNR Group Abbreviation Time CNR

TTD 3WD• 1.826 2.393 RPCA Lag-SPCP-SPG 31.118 2.626

TTD ADMM• 4.009 2.478 MC LMaFit 0.260 2.651

RPCA ALM 5.456 2.672 MC LRGeomCG 0.817 2.640

RPCA APG• 5.585 2.747 RPCA LSADM• 1.443 2.747

RPCA APG-PARTIAL• 4.690 2.747 TTD MAMR 2.263 2.681

RPCA AS-RPCA 2.697 2.732 RPCA MoG-RPCA 9.156 2.777

RPCA DECOLOR 10.266 4.895 NMF nmfLS2 0.219 2.672

NMF Deep-Semi-NMF 0.150 2.672 RPCA NSA1• 1.549 2.746

NMF DRMF• 2.723 2.754 RPCA NSA2• 1.656 2.746

RPCA DUAL• 215 2.746 MC OptSpace• 7.020 2.526

LRR EALM 0.351 2.672 MC OR1MP• 0.089 2.627

RPCA EALM• 37.360 2.744 TD OSTD• 70.747 1.799

RPCA flip-SPCP-max-QN• 119 2.768 RPCA PCP• 26.791 2.745

RPCA flip-SPCP-sum-SPG• 431 2.768 NMF PNMF 16.963 2.684

RPCA FPCP 0.108 2.672 RPCA PRMF 1.573 2.623

RPCA FW-T◦ 0.591 2.578 RPCA R2PCP 2.241 2.703

RPCA GA 0.031 3.652 RPCA RegL1-ALM 4.745 2.774

RPCA GM 0.155 2.775 TTD RMAMR 9.728 2.545

RPCA GoDec 0.097 2.674 LRR ROSL 0.421 2.715

ST GRASTA◦ 1.394 1.207 MC RPCA-GD 6.215 2.622

RPCA GreGoDec 0.237 2.821 TD RSTD◦ 91.200 1.636

TD HoRPCA-S-NCX 70.134 2.777 MC ScGrassMC 4.093 2.567

TD HoSVD 0.497 2.672 NMF Semi-NMF 1.267 2.295

RPCA IALM 0.796 2.748 RPCA SSGoDec 1.496 2.736

LRR IALM• 2.003 2.672 MC SVP• 3.235 2.471

RPCA IALM-BLWS• 2.474 2.748 RPCA TFOCS-EC 9.815 2.188

MC IALM-MC 7.764 2.419 RPCA TFOCS-IC 9.568 2.197

RPCA L1F 2.680 0.837 TD Tucker-ADAL 267 2.617

RPCA Lag-SPCP-QN 15.766 2.684 TD Tucker-ALS 0.123 2.672
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representing the vessel wall. The CNR of all results is less than 0.4. After suppressing 
the edge brightness logarithmically, 11 of these algorithms that have been affected 
by edges can separate pure sparse components. It shows that the extremely high 
bright structures can affect the sensitivity to sparse components in many algorithms. 
However, there are still some algorithms that give noisy results. At the same time, 19 
algorithms cannot take complex numbers as input. The results on complex envelope 
phantom data are shown in Table 7.

Table 7  The algorithms with good results on complex envelope phantom data

The algorithms with ◦ are the 3 new algorithms work on processed data, which are defective on original data. The 
algorithms with • are sensitive to structured peak pixels and work after logarithmic processing. Two algorithms with * get 
good results on original envelope data but are defective on processed data

Group Abbreviation Time CNR Group Abbreviation Time CNR

TTD 3WD• 4.947 0.032 RPCA Lag-SPCP-SPG 38.770 0.118

RPCA ALM• 86.748 0.070 MC LMaFit 0.441 0.063

RPCA APG• 14.096 0.064 MC MC-NMF 1.733 0.056

RPCA APG-PARTIAL• 19.703 0.064 NMF NeNMF 0.179 0.070

NTF bcuNTD 23.042 0.065 NMF nmfLS2 0.787 0.070

NMF Deep-Semi-NMF 0.275 0.070 NMF NMF-MU 4.429 0.070

NMF DRMF• 2.467 0.251 RPCA noncvxRPCA◦ 0.239 0.070

LRR EALM• 113.071 0.070 RPCA NSA1• 3.560 0.065

NMF ENMF 56.960 0.070 RPCA NSA2• 3.704 0.064

RPCA flip-SPCP-max-QN 194.004 0.110 RPCA PCP• 29.737 0.064

RPCA flip-SPCP-sum-SPG 774.004 0.110 NMF PNMF 32.414 0.072

RPCA FPCP 0.156 0.069 RPCA R2PCP◦ 1.410 0.071

RPCA GoDec 0.164 0.071 LRR ROSL 1.077 0.070

RPCA GreGoDec 0.603 0.070 NMF Semi-NMF 0.184 0.078

MC GROUSE* 2.090 0.123 RPCA SSGoDec 4.876 0.071

TD HoRPCA-S-NCX 174.635 0.064 RPCA TFOCS-EC• 29.885 0.052

TD HoSVD 2.527 0.070 TD Tucker-ADAL 654.740 0.010

LRR IALM• 6.495 0.070 TD Tucker-ALS 0.269 0.070

MC IALM-MC 15.723 0.055 RPCA VBRPCA◦ 20.913 0.077

RPCA Lag-SPCP-QN 27.778 0.079 NMF NMF-PG* 34.973 0.063

Fig. 11  Three typical output results of phantom experiments. a A typical good result showing pure sparse 
components without noise. This image is obtained by ALM algorithm on original phantom data. b A typical 
output affected by bright edge structures. This image is obtained by APG algorithm on original phantom 
data. Because the pixel values of bright edges are 1000 times larger than the pixel values in the rest of the 
image, the flow sparse component in the middle of the tube cannot be observed. c A typical noisy result 
showing sparse components with indivisible noise. This image is obtained by RSTD algorithm on original 
phantom data
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The last format of data to be applied is B-mode data. As for B-mode phantom data, 
49 algorithms successfully give good results with a CNR higher than 2. However, 
the results of four of these algorithms contain bright edges which are considered to 
be low-rank components. The results of 35 algorithms only show the edges. Among 
them, a few sensitive algorithms can also partly detect sparse partition with obvi-
ous motion. However, only several bright pixels with motion can be detected. After 
reducing the dynamic range, no algorithm is affected by edges and 75 algorithms give 
sparse components with pure background. Examples of good results and noisy results 
in phantom experiments are shown in Fig. 11. The results of B-mode phantom data 
are shown in Table 8.

Table 8  The algorithms with good results on B-mode phantom data

The algorithms with ◦ are the 3 new algorithms work on processed data, which are defective on original data. The 
algorithms with • are sensitive to structured peak pixels and work after logarithmic processing. Three algorithms with ** get 
good results on original envelope data but are defective on processed data. The algorithms with * give pure backgrounds

Group Abbreviation Time CNR Group Abbreviation Time CNR

RPCA LSADM• 1.455 3.582 MC RPCA-GD• 6.118 3.165

RPCA L1F 2.595 1.038 MC ScGrassMC 4.123 1.338

RPCA DECOLOR 7.015 2.847 LRR EALM• 10.899 3.681

RPCA RegL1-ALM 4.352 3.700 LRR IALM• 2.469 3.681

RPCA GA◦ 0.032 3.680 LRR ADM** 0.668 0.024

RPCA GM◦ 0.153 3.713 LRR LADMAP 0.363 3.681

RPCA MoG-RPCA 4.691 3.359 LRR FastLADMAP 0.802 3.681

RPCA noncvxRPCA• 0.110 3.681 LRR ROSL 0.421 3.712

RPCA NSA1• 1.407 3.602 TTD 3WD• 1.942 2.964

RPCA NSA2• 1.537 3.568 TTD MAMR 2.784 3.154

RPCA flip-SPCP-sum-SPG 276 3.695 TTD RMAMR 6.776 2.289

RPCA flip-SPCP-max-QN 138 3.695 TTD ADMM◦* 3.627 0.794

RPCA Lag-SPCP-SPG* 5.010 1.598 NMF NMF-MU 2.143 3.681

RPCA Lag-SPCP-QN* 7.219 0.685 NMF NMF-PG 8.774 3.565

RPCA FW-T* 0.715 3.073 NMF NMF-ALS 2.406 3.681

RPCA BRPCA-MD• 283 3.724 NMF NMF-ALS-OBS 2.710 3.681

RPCA BRPCA-MD-NSS• 291 3.511 NMF PNMF 16.815 3.681

RPCA VBRPCA 4.627 3.692 NMF ManhNMF 2.292 3.662

RPCA PRMF 1.522 3.522 NMF NeNMF 0.066 3.681

RPCA TFOCS-EC• 9.131 3.349 NMF LNMF** 0.204 0.279

RPCA GoDec 0.095 3.681 NMF ENMF 13.546 3.681

RPCA SSGoDec 1.459 3.679 NMF nmfLS2 0.320 3.681

RPCA GreGoDec 0.229 3.681 NMF Semi-NMF 0.154 2.604

ST GRASTA 1.321 1.156 NMF Deep-Semi-NMF 0.156 3.681

MC FPC 49.672 2.454 NMF iNMF 1.482 3.650

MC GROUSE** 1.580 0.068 NMF DRMF•* 2.461 3.497

MC IALM-MC 6.992 3.690 TD HoSVD 0.532 3.681

MC LMaFit 0.314 3.300 TD HoRPCA-S-NCX 89.622 3.693

MC LRGeomCG 0.757 3.723 TD Tucker-ADAL 258 3.573

MC MC-NMF◦ 0.585 3.423 TD Tucker-ALS 0.130 3.681

MC OR1MP◦ 0.096 3.365
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In vivo experiments

In the third step, rat data are used to test the performance of these algorithms on real 
ultrasound data with small vessels-like tissues. The RF rat data, complex envelope rat 
data, and B-mode rat data are used to be compared.

In terms of RF rat data, 82 algorithms give very good and similar results, and 7 algo-
rithms show noisy and meaningless results. The other 17 algorithms are restricted due to 
the size limitation or non-negative limitation. The complex envelope rat data remains to 
share similar results with RF rat data. As for B-mode rat data, 92 algorithms successfully 
detected vessel-like tissues and only 3 algorithms failed to show any part of the sparse 
components. Examples of good results and noisy results in in vivo rat experiments are 
shown in Fig.  12. Since most algorithms give results with similar SNR and CNR, the 
evaluation of results combine subjective observations and numerical analysis. Due to 
the unknown in vivo structure, we lack ground truth for the accuracy of the assessment 
results. Only algorithms with pure backgrounds are shown in Table  9 due to similar 
results and limited space.

Fig. 12  The examples of the results of rat experiments. a The B-mode image of rat data for comparison. b is 
obtained by ALM algorithm on original rat data. The dynamic background and noise are filtered out relatively 
well. c is obtained by APG algorithm on original rat data. Large areas of dynamic tissue are classified as sparse 
components. Since there is no ground truth for in vivo rat data, the results are described using relatively good 
and relatively noisy

Table 9  The algorithms with pure backgrounds on in vivo data

Group Abbreviation CNR

RF in vivo data

  TTD ADMM 0.306

Envelope in vivo data

 RPCA Lag-SPCP-SPG 0.258

 RPCA R2PCP 0.153

 NMF DRMF 0.510

B-mode in vivo data

 RPCA R2PCP 0.416

 RPCA Lag-SPCP-QN 0.519

 RPCA Lag-SPCP-SPG 0.502

 TTD ADMM 0.453

 TD RSTD 0.449

 TD OSTD 0.521
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Discussion
A total of 106 algorithms were tested in this paper. Analyzing the results obtained from 
simulation, phantom, and in  vivo experiments, we found that 11 algorithms require 
huge memory (7.9 GB for frame size 250× 125 , 20 frames) due to the singular value 
decomposition or QR decomposition process. Since typical ultrasound frames are large 
in size, the left unitary matrix in full singular value decomposition demands an exces-
sive amount of memory, e.g., ADM. There are two possible solutions to this problem. 
First, the approximate SVD can be calculated and stored in every iteration instead of full 
SVD  [55, 113]. Second, small overlapping patches from the ultrasound frames can be 
considered to formulate the data matrix which will substantially reduce the size of the 
Casorati matrix and eventually the memory footprint. Another advantage of using this 
windowing technique is that it can automatically equalize uneven noise distribution by 
normalizing the power locally [51]. The 11 algorithms with size limitation are listed in 
Table 10.

Moreover, there are 6 algorithms that require non-negative input. Since ultrasound RF 
data usually contain both positive and negative values, these algorithms are not suitable 
for working with RF data for clutter suppression. 20 algorithms giving good results on 
RF simulation data are tested with the absolute value of RF data to confirm the impact 
of non-negative requirements on ultrasound clutter suppression. Although all of these 
53 algorithms are still capable of showing show high-contrast vessel structures, the SNR 

Table 10  The 11 algorithms with size limitation

Group Abbreviation Algorithm name

RPCA IALM-LMSVDS IALM with LMSVDS

RPCA ADM Alternating direction method

ST GOSUS Grassmannian online subspace updates with structured-sparsity

ST pROST Robust PCA and subspace tracking from incomplete observa-
tions using L0-surrogates

ST ReProCS Provable dynamic robust PCA or robust subspace tracking

ST MEDRoP Memory efficient dynamic robust PCA

MC PG-RMC Nearly optimal robust matrix completion

MC MC-logdet Top-N recommender system via matrix completion

MC OP-RPCA Robust PCA via outlier prsuit

MC SVT A singular value thresholding algorithm for matrix completion

TD t-SVD Tensor SVD in Fourier domain

Table 11  The algorithms with non-negative requirement

Group Abbreviation Algorithm name

MC MC-NMF Nonnegative mtrix completion

NMF NMF-MU NMF solved by mltiplicative udates

NMF NMF-ALS-OBS NMF solved by alternating least squares 
with optimal brain surgeon

NMF LNMF Spatially localized NMF

NMF iNMF Incremental subspace learning via NMF

TD CP-APR PARAFAC/CP decomposition solved by 
alternating Poisson regression
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obtained with absolute value RF data (0.81) is slightly greater than the original SNR 
(0.76) showing a significant increase of background noise in sparse components. At the 
same time, the CNR obtained with absolute value RF data (1.69) is slightly lower than 
the original CNR (1.73), which proves that nonnegative requirement has only limited 
effect on the accuracy of the DLSM decomposition. The 6 algorithms with size limita-
tions are listed in Table 11.

Another type of restricted algorithms is affected by complex inputs. From the experi-
ment results, it is obvious that complex envelope data are not suitable for ultrasound 
clutter suppression since it takes longer calculation time and gives poor performance. 
Also, 13 algorithms are affected by complex value and cannot separate low-rank and 
sparse components well. Among them, 13 algorithms cannot take complex numbers as 

Table 12  The 13 algorithms that cannot take complex numbers as input

Group Abbreviation Algorithm nme

RPCA DECOLOR Contiguous outliers in the low-rank representation

RPCA MoG-RPCA Mixture of Gaussians RPCA

RPCA FW-T SPCP solved by Frank–Wolfe method

MC LRGeomCG Low-rank matrix completion by Riemannian optimization

MC RPCA-GD Robust PCA via gradient descent

LRR ADM Alternating direction method

LRR LADMAP Linearized ADM with adaptive penalty

LRR FastLADMAP Fast LADMAP

TTD MAMR Motion-assisted matrix restoration

TTD RMAMR Robust motion-assisted matrix restoration

TD HoRPCA-IALM HoRPCA solved by IALM

TD HoRPCA-S HoRPCA with singleton model solved by ADAL

TD RSTD Rank sparsity tensor decomposition

Table 13  The algorithms not robust to the outliers

Group Abbreviation Algorithm name

RPCA PCP Principal component pursuit

RPCA IALM-BLWS IALM with BLWS

RPCA APG-PARTIAL Partial accelerated proximal gradient

RPCA APG Accelerated proximal gradient

RPCA DUAL Dual RPCA

RPCA LSADM LSADM

RPCA GA Grassmann average

RPCA GM Grassmann median

RPCA NSA1 Non-smooth augmented Lagrangian v1

RPCA NSA1 Non-smooth augmented Lagrangian v2

RPCA FW-T SPCP solved by Frank–Wolfe method

RPCA TFOCS-EC TFOCS with equality constraints

LRR EALM Exact ALM

LRR IALM Inexact ALM

TTD 3WD 3-way-decomposition

NMF DRMF Direct robust matrix factorization

TD OSTD Online stochastic tensor decomposition
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input, and some algorithms are stuck in a longer loop that requires more than 300 s. 
Algorithms which failed due to complex numbers are listed below in Table 12. In addi-
tion, the extremely small CNR obtained from the envelope data is only one-hundredth 
of the ones obtained from other datasets which indicates that envelope data are not suit-
able as an input form of ultrasound clutter suppression.

Among the remaining algorithms, 17 algorithms are easily affected by outliers. These 
algorithms cannot denoise the peak values when the dynamic range is roughly greater 
than 11.5 bits , which is the natural logarithm of difference between maximum and mini-
mum. These 17 algorithms have performed well on pre-processed data and showed 
good results in simulation experiments and phantom experiments. However, they are 
not robust to outliers. In the simulation experiments, these algorithms divided the back-
ground peak pixels into sparse components, resulting in a noisy background. Similarly, 
they are not robust to large-shaped structured outliers and divide bright static edges into 
sparse components in phantom experiments. These 17 algorithms that are susceptible 
to outliers are listed in Table 13. Since complex envelope data are not suitable for ultra-
sound clutter suppression, the performance of the algorithms on complex envelope data 
has not been considered.

Table 14  The algorithms with the potential to give a pure background

Group Abbreviation Algorithm name

RPCA PCP Principal component pursuit

RPCA FPCP Fast PCP

RPCA R2PCP Riemannian robust principal component pursuit

RPCA IALM Inexact ALM

RPCA IALM-BLWS IALM with BLWS

RPCA APG-PARTIAL Partial accelerated proximal gradient

RPCA APG Accelerated proximal gradient

RPCA DUAL Dual RPCA

RPCA Lag-SPCP-SPG Lagrangian SPCP solved by spectral projected gradient

RPCA Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton

RPCA FW-T SPCP solved by Frank–Wolfe method

LRR ROSL Robust orthonormal subspace learning

NMF DRMF Direct robust matrix factorization

TD HoRPCA-S-NCX HoRPCA with singleton model solved by ADAL (non-convex)

TD OSTD Online stochastic tensor decomposition

Table 15  The average time taken by the fastest 20 algorithms

RF data (s) Complex envelope 
data (s)

B-mode data (s)

Original simulation data 0.19 0.67 0.28

Original phantom data 0.31 0.58 0.30

Original rat data 0.31 0.50 0.29

Preprocessed simulation data 1.05 1.21 0.30

Preprocessed phantom data 0.69 2.18 0.33

Preprocessed rat data 0.77 1.81 0.61
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In addition, a pure background (0 dB) is of great significance for vascular image seg-
mentation and process and analysis of other medical images [46, 114]. However, this 
is a difficult goal due to the probe jitter, dynamic backgrounds, noise, shadows, and 
many other reasons. Therefore, only a few results have pure background on simula-
tion data and phantom data. Furthermore, no result has pure background on in vivo 
rat data because of the complex tissue motions and the harsh conditions. Some algo-
rithms have a strong ability dealing with these challenges and give pure backgrounds 
on simulation data and phantom data. These algorithms are listed in Table 14.

Overall, in terms of calculation time, DLSM algorithms take the longest time to run 
complex envelope data in comparison with RF data and B-mode data. Due to its large 
amount of calculations, complex envelope data take twice as long as RF data do to 
run. This confirms again that complex envelope data are not suitable for ultrasound 
clutter suppression. Meanwhile, RF data require slightly less computation time than 
B-mode data. This may be caused by the extra information RF data contain. Mean-
while, we can find that DLSM algorithms use a slightly longer time on preprocessed 
data than on original data. However, the algorithms separate sparse components 
more accurately. Table 15 lists the average time taken by the fastest 20 algorithms on 
different datasets and different data formats.

The experimental results prove that ultrasound data are very different from ordinary 
video surveillance frames. All DLSM algorithms can be successfully applied to sur-
veillance images. However, some of them are not suitable for ultrasound data. There 
are quite a few algorithms that are not suitable for ultrasound RF data and complex 
envelope data, which may due to the complexity of the RF data and the complex space 
of complex envelope data. The simulation experiments prove that some algorithms 
are still not robust to ultrasonic clutter and are not sensitive to the data with overall 
small pixel values ( < 10−3 ). As for these algorithms, the low-rank components of the 

Table 16  The algorithms require less than 1 s calculation time

Group Abbreviation Algorithm name

LRR ADM Alternating direction method

LRR LADMAP Linearized ADM with adaptive penalty

LRR FastLADMAP Fast LADMAP

LRR ROSL Robust orthonormal subspace learning

MC GROUSE Grassmannian rank-one update subspace estimation

MC LMaFit Low-rank matrix fitting

MC LRGeomCG Low-rank matrix completion by Riemannian optimization

NMF nmfLS2 Nonnegative matrix factorization with sparse matrix

NMF Semi-NMF Semi-nonnegative matrix factorization

NMF Deep-semi-NMF deep semi-nonnegative matrix factorization

RPCA FPCP Fast PCP

RPCA L1F L1 filtering

RPCA noncvxRPCA Robust PCA via nonconvex rank approximation

RPCA VBRPCA Variational Bayesian RPCA

RPCA GoDec Go decomposition

RPCA GreGoDec Greedy semi-soft GoDec algorithm

TD Tucker-ADAL Tucker decomposition solved by ADAL

TD Tucker-ALS Tucker decomposition solved by ALS
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results often contain inseparable background flicker, noise, and tiny motion. These 
algorithms have been listed in Table 13. Meanwhile, the phantom experiment results 
prove that some DLSM algorithms are not robust and stable with a high dynamic 
range greater than 10 bits . For ultrasound data, an area with small values often exists 
in a uniform tissue. Edges that are much brighter than other tissues are also common 
due to the strong reflections at the interface. The CNR after preprocessing the ultra-
sound data is generally higher than the CNR of raw data. The result of the data that 
removed the peak is also significantly better than the results of raw data. Therefore, 
it is necessary to preprocess the ultrasound image when applying the DLSM algo-
rithm. Moreover, parameter adjustment or other math improvements are necessary 
when applying some DLSM algorithms on ultrasound data to get the best filtering 
performance.

On the other hand, in terms of ultrasound data formats, experiments show that 
B-mode ultrasound data can make more algorithms successful for vascular detection. 
The B-mode ultrasound data may lose information. However, the outliers that may 
affect DLSM algorithms may also be weakened by Hilbert transform an absolute pro-
cess. This might be the reason why more DLSM algorithms work for B-mode data. 
Although B-mode data has more good results than RF data, RF data require slightly 
less average calculation time and are more suitable for real-time requirements. The 
algorithms in Table 16 are relatively stable in all three datasets. These algorithms all 

Table 17  The most robust algorithms with the best performance

Group Abbreviation Algorithm name

RPCA FPCP Fast PCP

RPCA L1F L1 filtering

RPCA DECOLOR Contiguous outliers in the low-rank representation

RPCA RegL1-ALM Low-rank matrix approximation under robust L1-norm

RPCA MoG-RPCA Mixture of Gaussians RPCA

RPCA Lag-SPCP-SPG Lagrangian SPCP solved by spectral projected gradient

RPCA Lag-SPCP-QN Lagrangian SPCP solved by Quasi-Newton

RPCA PRMF Probabilistic robust matrix factorization

RPCA GoDec Go Decomposition

RPCA SSGoDec Semi-soft GoDec

RPCA GreGoDec Greedy semi-soft GoDec algorithm

MC IALM-MC Inexact ALM for matrix completion

MC LMaFit Low-rank matrix fitting

MC LRGeomCG Low-rank matrix completion by Riemannian optimization

LRR ROSL Robust orthonormal subspace learning

TTD MAMR Motion-assisted matrix restoration

NMF PNMF Probabilistic nonnegative matrix factorization

NMF nmfLS2 Nonnegative matrix factorization with sparse matrix

NMF Semi-NMF Semi-nonnegative matrix factorization

NMF Deep-Semi-NMF Deep semi-nonnegative matrix factorization

TD HoSVD High-order singular value decomposition

TD HoRPCA-S-NCX HoRPCA with singleton model solved by ADAL (nonconvex)

TD Tucker-ADAL Tucker decomposition solved by ADAL

TD Tucker-ALS Tucker decomposition solved by ALS
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require less than 1 s for computation while giving the correct sparse components. 
Experiments show that they may be more suitable for ultrasound clutter suppression.

Finally, 22 algorithms which are most robust to noise with the best performance in 
all the experiments are listed in Table 17. These algorithms may have a strong ability 
for ultrasound clutter suppression.

In this paper, we adapted different techniques originally proposed for natural 
images in the field of computer vision for ultrasound color flow imaging. As ultra-
sound images have unique characteristics due to the physics of sound propagation, 
these images have the so-called “speckle noise”. We believe that the results of this 
paper can be generalized to other imaging modalities that are affected by diffraction, 
such as optical coherence tomography (OCT).

Conclusion
The performance of 106 established low-rank and sparse decomposition algorithms for 
clutter filtering has been tested in this work. Our results show that few robust matrix 
decomposition techniques are suitable for solving the limitations of SVD-based ultra-
sound clutter suppression methods such as sensitivity to large noise. In addition, sev-
eral matrix decomposition techniques show the potential for real-time implementation 
on commercial ultrasound machines due to their low computational complexity. Fur-
thermore, some preprocessing is necessary when applying this framework to ultrasound 
data. Finally, some of the algorithms studied in this work can automatically estimate the 
optimal power Doppler images without requiring extensive manual tuning, which may 
pave the way for easier commercial and clinical translation of ultrasound clutter sup-
pression (Additional file 1).
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