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Abstract 

Background:  STAR is a model-based, personalised, risk-based dosing approach for 
glycaemic control (GC) in critically ill patients. STAR provides safe, effective control to 
nearly all patients, using 1–3 hourly measurement and intervention intervals. However, 
the average 11–12 measurements per day required can be a clinical burden in many 
intensive care units. This study aims to significantly reduce workload by extending STAR 
1–3 hourly intervals to 1 to 4-, 5-, and 6-hourly intervals, and evaluate the impact of 
these longer intervals on GC safety and efficacy, using validated in silico virtual patients 
and trials methods. A Standard STAR approach was used which allowed more hypergly-
caemia over extended intervals, and a STAR Upper Limit Controlled approach limited 
nutrition to mitigate hyperglycaemia over longer intervention intervals.

Results:  Extending STAR from 1–3 hourly to 1–6 hourly provided high safety and 
efficacy for nearly all patients in both approaches. For STAR Standard, virtual trial results 
showed lower % blood glucose (BG) in the safe 4.4–8.0 mmol/L target band (from 83 
to 80%) as treatment intervals increased. Longer intervals resulted in increased risks of 
hyper- (15% to 18% BG > 8.0 mmol/L) and hypo- (2.1% to 2.8% of patients with min. 
BG < 2.2 mmol/L) glycaemia. These results were achieved with slightly reduced insulin 
(3.2 [2.0 5.0] to 2.5 [1.5 3.0] U/h) and nutrition (100 [85 100] to 90 [75 100] % goal feed) 
rates, but most importantly, with significantly reduced workload (12 to 8 measure-
ments per day). The STAR Upper Limit Controlled approach mitigated hyperglycaemia 
and had lower insulin and significantly lower nutrition administration rates.

Conclusions:  The modest increased risk of hyper- and hypo-glycaemia, and the 
reduction in nutrition delivery associated with longer treatment intervals represent 
a significant risk and reward trade-off in GC. However, STAR still provided highly safe, 
effective control for nearly all patients regardless of treatment intervals and approach, 
showing this unique risk-based dosing approach, modulating both insulin and nutri-
tion, to be robust in its design. Clinical pilot trials using STAR with different measure-
ment timeframes should be undertaken to confirm these results clinically.
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Background
Critically ill patients often experience stress-induced hyperglycaemia [1]. Increased 
insulin resistance, antagonised insulin secretion, and excessive or unsuppressed hepatic 
glucose production all contribute to abnormally increase blood glucose (BG) levels. 
Hyperglycaemia is associated with increased morbidity and mortality [2, 3]. In 2001, gly-
caemic control (GC) demonstrated improved outcomes for these patients [4]. However, 
other studies failed to replicate the results [5–9], primarily blaming the increased risk of 
hypoglycaemia and glycaemic variability, both associated with worse outcomes [10–12]. 
These confounding outcomes have resulted in ongoing debate on GC [13–15], where 
current guidelines suggest higher glycaemic target bands and permissive hyperglycaemia 
due to fear of hypoglycaemia [16, 17].

A recent analysis suggests GC to lower glycaemic ranges was wrongly blamed for 
increased hypoglycaemia [18]. In this analysis, poor protocol compliance was pointed 
to as the most likely cause of hypoglycaemia. Hence, the association between increased 
hypoglycaemia and GC to lower glycaemic ranges in many randomised clinical trials 
could be biased by poor implementation. Another study showed overall GC outcomes 
do not rely on underlying patient condition, so critically ill patients who survive are 
not more or less difficult to control glycaemically than those who do not survive [19]. 
This implies that GC outcome, is a function of GC protocol design, not patient condi-
tion, indicating poor protocol design lacking personalisation as another culprit in poor 
study results, as well as that all patients should be able to benefit from well-designed 
(and implemented) control. More specifically, inter- and intra-patient variability is what 
makes GC hard to achieve safely [20, 21]. There is thus a critical need for personalised, 
one method fits all, glycaemic control [22]. Failing to provide safe, effective control for 
nearly all patients, regardless of which target band used, should thus not be acceptable, 
placing demand on better protocol design for safety and performance.

The Stochastic Targeted (STAR) GC framework is a model-based protocol directly 
accounting for both inter- and intra-patient variability [23]. STAR is a unique risk-based 
dosing approach, identifying patient-specific response to insulin, and forecasting likely 
future BG levels for specific insulin and nutrition inputs. STAR has been shown safe and 
effective for nearly all patients in three different countries and intensive care unit set-
tings, despite targeting lower, normoglycaemic, ranges [24, 25].

To date, STAR uses 1–3 hourly forward prediction intervals to assess potential risk 
of hypo- and hyper-glycaemia for given 1–3 hourly treatments, averaging 11–12 BG 
measurements per day [23, 24]. While some ICUs can manage this workload, this value 
can be seen as excessive clinical burden for others, often due to lower nurse per patient 
ratios or greater clinical complexity of the patients. Equally, many clinical studies used 
longer intervals, but could not deliver safe, consistently effective GC [5–9].

This study extends from 1–3 hourly to 1–6 hourly measurement and intervention 
intervals in the STAR GC framework analyses the impact on GC safety and efficacy, 
using a clinically validated virtual patient modelling approach [26, 27]. If accomplished 
with minimally reduced safety and performance, this change has the potential to signifi-
cantly reduce nurse workload, which is a major issue in GC [28–30]. It would also extend 
STAR’s capability while increasing its acceptability for clinical use in more ICUs. More 
specifically, this study aims to assess and quantify, for the first time, the risk (safety and 
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performance) and reward (reduced workload) trade-off associated with lower BG meas-
urement frequency, in the context of the original, proven, standard-of-care version of 
STAR [24].

Results
Stochastic models comparison

Stochastic models represent the probabilities of changes in insulin sensitivity (SI), as cal-
culated from clinical data. Example 2D stochastic models for predictions 1–6 h ahead 
are presented in Fig. 1, where the 5th and 95th percentiles for future SI at a given current 
SI are shown. The probability distribution within these bounds would be described by a 
3-D ‘mountain range’ sticking out of the page, approximately centred on the 1-1 line (as 
depicted in Fig. 8).

Intra-patient variability becomes more similar as prediction interval time increases, 
and the prediction lines converge to a similar range. This result clearly shows, while a 
bigger difference can be observed from 1 to 3 h in SI evolution, the difference in intra-
patient variability becomes similar when longer intervals are considered. This outcome 
can represent a general, conservative, range of intra-patient variability, but alternatively 
may represent the average of more and less variable patients, which could result in 
reduced safety in some cases. More specifically, the longer interval model ranges may 
“hide” a larger range of changes (rising and falling) before returning to range, increasing 
the risk of larger unexpected glucose excursions.

Fig. 1  Stochastic model representation showing the 5th–95th percentiles prediction range of future 1–6 h SI 
levels given current identified patient-specific SIn
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A narrower range of possible SI outcomes translates directly to a narrower range of 
possible BG outcomes for a given treatment. As a result, more aggressive dosing can 
be used for shorter treatment intervals with narrower prediction of future SI variability 
ranges compared to longer intervals with wider prediction ranges. Thus, in general, the 
larger the measurement interval, the more conservative the treatment, given the likely 
higher potential sudden extreme changes in SI.

STAR virtual trial results

Fivefold cross-validation virtual trial results using virtual patients, or ‘digital twins’ 
derived from clinical data, are presented in Table 1, for each version of STAR (1 to 3-, 
4-, 5-, and 6-hourly). These digital twins allow analysis of BG response cohort to dif-
ferent treatment protocols to be compared in both individual patients and the overall 
cohort. Each arm has the same number of patients, but can have a slightly different 
number of GC hours, depending on the last measurement interval used in each vir-
tual patient trial (i.e.: if last treatment is 3-hourly vs. 6-hourly, there will be 3 extra 
simulated hours of GC for this patient). Excerpts from two virtual patient trials com-
paring STAR-3H and STAR-6H are also presented in Figs. 2, 3.

As expected, workload decreased as measurement interval increased (from 12 to 8 
measurements per day for STAR-3H to STAR-6H). Time in the 4.4–8.0 mmol/L target 
band was high and similar in all scenarios (80–83%), but with a clear shift upward 
in median BG levels (6.5 [5.9 7.3] mmol/L for STAR-3H to 6.9 [6.3 7.7] mmol/L for 
STAR-6H), as reflected in the decreasing % BG in 4.4–7.0 mmol/L. Additionally, the 
number of patients with ≥ 50% BG in the tighter, safer 4.4–7.0 mmol/L (68% to 55%) 
and the wider, safe 4.4–8.0 mmol/L (86% vs 84%) slightly decreased, where additional 
analysis showed 80% of these patients dropping below 50% in those ranges were typi-
cally going to higher BG ranges, and 20% where going to lower BG ranges.

Table 1  Virtual trial results of STAR Standard for 1 to 3-,4-,5-, and 6-hourly intervals

Results are based on hourly resampled BG. Median [IQR] is given for per-patient statistics, where appropriate

STAR-3H STAR-4H STAR-5H STAR-6H

# Episodes 681 681 681 681

# GC hours 59,240 59,528 59,782 60,003

# BG measures 28,961 24,792 22,243 20,272

Workload (meas. per day) 12 10 9 8

Median BG (mmol/L) 6.5 [5.9 7.3] 6.7 [6.1 7.5] 6.8 [6.2 7.6] 6.9 [6.3 7.7]

Median insulin (U/h) 3.2 [2.0 5.0] 3.0 [2.0 4.0] 2.5 [2.0 3.5] 2.5 [1.5 3.0]

Median nutrition (%GF) 100 [85 100] 95 [80 100] 90 [80 100] 90 [75 100]

%BG in 4.4–8.0 mmol/L 83 82 81 80

%BG in 4.4–7.0 mmol/L 65 59 55 52

%BG > 8.0 mmol/L 15 16 17 18

%BG < 4.4 mmol/L 1.6 1.5 1.5 1.6

%BG < 2.2 mmol/L 0.03 0.02 0.04 0.06

# Patients ≥ 50%BG in 4.4–7.0 mmol/L (%) 466 (68%) 432 (63%) 401 (59%) 372 (55%)

# Patients ≥ 50%BG in 4.4–8.0 mmol/L (%) 589 (86%) 583 (86%) 573 (84%) 571 (84%)

# Patients min BG < 2.2 mmol/L (%) 14 (2.1%) 12 (1.8%) 18 (2.6%) 19 (2.8%)
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Fig. 2  Excerpt of virtual trial results for Patient A. Blood glucose (top), insulin rates (middle), and enteral (solid 
line) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-3H (red) and STAR-6H 
(blue)

Fig. 3  Excerpt of virtual trial results for Patient B. Blood glucose (top), insulin rates (middle), and enteral (solid 
line) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-3H (red) and STAR-6H 
(blue)
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Incidence of hyperglycaemia is slightly higher as the interval increased. Most impor-
tantly, the incidence of severe hypoglycaemia increased as measurement interval 
increased, and the number of patients experiencing severe hypoglycaemia also increased 
(from 14 to 19 patients between STAR-3H and STAR-6H, 2.1% to 2.8% by patient). Inter-
estingly, hypoglycaemia decreased in STAR-4H, with only 12 (1.8%) patients experienc-
ing severe episode.

Overall, these results were achieved with lower insulin and nutrition rates as intervals 
increased. However, the nutrition rates remained high in these scenarios, where only 
25% of patients received less than 75% patient goal feed (GF) in the worst case (STAR-
6H). Thus, there was also some increased hyperglycaemia, as noted.

STAR Upper Limit Controlled (STAR‑ULC) virtual trial results

An ‘Upper Limit Controlled’ approach is also analysed, in which nutrition is modulated 
so the upper 95th percentile of possible BG outcomes does not exceed 8.5 mmol/L. This 
approach reduces hyperglycaemia, as well as the increased risk associated with large 
insulin and nutrition doses, which amplifies uncertainty in SI, especially as the meas-
urement interval increases. Fivefold cross-validation results of the 1 to 3-, 4-, 5-, and 
6-hourly versions of the STAR Upper Limit Controlled (STAR-ULC) approach, forcing 
the 95th percentile of BG ≤ 8.5 mmol/L are presented in Table 2.

High performance (~ 84% in target band and ~ 67% in 4.4–7.0 mmol/L) and high safety 
(14% BG > 8.0  mmol/L and 1.5% BG < 4.4  mmol/L) were achieved, and this result was 
surprisingly very similar regardless of measurement intervals. The number of patients 
experiencing severe hypoglycaemia decreased compared to STAR Standard (Table  1). 
STAR-ULC-4H (9 patients) and STAR-ULC-5H (9 patients) had both reduced number 
of patients experiencing hypoglycaemia compared to STAR-4H (12 patients) and STAR-
5H (18 patients). These values were also lower compared to STAR-ULC-3H (11 patients) 

Table 2  Virtual trial results of  STAR-ULC 1 to  3-,4-,5-, and  6-hourly, forcing the  predicted 
95th BG percentile ≤ 8.5 mmol/L

Results are based on hourly resampled BG. Median [IQR] is given for per-patient statistics, where appropriate

STAR-ULC-3H STAR-ULC-4H STAR-ULC-5H STAR-ULC-6H

# Episodes 681 681 681 681

# GC hours 59,203 59,392 59,614 59,845

# BG measures 31,204 27,196 24,769 23,387

Workload (meas. per day) 13 11 10 9

Median BG (mmol/L) 6.4 [5.9 7.2] 6.5 [6.0 7.3] 6.5 [6.0 7.3] 6.5 [6.0 7.3]

Median insulin (U/h) 3.0 [2.0 4.5] 2.5 [1.7 4.0] 2.0 [1.5 3.5] 2.0 [1.5 3.5]

Median nutrition (%GF) 95 [80 100] 75 [65 85] 70 [60 80] 60 [50 75]

%BG in 4.4–8.0 mmol/L 84 84 85 85

%BG in 4.4–7.0 mmol/L 68 67 67 67

%BG > 8.0 mmol/L 14 14 14 14

%BG < 4.4 mmol/L 1.6 1.5 1.5 1.5

%BG < 2.2 mmol/L 0.02 0.02 0.02 0.04

# Patients ≥ 50%BG in 4.4–7.0 mmol/L (%) 497 (73%) 486 (71%) 481 (71%) 481 (71%)

# Patients ≥ 50%BG in 4.4–8.0 mmol/L (%) 597 (88%) 596 (88%) 594 (87%) 592 (87%)

# Patients min BG < 2.2 mmol/L (%) 11 (1.6%) 9 (1.3%) 9 (1.3%) 15 (2.2%)
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and STAR-ULC-6H (15 patients). This result reflects a reduction in risk due to reduced 
insulin dose by limiting the upper glycaemic as well within the STAR risk-based dosing 
system.

The number of patients with ≥ 50% BG in 4.4–7.0 mmol/L (~ 71%) and 4.4–8.0 mmol/L 
(~ 87%) was similar across all measurement intervals, reflecting effective control was 
achieved consistently for most patients. These numbers are higher compared to STAR 
Standard (Table 1), especially when comparing the tighter, safer 4.4–7.0 mmol/L band 
(55–68% for STAR Standard vs. 71–73% for STAR-ULC), which would reflect a signifi-
cant improvement in outcomes [31, 32].

Improved safety and efficacy were achieved here with significantly lower insulin and 
nutrition rates administered (Table 2) compared to STAR Standard (Table 1). A com-
parison of STAR-6H and STAR-ULC-6H is presented in Fig.  4, where this difference 
is clearly illustrated. Finally, workload increased by 1 additional measurement per day 
for each version compared to STAR Standard (Table 1), but are still lower than STAR 
3-h standard of 12 per day [24] at the 4–6 hourly intervals with better performance and 
safety.

Discussion
Foremost, it is important to understand metabolic variability, reflected in inter- and 
intra-patient variability, is what makes GC hard to achieve safely [19, 21]. Therefore, 
it is critical for GC protocol design to account for both, using dynamic, personalised 
solutions [22]. While the use of physiological models allows direct identification of 

Fig. 4  Excerpt of virtual trial results for Patient C. Blood glucose (top), insulin rates (middle), and enteral 
(solid line) and dextrose bolus (bars) nutrition rates (bottom) are compared between STAR-6H (blue) and 
STAR-ULC-6H (red). The 4.4–8.0 mmol/L target band is shown as well as the 8.5 mmol/L limit (dashed black)
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inter-patient variability [20], STAR is the only current protocol [33] also using stochastic 
modelling to evaluate intra-patient variability [34, 35], which it then employs in a unique 
risk-based dosing strategy [23].

In a previous study comparing survivors and non-survivors, inter-patient variability 
has been shown different while intra-patient variability was clinically equivalent [19]. 
Therefore, this result emphasises the importance of identifying key physiological param-
eters, such as SI here, and assessing potential variability to provide safe, and effective 
control for all, which is critical to improving outcomes [18, 36]. In addition, compliance 
to protocol is essential to ensure any clinical judgement bias in results outcomes and 
conclusions [18], where longer intervals may improve compliance [37].

In many ICUs, protocols are often 4-hourly based once BG levels are stabilised in the 
target band. In practice, this interval can quickly become 5- or 6-hourly, given clinical 
judgement and excessive clinical workload [18, 21, 38–40]. Usually, the higher the target 
band, the greater the permissive hyperglycaemia, and, indirectly, the lower the risk of 
hypoglycaemia. However, it is also important to keep in mind it is impossible to clearly 
know whether the patient suffered from hypoglycaemia over longer measurement inter-
vals without continuous glucose monitoring (CGM) or similar [41, 42].

This study assesses the potential to reduce workload with the safe, and effective STAR 
GC framework, and the impact on safety and performance. The results presented in 
this study clearly illustrate, and quantify for the first time, the risk and reward trade-off 
using longer measurement intervals in the context of STAR. Comparing STAR-3H and 
STAR-6H, the risks include higher incidence of severe hypoglycaemia (2.1% vs. 2.8%, 
respectively), lower %BG in intermediate bands (65% vs. 52% BG in 4.4–7.0  mmol/L, 
respectively, and 83% vs. 80% BG in target band), and lower nutrition rates achieved 
(100% vs. 90% GF, respectively), and the reward is the lower associated workload (12 vs 
8 measures per day). When considering STAR-ULC to mitigate the associated increased 
hyperglycaemic risk with longer treatment intervals, improved performance is achieved 
compared to STAR-Standard, with similar safety, and this performance is consistent with 
the treatment intervals (68% vs. 67% BG in 4.4–7.0 mmol/L and 84% vs. 85% BG in target 
band for STAR-3H-ULC and STAR-6H-ULC, respectively). However, this gain in perfor-
mance compared to STAR-Standard was achieved with relatively much lower median 
nutrition rates (95% and 60% GF for STAR-3H-ULC and STAR-6H-ULC vs. 100% and 
90% for STAR-3H and STAR-6H), lower insulin rates (3.0 and 2.0  U/h for STAR-3H-
ULC and STAR-6H-ULC vs. 3.2 and 2.0 U/h for STAR-3H and STAR-6H), and similar 
workload (13 and 9 measures per day for STAR-3H-ULC and STAR-6H-ULC vs. 12 and 
8 measures per day for STAR-3H and STAR-6H). These results are summarised in Fig. 5.

Longer intervals are thus associated with increased risks in the context of STAR. Spe-
cifically, extreme changes in SI levels between consecutive measurements have a greater 
chance to occur as measurement intervals increase. Typically, for a given insulin dose 
and a sudden rise in SI, BG levels will suddenly drop. If this (unpredicted) drop occurs 
1  h after treatment intervention and the next measurement is due in 5  h, it can have 
significant impact on patient BG, seen in the increased number of patients experienc-
ing severe hypoglycaemia (Table  1). However, when limiting GC to lower measure-
ment intervals, this sudden reduction in BG levels will potentially be seen sooner, and 
treatment adapted, potentially averting severe hypoglycaemia. This scenario is shown 
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in Fig. 3, where Patient B becomes more insulin sensitive at 12 h, and where STAR-3H 
captures this behaviour and can adapt treatment faster (at 15 h) compared to STAR-6H 
where severe hypoglycaemia occurs (at 18 h).

Importantly, when STAR assesses the risks associated with a specific treatment for an 
interval longer than 1 h, the predicted SI range unique to each interval is used to pre-
dict the corresponding BG evolution range over the specific time period. The risks of 
extreme changes in SI for longer treatment intervals are thus considered for any treat-
ment intervals. For example, when assessing the risks associated for a timeframe inter-
val of 3 h, the evolution of BG is calculated based on the predicted SIn+1 for the first 
hour, SIn+2 for the second hour, and SIn+3 for the third hour. Thus, the extreme poten-
tial changes in SI levels between measurements, which are unique or different for each 
interval, are taken into account, as for each interval, the likely 5th–95th percentile pre-
diction range of the evolution of SI is determined based on the current patient-specific 
identified metabolic state.

This outcome also emphasises the importance of accurately characterising intra-
patient variability, where improved predictions would improve GC outcome. Ongoing 
studies are assessing the benefits of using more complex stochastic models [35, 43–45], 
and are currently being tested in clinical trials to validate the results. However, as this 
is a first study analysing longer treatment intervals, the well-proven original stochastic 
model approach is used here.

As seen in Figs. 2, 3 and 4, the different GC scenarios, based on the different meas-
urement intervals allowed, led to significantly different measurement timing. There-
fore, while one version could by chance measure BG right before hypoglycaemia, 
another could fail due to unfortunate timing based on prior treatment intervals selected. 
This issue adds difficulty when interpreting results, but reflects real practice, where 

Fig. 5  Risk and reward trade-off between STAR Standard (solid) and STAR-ULC (dashed) with increasing 
measurements intervals
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measurement timing is also a factor influencing control. In clinical practice, despite 
nurse selection of a specific treatment interval, the new measurement may be taken 
a few minutes, or even hours, later/earlier. This measurement (mis)timing may thus 
(unexpectedly) influence results, as seen in Table 2, where incidence of severe hypogly-
caemia is actually lower for STAR-ULC-4H (1.3% of patients) and STAR-ULC-5H (1.3% 
of patients) compared to STAR-ULC-3H (1.6% of patients). However, while this issue 
is typical in medical environment and time-dependent decision-making, a large cohort 
of virtual patients enables a balanced analysis of the potential advantage/disadvantage. 
More specifically, the differences reported in Table 2 are small, and may thus be consid-
ered, based on our experience, as simulation ‘noise’.

Another potential consequence of increased measurement interval is the lower con-
fidence in future evolution of SI. The 5th–95th percentile of predicted SI is thus wider 
(Fig. 1), and STAR will consistently be more conservative in insulin dosing [43, 45], typi-
cally providing lower insulin rates to ensure safety (Table 1). While it is a safe approach, 
performance is affected due to the higher predicted risk, increasing BG levels (Table 1). 
The other effect is a general increase/shift in BG outcomes achieved, leading to higher 
%BG > 8.0 mmol/L and %BG > 10.0 mmol/L, the severe hyperglycaemic threshold. Inter-
estingly, this outcome is achieved with slightly lower, but still high, nutrition rates [46, 
47] to avoid potentially more important hyperglycaemic risk (Table 1).

Hence, to reduce the related expected increased hyperglycaemia, an adapted approach 
forcing the 95th percentile of predicted BG ≤ 8.5 mmol/L, the STAR-ULC approach, was 
undertaken. Figure  5 presents the main risk and reward summary outcome compari-
son between STAR Standard and STAR-ULC as a function of measurement intervals. 
Significantly more consistent GC outcomes were achieved regardless of measurement 
timeframe (Table 2, Fig. 5). Surprisingly, these results show improved safety, and low-
ered the number of patients experiencing hypoglycaemia. This result and consistency 
can be explained by the increased workload, increasing the chances to react faster to 
reduced BG. However, it is most likely due to treatments suggesting lower insulin and 
nutrition rates (Table 2, Fig. 5), where insulin’s impact on BG reduction from a sudden 
rise in SI was reduced thanks to lower insulin concentrations and concomitantly reduced 
nutrition.

Virtual patient trials using the STAR-ULC to mitigate the risk of hyperglycaemia due 
to larger predicted variability resulted in trade-off between BG outcomes, workload, and 
nutrition rates achieved. Nutrition management in ICU is a hot topic [48–51], where no 
clear uniform guidelines exist. Recent reviews suggest stepping increased nutrition rates 
from ICU admission, starting at 25% GF and ideally increasing by 25% every 2 days to 
reach 100% within a week [49]. In these results, nutrition rates achieved (60 [50 75] %GF 
in the worst STAR-ULC-6H case) are still comparable to, or better than, the recommen-
dations, and thus potentially acceptable.

In addition, these rates achieved with STAR-ULC were comparable to the SPRINT 
protocol results, which was the only study to reduce all three of mortality, organ fail-
ure, and hypoglycaemia [36, 52]. Previous studies showed STAR using 1–3 h intervals 
provides close to the best nutrition delivery rates in the world [46] due to its abil-
ity to provide personalised nutrition, adapted to patient needs, while always ensuring 
safety. Hence, these results show the STAR Standard and STAR-ULC approaches can 
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deliver acceptable, but different nutrition delivery rates with extended intervals and 
reduced workload, presenting a clear trade-off choice.

Ideally, 1-hourly measurements would provide the best outcomes. However, this 
approach is not clinically feasible and would require too much workload. CGM could 
also potentially provide improved control [42, 53]. In general, this technology is still 
not fully reliable in ICUs [54], but may develop further in future to full effect and 
enable far more flexible control approaches [55].

Overall, the virtual trial results are encouraging, and, regardless of measurement 
interval, provided safe and effective control for nearly all patients. Consistent high 
%BG in the tighter, safer 4.4–7.0  mmol/L and wider, still safe 4.4–8.0  mmol/L tar-
get band are associated with improved outcomes in ICUs [31, 36, 56]. Results suggest 
STAR is robust when using longer treatment intervals, and can safely adapt treatment 
to patient needs. However, these results also show the inevitable risk and reward 
trade-off between measurement interval and GC safety and efficacy. Increasing meas-
urement intervals modestly increases risk of hypoglycaemia from 1.6% of patients 
to 2.2% or 2.8% (Tables 1, 2), which are still very low compared to many prior stud-
ies [57–61]. The potentially bigger trade-offs come between nutrition delivery and 
desired performance, both compared to workload.

More specifically, reducing workload using longer treatment intervals results in 
slightly high incidence of hyper- and hypo-glycaemia, given higher potential future 
SI variability. STAR-ULC provides safer, more effective, and tighter control compared 
to STAR Standard, at the cost of slightly increased workload and lower nutrition and 
insulin rates. This outcome suggests high nutrition and insulin rates magnify uncer-
tainty as treatment interval increases, which should be expected. Reducing nutri-
tion (and thus insulin) thus reduces risk of hypoglycaemia, further emphasising this 
“workload-performance-nutrition” risk and reward trade-off. While 4-hourly meas-
urements are common in GC, whether 5- and 6-hourly are suitable in clinical practice 
is an important question.

The only major change in the STAR GC protocol design in this analysis is the abil-
ity to suggest longer treatment intervals, given these treatments meet safety require-
ments, using additional corresponding extended stochastic models. Nothing else was 
changed from the original protocol. However, further analysis could consider some 
kind of hybrid system, with more restriction for longer treatment intervals (such as 
a potential reduced upper limit of insulin rate), to avoid additional risks. While this 
change could be considered, results presented here still show very high safety com-
pared to most published protocols [40, 57, 58], and, thus, such changes to the original 
protocol seem less necessary.

Comparison to other protocols is difficult as published studies often lack quality 
metrics and/or do not report results the same way [20, 62, 63]. Clinical protocols are 
effectively compared in the broad safety and performance metrics reported, but no 
specific table is given as there are so many reports of different lengths and intensity. 
Compared to major protocols, such as NICE-SUGAR, Glucontrol, and VISEP [5–7], 
the safety from hypoglycaemia at 1% by patients or less presented here is far better. 
Performance in time in band (estimated) is also much better, although median cohort 
BG is similar. Finally, workload for STAR-3H clinically and here [24] is higher, but 
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for the STAR 4- to 6-hourly results, where nutrition modulated to limit the outcome 
BG range safety and performance, are far better than these well-reported studies, and 
workload is now similar and more clinically acceptable.

Compared to prior model-based analyses, not used clinically, such as the STOMP pro-
tocol, created by this group [64], the performance and safety are similar, but workload 
is far lower for the nutrition limiting versions. STOMP used longer interval stochastic 
models to minimise 3-hourly hypoglycaemic risk. It analysed each 3-hourly interval out 
to 6 h to ensure any dose given did not increase future risk due to either timing errors 
as clinical staff were busy or due to intervention choices leading to combinations that 
unknowingly made future treatment choices difficult or more risky. STOMP was never 
clinically implemented as the results were not a significant improvement on STAR as 
implemented, unlike those presented in the trade-offs here.

The results presented here use virtual patient and trial simulations [26]. Such simula-
tions use a physiological model, where some physiological parameters are approximated, 
and, thus, could potentially lead to some minimal bias [65]. However, the model used 
has been validated and extensively clinically used in a wide range of clinical scenarios 
[24–27, 66–69]. It is also proven to reflect what is seen clinically by accurately predict-
ing subsequent clinical results [23, 70]. However, virtual trials represent ideal conditions, 
with full compliance to protocol. Results may thus be a best case compared to reality, 
but representative of the reality and generalisable to other population cohort. Hence, all 
results presented should be validated in future clinical pilot trials, which are justified by 
the results presented here.

Conclusions
In this study, the STAR GC framework is shown to provide safe, effective control to 
nearly all patients, despite increasing measurement intervals from 3- to 6-hourly to 
reduce workload. However, longer treatment intervals are associated with modestly 
increased risks of hyper- and hypo-glycaemia, as well as potential reductions in nutri-
tion delivery when these risks are mitigated by limiting hyperglycaemic risk. The overall 
results present a clear risk and reward trade-off between workload and GC outcomes 
within the context of this proven risk-based GC framework. Overall, STAR’s unique risk-
based dosing approach is robust to adaptation to using longer treatment intervals. Clini-
cal pilot trials using STAR with different measurement timeframes should be undertaken 
to confirm these results clinically.

Methods
Patients and data

Retrospective clinical data from 606 patients from different ICU settings are used. These 
patients underwent GC episodes using STAR (Christchurch, New Zealand and Gyula, 
Hungary) [24], and SPRINT [52], the ancestor of STAR (Christchurch, New Zealand). 
As patients can have multiple different GC episodes, this cohort includes 819 GC epi-
sodes, totalling 68,629 h of treatment. To avoid inconsistent and/or short GC episodes 
less representative of typical GC patients, only 681 episodes longer than 10 h and with 
starting BG > 7.0  mmol/L are used (Fig.  6). This cohort captures 59,439  h of control. 
Overall patient demographics are shown in Table 3. SPRINT and STAR in Christchurch 
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were implemented as standard practice, and de-identified data audit and analysis were 
approved by the New Zealand Health and Disability Ethics Committee Upper South 
Regional Ethics Committee B (Ref: URB/07/15/EXP). STAR Gyula was also imple-
mented as standard practice, and de-identified data audit and analysis is approved by the 
local ethical codes of Hungary.

STAR glycaemic control framework

STAR is a model-based, patient-specific GC framework [23]. STAR uses a clinically vali-
dated physiological model along with a stochastic model to provide a unique risk-based 
dosing approach [34, 65]. Inter-patient variability is assessed by identifying model-based, 
patient-specific SI from patient data [71]. SI is a key physiological parameter charac-
terising patient response to insulin [39]. Given current SI, the STAR stochastic model 
predicts a distribution of likely SI for 1–3 hourly intervals, directly quantifying the intra-
patient variability of future SI evolution. It then uses the 5th–95th percentile range of 
future SI [34] to calculate the corresponding 5th–95th percentile range of predicted BG 
outcomes for a given insulin and nutrition input. STAR adjusts treatment choices to ena-
ble a pre-set, clinical risk of 5% of future BG below the clinically set target band lower 
limit of 4.4  mmol/L (or any pre-set clinical value), as shown in Fig.  7. The stochastic 
model in STAR is built on population data, using kernel-density methods [34].

Glycaemic and nutrition management are often considered independently [16, 33]. 
Most GC protocols thus only modulate insulin to reduce BG levels [22, 57–61]. How-
ever, to date, STAR is the only GC protocol also modulating nutrition to control glycae-
mia [23, 24, 33], where other may change nutrition levels in response to hyperglycaemia 
as recommended by nutrition guidelines [16], but not per protocol design. Nutrition is 
reduced if insulin alone is not sufficient to reduce excessive BG levels [23]. Typically, 
highly resistant patients quickly reach insulin saturation effect on BG uptake (6–8 U/h). 
For those patients, nutrition must (also) be reduced to lower BG to safe levels. Thus, 

Fig. 6  GC episode selection from the original 606 patients

Table 3  Summary of patient demographic data

Data are given as median [IQR] where relevant

SPRINT Christchurch STAR Christchurch STAR Gyula

# Episodes 442 330 47

# Patients 292 267 47

# Hours 39,838 22,523 6268

% Male 62.7 65.5 61.7

Age (years) 63 [48, 73] 65 [55, 72] 66 [58, 71]

APACHE II 19.0 [15.0:24.5] 21.0 [16.0:25.0] 32.0 [28.0:36.0]

LOS-ICU (days) 6.2 [2.7, 13.0] 5.7 [2.5, 13.4] 14.0 [8.0, 20.5]
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nutrition can be temporarily reduced to a minimum of 30% original GF if insulin alone 
is not sufficient to safely control BG into the target band. Despite modulating nutrition, 
STAR has been shown to achieve close to best ICUs daily nutrition goals in the world, 
providing thus personalised nutrition [46].

STAR provides safe and effective control for nearly all (over 95% of ) patients [24]. It 
typically targets the 4.4–8.0 mmol/L range, allowing up to 6-8U/h of insulin with a maxi-
mum 2 U/h increase from any prior intervention. Nutrition can be reduced to a mini-
mum 30% GF, with a maximum decrease of 30% over successive treatments. Full details 
can be found elsewhere [23].

STAR 1–6 hourly extension

STAR currently uses 1–3 hourly measurements to provide GC [23]. This interval was 
originally chosen based on Christchurch (New Zealand) ICU standards and conservative 
decisions to ensure high safety and efficacy [52, 72]. The average 11–12 measurements 
per day required can be an excessive clinical burden in other ICUs [28–30], which could 
lead to protocol non-compliance [37], potentially affecting GC outcomes [18]. Therefore, 
STAR is extended in clinically validated virtual trials to 1 to 4-, 5-, and 6-hourly treat-
ment intervals, using extended 1 to 6-hourly stochastic models with the goal of assessing 
the safety and performance trade-offs at longer intervention intervals within this proven 
GC approach.

It is hypothesised there will be some loss of tighter control to narrower, potentially 
safer 4.4–7.0 mmol/L bands, but lesser loss of performance in the wider, but still safe 
4.4–8.0  mmol/L band [31, 56, 73]. Major questions arise over safety from mild and 
severe hypoglycaemia [5, 74] over longer intervals, and any impact from any resulting 
reductions in nutrition delivery [50].

In this study, 1 to 3-, 4-, 5-, and 6-hourly versions of STAR are simulated to better cap-
ture the effect of increased measurement intervals on STAR GC safety and performance. 
These stochastic models are built from retrospective patient data, using kernel-density 
methods [34, 43, 45, 75], where SI is identified hourly from BG, insulin, and nutrition 
clinical data [71, 76]. SI pairs (SIn, SIn+i) for i = 1,2,…,6 are created and used to build 
each stochastic models.

Fig. 7  Risk-based dosing approach of the STAR framework. Current patient-specific identified SI is used to 
forecast the likely 5th–95th percentile range of future SI. This range is used to calculate the corresponding 
5th–95th percentile range of likely future BG outcome for a given insulin and nutrition inputs
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Kernel-density methods enable to identify probability density function [77] of future 
SIn+1 knowing its current SIn state, based on local data density. More specifically, SI can 
be considered as a first order Markov chain, where the conditional probability distribu-
tion of future SIn+1 depend upon its prior state SIn, which can be expressed:

The joint probability P(SIn+1 = y, SIn = x) is determined using kernel-density meth-
ods and Gaussian estimator functions φ , weighted according to local data density. More 
specifically, the 2D joint probability is the summation of these Gaussian distribution 
functions centred at each of the data points (xi,yi):

where pxi and pyi are used to normalise each Gaussian distribution function to the posi-
tive domain, ensuring a conditional probability such that 

∫
P(SIn+1 = y|SIn = x)dx = 1 

is satisfied for each SIn values. More details on the methods used here are given in [34, 
75]. Importantly, SI data are transformed into the logarithmic space to ensure the data 
to have a Gaussian distribution. An example of the resulting 1-h stochastic model is pre-
sented in Fig. 8.

Fivefold cross-validation is used to build new 1–6 hourly stochastic models using 80% 
of patient data (by patient). The resulting model is then tested using the new extended 
version of STAR on the other 20% of patient data, where all five test sets are reported in 
aggregated results. This approach ensures independent development and test sets and a 
more robust analysis ensuring stochastic models are not biased by outlying patients or 
small sub-cohorts.

While inter-patient variability is not equivalent between patients, intra-patient vari-
ability is equivalent regardless of patient conditions [19, 21, 26]. The different groups 
were thus randomly created from the original retrospective GC episodes, regardless of 
specific demographic characteristics. However, sufficient data density was ensured in 
each group to build the model, and sufficient GC episodes test the new model GC per-
formance. Each group thus represents minimum 130 patients, totalling over 10,000 h of 
control. Finally, the results for any one group in the fivefold cross-validation were not 
notably different, thus indicating each group was comprehensive in the dynamics of the 
patient cohort, matching prior results showing as few as 3000–5000 h can capture a far 
larger cohort of dynamics [21, 34, 75].

Virtual trials

To compare the impact of longer treatment intervals on GC outcomes, validated virtual 
trials are used to simulate different protocol designs on virtual patients [69]. Virtual trials 

P(SIn+1|SIn, SIn−1, . . . , SI0) = P(SIn+1|SIn) =
P(SIn+1, SIn)
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are simulated on Matlab using a Java version of STAR. Virtual patients are characterised 
by their unique hourly identified SI profile, created from BG, insulin, and nutrition clini-
cal data [27, 69]. This approach allows comparison of the safety and performance of the 
original STAR 1–3 hourly [23], with STAR 1 to 4-, 5-, or 6-hourly on the same underly-
ing virtual patients [27]. In these in silico simulations, virtual patients, including start-
ing BG levels and nutrition rates, were based on initial starting clinical data. Such trials 
reflect ideal conditions with full compliance to protocol, and have been validated and 
generalised to different ICU populations [26, 69].

Importantly, virtual trials automatically select the longest treatment intervals sug-
gested and available. Thus, if only 1-hourly is suggested by STAR for safety reasons, 
virtual trials will select this treatment. However, if STAR assessment of risks results 
in allowing longer treatment intervals, then the longest available will be automatically 
selected. These trials are thus “blind” to any other potential factors, such as low BG lev-
els, that could affect nurse treatment selection in clinical use. Additionally, the ICING 
model used [65] enables protocol simulation using exogenous insulin infusion, insu-
lin boluses, or both, based on protocol design or ICU practices. In this study, insulin 
boluses are used in the simulations, as that is the standard of care in Christchurch, the 
main reference centre for this study.

STAR Upper Limit Controlled

STAR, in its current version, always ensures safety and maximises efficacy, not allowing 
the 5th percentile of future BG below the lower limit of the target band (4.4 mmol/L), 

Fig. 8  Stochastic modelling of SIn+1 variability. For each SIn value, there exists a conditional probability 
distribution function (along SIn+1 axis) where the area under the curve sums up to 1.0
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and choosing the insulin and nutrition intervention that best overlaps the target band, 
all of which is a function of the risk-based dosing approach. Because a 3-h measure-
ment interval is relatively short in a clinical sense, the 95th percentile is rarely above 
8.5 mmol/L, which is considered acceptable, and nutrition in this case is not decreased. 
There is thus no strict condition on the resulting 95th predicted percentile BG in the 
treatment decision-making, and a treatment can be considered by STAR despite poten-
tially leading to mild hyperglycaemia. However, as measurement interval increases, 
wider 5th–95th percentile prediction range of BG is more likely to be larger induced by 
higher potential variability [35, 43–45], resulting in predicted 95th percentile BG poten-
tially much higher than 8.5 mmol/L.

To mitigate this impact of rising hyperglycaemia over longer intervention intervals, a 
second version of the protocol is implemented. In this case, the 95th percentile of pre-
dicted BG must strictly be lower than 8.5 mmol/L for the treatment intervention to be 
considered, which is accomplished (where necessary) by further reducing nutrition and/
or not offering longer treatment intervals as they do not strictly meet this condition. This 
approach will decrease the increased risk of hyperglycaemia and show improved effi-
cacy, but could also increase workload and/or reduce nutrition delivery, both of which 
are clinically desirable “rewards”. This second protocol approach is denoted STAR-ULC 
(STAR Upper Limit Controlled).

The combination of analysing two STAR protocol approaches (STAR Standard and 
STAR-ULC) over extended 4–6 hourly intervals limits the analysis and provides the full 
range of possible performance and safety trade-offs.

Comparison analysis

Most studies assessing GC outcome often lack quality metrics and/or do not report 
results the same way [20, 62, 63]. This study thus compares results of the proven 
STAR protocol [24] using commonly used and recommended metrics in the field 
[16, 56, 62, 63, 74, 78–84]. More specifically, safety, efficacy, BG achieved, insulin 
and nutrition rates, and workload are compared. BG is hourly resampled to allow 
fair comparison between protocols. Safety is compared using %BG outside target 
band (%BG < 4.4  mmol/L and %BG > 8.0  mmol/L) and %BG below severe hypogly-
caemic threshold (%BG < 2.2  mmol/L). Performance is analysed using %BG in the 
4.4–8.0 mmol/L target band and median BG levels achieved. Per-patient insulin (U/h) 
and nutrition rates (%GF) are also compared, and workload is assessed using average 
number of measurements per day.

Additionally, the proportion of patients with ≥ 50% BG in 4.4–7.0 mmol/L and 4.4–
8.0  mmol/L are compared for each protocol. High percentage time in these bands, 
and low incidence of hypoglycaemia, are associated with improved outcomes in 
ICU patients [7, 12, 31, 36, 56, 73, 85, 86]. Hence, comparing the number of patients 
reducing/improving time in these bands provides a further outcome-based means 
to quantify whether patient GC outcomes improved, or not. The number of patients 
experiencing severe hypoglycaemia is also compared.

The main outcome of the study is to show and evaluate the risk and reward trade-off 
where:
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•	 Risks are to the outcome resulting safety (hypoglycaemia), efficacy (performance 
of GC control), and nutrition provided,

•	 Reward is the lower workload, reflected by lower measurements per day with the 
longer treatment intervals used.

This study thus analyses STAR’s design robustness as measurement timeframes 
increases, where, as per protocol design, a reduction in workload (reward) is 
expected, but at the cost of reduced safety and performance (risks).
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