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Abstract 

Background:  An intracranial aneurysm is a cerebrovascular disorder that can result in 
various diseases. Clinically, diagnosis of an intracranial aneurysm utilizes digital subtrac-
tion angiography (DSA) modality as gold standard. The existing automatic computer-
aided diagnosis (CAD) research studies with DSA modality were based on classical 
digital image processing (DIP) methods. However, the classical feature extraction meth-
ods were badly hampered by complex vascular distribution, and the sliding window 
methods were time-consuming during searching and feature extraction. Therefore, 
developing an accurate and efficient CAD method to detect intracranial aneurysms on 
DSA images is a meaningful task.

Methods:  In this study, we proposed a two-stage convolutional neural network 
(CNN) architecture to automatically detect intracranial aneurysms on 2D-DSA images. 
In region localization stage (RLS), our detection system can locate a specific region to 
reduce the interference of the other regions. Then, in aneurysm detection stage (ADS), 
the detector could combine the information of frontal and lateral angiographic view to 
identify intracranial aneurysms, with a false-positive suppression algorithm.

Results:  Our study was experimented on posterior communicating artery (PCoA) 
region of internal carotid artery (ICA). The data set contained 241 subjects for model 
training, and 40 prospectively collected subjects for testing. Compared with the clas-
sical DIP method which had an accuracy of 62.5% and an area under curve (AUC) of 
0.69, the proposed architecture could achieve accuracy of 93.5% and the AUC of 0.942. 
In addition, the detection time cost of our method was about 0.569 s, which was one 
hundred times faster than the classical DIP method of 62.546 s.

Conclusion:  The results illustrated that our proposed two-stage CNN-based archi-
tecture was more accurate and faster compared with the existing research studies of 
classical DIP methods. Overall, our study is a demonstration that it is feasible to assist 
physicians to detect intracranial aneurysm on DSA images using CNN.
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Background
An intracranial aneurysm is a cerebrovascular disorder which is caused by localized dila-
tion or ballooning of the internal carotid artery (ICA). An intracranial aneurysm appears 
to be associated with adult-dominant polycystic kidney disease (ADPKD), fibrous dys-
plasia, coarctation of the aorta, and so on [1]. Without timely detection and treatment, 
rupture of an intracranial aneurysm will lead to subarachnoid hemorrhage, which often 
results in serious neurological sequelae and has high fatality [2]. However, the traditional 
diagnostic approach is labor-consuming in that it requires the participation of skilled 
and experienced physicians. Nevertheless, failures to recognize intracranial aneurysms 
still happen from time to time. Therefore, developing an automatic system to assist doc-
tors to accurately diagnose intracranial aneurysms can, in a certain degree, relieve the 
physicians’ burden.

Several research studies were conducted for automatically detecting intracranial 
aneurysms in recent years. The detection systems were tested on different angiographic 
modalities, such as magnetic resonance angiography (MRA) [3–7], and computed 
tomography angiography (CTA) [8–10]. Clinically, the invasive digital subtraction angi-
ography (DSA) is taken as the gold standard of aneurysm detection instead of MRA and 
CTA for higher spatial resolution and sensitivity in the detection of small aneurysms 
[11]. Most existing computer-aided diagnosis (CAD) methods were based on classical 
digital image processing (DIP) methods using 2D-DSA images for some essential rea-
sons. On one hand, with the invasive examination, DSA data are rather limited com-
pared with non-invasive approaches (MRA or CTA). On the other hand, compared 
with the 2D-DSA modality, the 3D-DSA modality has more information that can easily 
identify aneurysms, but most hospitals in developing country can only afford 2D angi-
ography devices for the expensive cost of 3D devices. However, current research studies 
based on classical DIP methods have some limitations. Abboud et al. [12] utilized mor-
phology to predict the risk of rupture of an intracranial aneurysm by manual annotation, 
so their work lacks an automatic method to locate intracranial aneurysms. Rahmany 
et al. [13] fused a brief description of a priori knowledge from experts as fuzzy model to 
detect cerebral aneurysms. And then, Rahmany et al. [14] employed the Otsu method to 
extract the vascular structure and detect aneurysms with a combination of the Zernike 
moments and MSER detector. After that, Rahmany et al. [15] integrated MSER, SURF, 
and SIFT descriptors to do aneurysm detection, which could reduce the false posi-
tive rate compared with the previous work [14]. However, according to the results of 
above-mentioned studies, the classical DIP methods were not the best approach for fea-
ture extraction to represent the variety of aneurysms. And the sliding window approach 
which they applied was time-consuming during searching and feature extraction.

Different from classical DIP methods, convolutional neural network (CNN)-based 
methods [16] have been demonstrated to be more efficient in feature extraction. In 
recent years, the CNN architecture has been widely applied in object detection and 
obtained satisfactory response [17–22]. Moreover, the CNN architecture has also 
achieved good performance in several medical detection tasks [23–27]. Jerman et  al. 
[28] computed intra-vascular distance to obtain an intensity map from 3D-DSA images, 
and used CNNs to classify whether the map represents an aneurysm. However, produc-
ing intensity maps takes a lot of computing time. Podgoršak et al. [29] modified VGG 
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network to carry out a pixel-by-pixel semantic segmentation for vasculature and aneu-
rysms, which achieved average AUC of 0.761. The 350 DSA acquisitions in their data set 
are completely comprised of saccular aneurysms, so the false-positive rate is not evalu-
ated. Jin et al. [30] applied BiConvLSTM to identify aneurysms and achieved a sensitivity 
of 94.3%, with a high false-positive rate of 3.77 per sequence.

There are several challenges that remain to be solved in aneurysm detection using 
CNNs. First, the information loss of 2D-DSA images would increase the difficulty in 
diagnosing. Thus, it is imperative and meaningful to develop a method to remedy the 
information loss on 2D-DSA images. Second, DSA images with large field of view (FOV) 
and high resolution often contain unnecessary interference, which may introduce fail-
ures to identify tiny intracranial aneurysms and high computing time. Thirdly, the over-
laps of vessels appear highly similar with intracranial aneurysms on DSA images. An 
efficient automatic detection system should avoid the misrecognition between the over-
lap and an aneurysm, since the false-positive rate is a significant clinic indicator. In this 
study, with 2D-DSA images, we proposed a CNN-based architecture to automatically 
detect intracranial aneurysms. The major contributions can be concluded as follows,

1.	 With our two-stage detection network, a step-wise localization can effectively reduce 
the interference from the background and promote the detection accuracy.

2.	 Using the information of both the frontal and lateral 2D-DSA sequences, the pro-
posed automatic detection system can achieve state-of-the-art performance, with an 
effective false-positive suppression algorithm to better distinguish intracranial aneu-
rysms from the overlaps of vessels.

3.	 The proposed architecture can notably increase the detection speed compared with 
classical DIP methods, with only millisecond reaction time.

Results
Region localization

The precision of RLS was 96%, in which the PCoA region was recognized from 96 images 
out of 100 testing images. Example instances are shown in Fig. 1. Figure 1a, b are cases 
that precisely located the PCoA region, with a confidence of 1.000. Fig. 1c is one of the 
images which did not find the PCoA region. Note that all pictures that did not success-
fully locate the PCoA region are from the same sequence which has an abnormally huge 

Fig. 1  Example cases of RLS. In this figure, the red bounding box denoted PCoA region with the white 
annotation of region name and confidence. a, b Illustrated the PCoA region which could be detected 
accurately. c Was one of the images which did not find PCoA region. d Was another image from the same 
sequence of c, which could be detected with the PCoA region
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aneurysm. However, from the same sequence, Fig.  1d located the PCoA region with 
a confidence of 0.972. For the images that found the PCoA region, the IOU achieved 
0.7441 with the x-axis and y-axis offset being 7.11% and 6.08%, respectively, which was a 
slight deviation that had a little impact for ADS.

Comparison between dual input and single input

The result curves of fivefold cross validation of dual-input and single-input model are 
shown in Fig. 2, which features the mAP curves and Smooth L1 Loss curves. Figure 2a, 
b is the mAP curves of dual-input model and single-input model, respectively. In Fig. 2a, 
five curves of dual-input model are centralized and fluctuate between 0.6 and 0.7 after 
convergence. However, in Fig. 2b, the curves of single-input model are decentralized and 
distributed between 0.55 and 0.8 after convergence, with the highest bias between the 
fold 0 and fold 1 closed to 0.2. The result illustrates the dual-input model is more stable 
with different data compared with single-input model.

The Smooth L1 Loss was used to evaluate bounding-box regression accuracy. Fig-
ure 2c, d shows the curves of dual-input and single-input model, respectively. In Fig. 2d, 
the single-input model has some instability after 29 epochs. However, there is no obvi-
ous distance between these two models, because their losses are both under 0.2 after 
convergence which denotes that the result bounding box has only a slight deviation off 
manual annotations.

Example instances of ADS in PCoA region are displayed in Fig. 3. Figure 3a, b shows 
the outcome of dual-input model and single-input model, respectively, which are almost 
the same except the confidence of overlap. About Fig. 3c, d, the dual-input model that 
combines the frontal and lateral information can recognize the overlap with a confidence 
of 0.70, but the single-input model misrecognizes it as an aneurysm.

Fig. 2  The fivefold cross-validation result curves of dual-input model and single-input model. Each curve 
of different colors denoted different cross-validation model. a, b Were mAP curves of dual-input model 
and single-input model, respectively. c, d Referred to Smooth L1 Loss curves of dual-input and single-input 
model, respectively
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Effect of regional average grayscale suppression

Clinical test could demonstrate the usability of RAGS algorithm. For comparison, we 
implemented the work based on the classical DIP method by Rahmany et al. [15] as the 
baseline of our study.

In previous section, we introduced parameter c as the threshold for RAGS algorithm. 
As shown in Fig. 4, if the confidence of a predicted aneurysm is lower than c, the RAGS 
algorithm will be applied. Otherwise, the label of aneurysm will be retained. Totally, 40 
prospectively collected patients were involved for clinical tests, in which 20 patients 
received a positive diagnosis with an aneurysm in the PCoA region, while the other 20 
patients received a negative result. We chose the highest confidence of a predicted aneu-
rysm from the entire sequence of each patient as their disease confidence in our experi-
ment. Figure 5 shows the average count distribution of patients for different choices of 
parameter c. To balance distribution, we manually picked 0.99 as parameter c. Sample 
results are illustrated in Fig. 6. Table 1 shows the confusion matrix of the clinical test. 
Table  1(a), (b) shows the confusion matrix of dual-input model with and without the 
RAGS, respectively. The dual-input model predicted 11 false-positive cases without 
RAGS, while there were only 1.8 false-positive cases and 0.8 false-negative cases after 

Fig. 3  Example instances of ADS in PCoA region. In this figure, the red bounding box denoted aneurysm and 
the orange bounding box meant overlap of vessels, with the white annotation of class name and confidence. 
a–d Referred to the correct recognition results of dual-input model and single-input model respectively. 
Dual-input model could recognize the overlap in c, but single-input model misrecognized it in d 

Fig. 4  The flowchart of Regional Average Grayscale Suppression (RAGS) algorithm. In this figure, the red 
bounding box denoted aneurysm with the white annotation of region name and confidence in images 
of top raw. The pipeline of RAGS algorithm was displayed in bottom raw. In the rightest image, the red 
bounding box denoted ROI of aneurysm and the green bounding box denoted the ROI of enlargement area. 
And the histogram illustrated the difference of grayscale distribution between ROI of aneurysm (red bars) and 
ROI of enlargement area (green bars)
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confidence < c confidence >= c
Fig. 5  Distribution of patients for different choices of parameter c. The white annotations on bars were 
average count of patients. The orange part of bars denoted average count of patients whose disease 
confidence were equal or higher than c, and the blue part of bars meant average count of patients whose 
disease confidence was smaller than c 

Fig. 6  Sample results of proposed approach. In this figure, the red bounding box denoted aneurysm and the 
orange bounding box meant overlap of vessels, with the white annotation of class name and confidence
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applying the RAGS algorithm. Table  1(c) shows the confusion matrix of the baseline 
method, which predicted 14 false-positive cases. 

The ROC curves of clinical test are shown in Fig. 7. Therein, Fig. 7a, b shows the out-
come of dual-input model with and without RAGS, where the average area under curves 
(AUC) is 0.942 and 0.772, respectively. As a contrast, the AUC of the baseline method 
was only 0.69. 

Comparison of the performance for different methods is illustrated in Table  2. 
YOLOv3 [22], RetinaNet [31], and a physician with 20 years’ clinical experience were 
included as references. Note that the data which we utilized in model training were dou-
ble checked by 3D-DSA modality to ensure the correctness of the annotations. However, 
the physician engaged in performance evaluation was only provided with the 2D images 
which were the input of the detector. As shown in Table 2, the best method among the six 
was the dual-input model with RAGS, which had sensitivity, specificity, and accuracy all 

Table 1  Confusion matrix of clinical test

Diagnosis+ Diagnosis− Total

(a) Confusion matrix model of dual-input model (dual-input)

 Predict+ 20±0.00 11±2.97 31

 Predict− 0±0.00 9±2.97 9

 Total 20 20 40

(b) Confusion matrix of dual-input model and RAGS (dual-input + RAGS)

 Predict+ 19.2±0.40 1.8±0.40 21

 Predict− 0.8±0.40 18.2±0.40 19

 Total 20 20 40

(c) Confusion matrix of baseline method (Rahmany et al. [15])

 Predict+ 19 14 33

 Predict− 1 6 7

 Total 20 20 40

Fig. 7  ROC curves of clinical test. a, b Was the ROC curve of the dual-input model with and without RAGS 
respectively. In this figure, each polyline of different colors denoted ROC curve of different cross-validation 
model of the proposed method, and the fuchsia broken line referred to ROC curve of baseline method
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higher than the physician. Although the dual-input model without RAGS and RetinaNet 
had a sensitivity of 1.000, their specificity was lower than 0.5. The method of Rahmany 
et al. had a sensitivity of 0.950, while the specificity and accuracy were only 0.300 and 
0.625, respectively. With respect to the computation time cost, the CNN-based method 
was obviously faster than the classical DIP method. The quickest approach is YOLOv3 
with only 0.0232s, and the proposed method took 0.0569s for diagnosing a patient, 
which was one hundred times faster than the baseline method approximately.

Discussion
We examined the ability of our proposed CNN-based CAD architecture in region local-
ization, aneurysm detection, and clinical test. The experimental results indicated that 
our two-stage framework was feasible for clinical application. For each stage of our 
experiment, the 96% precision of RLS demonstrated that our method could locate PCoA 
region for most patients. However, missing detection occurred on an angiographic 
sequence of a special patient. One of the unrecognized cases is shown in Fig. 1c, d is an 
image from the same sequence that accurately detected the PCoA region. Comparing 
the two images, we noticed that the case in Fig. 1c was very special, since the main vessel 
junction was occluded by a huge aneurysm. It seems that a necessary feature was lost for 
the neural network to locate the PCoA region because of the occlusion. This reveals that 
more special patients should be employed for model training to improve the robustness 
of RLS.

Combining the images of both the frontal and lateral view is helpful in clinical diag-
nosing, which inspired us to introduce the dual-input in ADS. As shown in Fig. 2a, b, 
the mAP curves of dual-input model were obviously more centralized after convergence 
comparing with the single-input model. On the other side, as shown in Fig. 3c, d, it was 
easier for the dual-input model to distinguish the overlap, while the single-input model 
misrecognized it as an aneurysm. Taken together, these results suggests that our pro-
posed dual-input model has good stability and detection precision, since dual-input 
model can relatively remedy the information loss of single 2D-DSA image. Combining 
the images from another view, the CNN architecture can infer the vascular orientation, 
which is useful to distinguish the overlap of vessels.

Although the dual-input model decreased the false-positive cases compared with the 
single-input model, the false-positive rate was still exorbitant. In fact, some false-positive 

Table 2  Comparison of the performance for each method

Data shown in “italic” are the highest value of the column

Data in parentheses are 95% CI

Sensitivity Specificity Accuracy Time cost (s)

Dual-input 1:000 (0:832; 1:000) 0.450 (0.231, 0.685) 0.725 (0.561, 0.854) 0:0366 ± 0:0001

Dual-input + RAGS 0.960 (0.751, 0.999) 0:910 (0:683; 0:988) 0:935 (0:796; 0:984) 0:0569 ± 0:0013

Rahmany et al. [15] 0.950 (0.751, 0.999) 0.300 (0.119, 0.543) 0.625 (0.458, 0.773) 62:5460 ± 23:222

YOLOv3 [22] 0.850 (0.621, 0.968) 0.700 (0.457, 0.881) 0.775 (0.616, 0.892) 0:0232 ± 0:0005

RetinaNet [31] 1:000 (0:832; 1:000) 0.420 (0.191, 0.639) 0.710 (0.535, 0.834) 0:0456 ± 0:0036

Physician 0.900 (0.683, 0.988) 0.900 (0.683, 0.988) 0.900 (0.763, 0.972) –
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cases only had one or two frames diagnosed with an aneurysm in about 20 frames totally 
due to the strict evaluation indicator which we proposed for high sensitivity. However, 
this may point out that our evaluation indicator is not entirely reasonable, since the rela-
tionship between the sequence is not utilized.

The primary cause of false-positive cases is the misrecognition of the overlap of ves-
sels. The results shown in Fig. 7 and Table 2 illustrate that the proposed RAGS algorithm 
could effectively improve the result, but it also led to a small set of false-negative cases. 
This might be because the intuition of RAGS algorithm is not completely reasonable, so 
that some exceptions can be misrecognized, such as low predicted confidence of large 
aneurysms or special viewing direction in angiography.

Besides, efficiency is an important indicator of CAD system. The speed of CNN-based 
methods was significantly faster compared with the classical DIP method, as shown in 
Table 2, since the sliding window method needs to traverse every window in DSA images 
to extract features, taking a lot of time. In contrast, CNN-based methods only need 
once forward propagation to extract feature map of the whole image, which effectively 
improved speed.

Unfortunately, several limitations of this work should be noted for further research. 
First, the data set is limited that it only contained 261 patients with aneurysms in PCoA 
region. Transfer learning method [32] can be applied if we can obtain data of other ICA 
regions in the future. In addition, DSA is an invasive examination modality, so that 
patients may not willing to choose. The wide accessible examination approaches such 
as MRA and CTA should be highly considered. Second, the relationship and informa-
tion of each frame in an entire DSA sequence were not utilized. Recently, the recurrent 
neural network (RNN) has been reported for the ability of combining context informa-
tion of a time series [16]. In future studies, we can apply RNN to deliver the features 
extracted by CNN for combining the context of DSA sequence. Third, the two-stage 
architecture might be a little complicated. For raw DSA images which have a resolution 
of 1024 × 1024 , it is very difficult to search the tiny aneurysms in such high-resolution 
images. However, proposing an end-to-end detector beyond the limitation of a specific 
region is worthy of further research.

Conclusion
In this study, we implemented a two-stage CNN-based architecture to detect intracra-
nial aneurysms. A specific region would be located from original DSA images to reduce 
interference in RLS. Then, in ADS, intracranial aneurysms would be detected combining 
the information of frontal and lateral region image output from RLS, with RAGS algo-
rithm for false-positive suppression. As shown in results, we demonstrated that our pro-
posed CAD architecture was able to assist physicians to identify intracranial aneurysms 
efficiently.

Methods
In this study, a two-stage CNN-based detection network was developed to implement 
the automatic detection of intracranial aneurysm on DSA images. The detection pipe-
line is schematized in Fig.  8. In region localization stage (RLS), our detection system 
paid attention to locating a specific region to reduce the interference from other regions. 
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We experimented on posterior communicating artery (PCoA) region, which has the 
aneurysm recurrence rate of the second place among all ICA regions [33]. In aneurysm 
detection stage (ADS), intracranial aneurysms were identified on the output images 
from RLS. The CNN framework of above two stages were based on Feature Pyramid 
Networks (FPN) [31] with the backbone of ResNet50 [34]. The 2D-DSA device gener-
ated two matched sequences simultaneously for each patient, including the frontal and 
lateral view of head. Therefore, we introduced Di

jF to represent the jth image in frontal 
sequence of the ith patient and Di

jL for the corresponding lateral one. For example, as 
shown in Fig.  8, we used Di

jL to denote the target image which we want to make the 
detection, and Di

jF was its corresponding image which was at the same position from 
another angiographic view. In RLS, we input a target image and its corresponding image. 
Then, the model of RLS was applied to get the PCoA region images. In ADS, the dual-
input concatenated the two PCoA region images, sending to the FPN of ADS to detect 
intracranial aneurysms. At last, we employed a region average grayscale suppression 
(RAGS) algorithm to suppress false-positive cases.

Region localization stage

The large resolution of the raw 2D-DSA images can bring extra interference and time 
consumption, so it is imperative to mitigate the impact of unrelated tissues. We imple-
mented the RLS to automatically locate a specific region, as shown in Fig. 9. To demon-
strate the validity, we experimented on PCoA region.

The features of an input image was extracted by FPN, which could adapt various reso-
lutions of input images and extract multi-scale features. The ResNet50 [34] was used as 
the backbone of FPN where each convolutional layer was followed by a batch normaliza-
tion layer (BN) [35] and an activation layer of ReLU [36].

Then, the features were sent to anchor boxes [19] to predict the PCoA region of the 
original input image. In detail, the detector might predict 6k parameters totally. The 
feature was extracted by FPN, which was sensitive about various scales of object. The 
k stands for the number of objects, and the number 6 denotes one classification label, 

Fig. 8  Schematic pipeline of our two-stage detection system. The region localization stage (RLS) located the 
PCoA region from the 2D-DSA images. The following aneurysm detection stage (ADS) identified intracranial 
aneurysm from the output of RLS
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four parameters of bounding box (x, y, w, h denote x-coordinate, y-coordinate, width, 
and height, respectively) and one confidence for classification. Note that, using our 
architecture, other parts such as anterior communicating artery (ACoA) region can be 
conveniently extended with supplement of labeled data. At last, according to the result 
bounding box, our model output the image of PCoA region. Then, we resized the image 
to 288× 288 to unify the interface for easily transferring the detector of ADS to different 
ICA regions.

Aneurysm detection stage

The second stage of our pipeline was to distinguish between intracranial aneurysms 
and the overlaps of vessels. As illustrated in Fig. 10, our proposed architecture con-
sisted of four steps, including: dual-input, feature extraction, output, and RAGS. The 
dual input concatenated the target PCoA region image and its corresponding PCoA 
region image as input tensor. The feature was extracted by FPN, which was sensitive 
about various scales of object. Then, the anchor boxes output the results of the detec-
tor. Similar to the RLS, the detector might predict 6k parameters totally, and the out-
put step reserved the objects whose confidence was higher than 0.6. Finally, because 
the overlap of vessels influenced the detection result, the RAGS algorithm was applied 
on objects whose predicted label was aneurysm, but the confidence was lower than the 
pre-set threshold.

Dual input

Clinically, even experienced neurosurgeons may be confused in distinguishing intrac-
ranial aneurysms from the overlaps of vessels when providing either the frontal or lat-
eral image. After providing both the frontal and the lateral DSA images, the experts 
can correctly infer the label through the trend of vessels. Motivated by this intuition, 
we modified the fundamental input architecture to combine the information of the 
frontal view and the lateral view. In details, the target PCoA image and the corre-
sponding PCoA image output from RLS were concatenated as the input tensor of ADS. 

Fig. 9  The architecture of region localization stage (RLS). In this figure, ‘ Convf×f , c, /s ’ denoted convolutional 
layer with size of filters f, and number of channels c and strides s (default strides was 1). Noting that each 
Conv layer was followed by a BN and an activation layer of ReLU. ‘ Poolf×f , /s ’ meant max pooling layer whose 
size of filters f and strides s. ‘ Up-sample, /r ’ indicated nearest neighbor up-sampling with up-sampling rate r. 
‘Anchor’ was anchor box which was utilized to predict the PCoA region. The first part was an input receiving a 
three-channel RGB image. The following feature extraction block was FPN with backbone of ResNet50. At last, 
the anchor boxes output the PCoA region of original input image
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During concatenation, as shown in Fig. 10, we put the target image on the front with 
the corresponding one behind it. Therefore, the neural network can utilize the infor-
mation from dual-input to partially remedy the information loss of 2D-DSA modality 
in feature extraction.

Regional average grayscale suppression

The dual-input model partly increased precision and stability, but the overlap of vessels 
was still easily misrecognized as an aneurysm in the preliminary experiment. Therefore, 
it was necessary to implement an algorithm to suppress the false-positive cases. Accord-
ing to the theory of DSA, the grayscale of image is determined by the density of radio-
contrast agent [37]. Specifically, the grayscale of one pixel in 2D-DSA image depends 
on the density of radiocontrast agent in the blood within the pixel’s corresponding 3-D 
space. Therefore, the region of an overlap of vessels corresponds to more blood com-
pared with surrounding region, which can result in deeper grayscale. The grayscale of 
very large aneurysms is usually deeper, because they contain lots of blood with radio-
contrast agent, but they are easy to seek out by CAD method with an outstanding con-
fidence closing to 1.0. On the contrast, for small aneurysms such as vessel umbos, the 
size of the aneurysms are usually smaller than the diameter of surrounding vein, so their 
grayscale would be lighter.

Fig. 10  The architecture of aneurysm detection stage (ADS). The annotation of this figure was identical 
to Fig. 9. In addition, ‘ t× ’ on the top of brace denoted t times repeat of these layers. The dual-input layer 
concatenated the target PCoA region image and the corresponding PCoA region image, following with 
an FPN to cover various scales of aneurysms. Then, the anchor boxes output prediction results. The RAGS 
algorithm followed to suppress false-positive cases



Page 13 of 18Duan et al. BioMed Eng OnLine          (2019) 18:110 

According to the principle mentioned above, we proposed RAGS algorithm to 
evaluate the output results which have the classification label of aneurysm with a 
confidence smaller than c. The flowchart is illustrated in Fig.  4 with pseudocode of 
Algorithm  1. We compared the confidence of predicted aneurysm with threshold c 
to determine whether the label of aneurysm would be retained. If the confidence of 
an aneurysm was lower than c, RAGS algorithm would be applied. At first, the ves-
sel mask of original target PCoA region image was roughly extracted using the adap-
tive grayscale threshold selection method Otsu [38]. Then, the vessel of target PCoA 
region image was computed by logic AND operation using the vessel mask and origi-
nal PCoA region image. In Fig. 4, the predicted bounding box of an aneurysm is dis-
played in red rectangle. To adapt different scales, we doubled the width and height 
at the same center of predicted aneurysm as the ROI of enlargement area, which is 
shown by green rectangle in Fig.  4. We also defined the region between green rec-
tangle and red rectangle as ROI of surrounding vessels. After defining regions, we 
accumulated the gray values as Ganeurysm and counted the pixels as Paneurysm of the 
aneurysm. So do an enlargement area as Genlargement and Penlargement . The average gray-
scale of the aneurysm was counted as AGaneurysm:

and the average gray value of the surrounding vessels as AGsurrounding:

At last, comparing the AGaneurysm and AGsurrounding was applied. If AGaneurysm is smaller 
than AGsurrounding , which denotes the grayscale of object is deeper than surrounding 
vessels, we discriminated that this object was an overlap. Otherwise, we retained its label 
of aneurysm.

(1)AGaneurysm = Ganeurysm/Paneurysm,

(2)AGsurrounding = (Genlargement − Ganeurysm)/(Penlargement − Paneurysm).
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Data set

The data set was provided by Department of Neurosurgery, West China Hospital of 
Sichuan University, Chengdu, China. Since the radiocontrast agent needs to flow with 
blood, the visualization of intracranial arteries would vary with the position of radiocon-
trast agent. The experienced radiologists identified 6–12 frames for each patient when 
the radiocontrast agent flew through the intracranial arteries for sufficient visualization. 
Totally, 4976 images from 281 patients were collected, which contained both the frontal 
and lateral DSA sequences. The obtained images were in Digital Imaging and Communi-
cations in Medicine (DICOM) format from Philips FD20 Angio System which has a res-
olution of 1024 × 1024 . The details of the data set are shown in Table 3. The aneurysms 
and overlaps of vessels were labeled by two experienced radiologists manually, which 
were double confirmed by 3D-DSA to ensure that the annotation procedure was correct. 
For a better usability, we converted the images to lossless Portable Network Graphics 
(PNG) format in model training and testing.

The data set was partitioned into three portions. The first part was used for training 
of RLS. We randomly extracted 710 pictures of 36 subjects, which were manually anno-
tated as the PCoA region for each picture by radiologists. There were up to 100 images 
from 5 randomly selected patients that were used for testing, and others for training. 
The training of ADS was fed with the second portion containing entirely 3786 images 
from 241 subjects, in which patients were diagnosed with an aneurysm in PCoA region. 

Table 3  Details of the data set

Training dataset Clinical test dataset

Gender

 Male 38 (15:77%) 3 (15:00%)

 Female 203 (84:23%) 17 (85:00%)

Age

 < 18 1 (0:41%) 0 (0:00%)

 18–60 107 (44:40%) 9 (45:00%)

 > 60 133 (55:19%) 11 (55:00%)

Aneurysm dome size (mm)

 < 5.0 42 (17:42%) 2 (10:00%)

 5.0–9.9 106 (43:98%) 8 (40:00%)

 10.0–24.9 92 (38:17%) 9 (45:00%)

 ≥ 25.0 1 (0:43%) 1 (5:00%)

Aneurysm neck size (mm)

 < 5.0 122 (50:62%) 13 (65:00%)

 ≥ 5.0 119 (49:38%) 7 (35:00%)

Aneurysm dome size/aneurysm neck size

 < 1.5 84 (34:85%) 7 (35:00%)

 ≥ 1.5 157 (65:15%) 13 (65:00%)

Aneurysm side

 Left 128 (53:11%) 12 (60:00%)

 Right 113 (46:89%) 8 (40:00%)

Aneurysm status

 Rupture 93 (38:59%) 8 (40:00%)

 Unrupture 148 (61:41%) 12 (60:00%)
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Particularly, this part of images were first processed by RLS. A clinical test after detector 
training utilized the third part including 40 prospectively collected patients, where 20 
patients received a positive diagnosis with an aneurysm in PCoA region, while the other 
20 patients received a negative result.

Training process

In our experiment, the neural network was implemented using Keras [39], a deep learn-
ing framework using backend of Tensorflow [40]. The loss function for object classifica-
tion used Focal Loss [31], defined as follows:

where α is a balanced parameter and γ is down-weighted rate. We used α = 0.25 and 
γ = 2.0 in the training process. The pt is defined as follows:

where p denotes prediction confidence, and y ∈ {±1} specifies the ground-truth class. 
For bounding-box regression, we used Smooth L1 Loss [31], defined as follows:

in which

where t is the bounding box of the predicted object, v denotes the bounding box of 
ground truth. The σ is a weighed factor, and we used σ = 3.0 in experiment. The Adam 
Optimization method [41] was applied for training, with a learning rate of lr = 3× 10−6 
for RLS, lr = 10−5 for ADS, and two learning rate decay parameters of β1 = 0.9 , 
β2 = 0.999 . For a better initialization, the weights from ILSVRC [42] were transferred to 
be pre-trained model for faster convergence in fine-tuning process. The training process 
were performed on the platform with NVIDIA GTX 1080Ti GPU (11GB GDDR5X). The 
training process for RLS utilized 50 epochs and 1000 steps per epoch, which took 2 h. 
For ADS, the training process applied fivefold cross-validation scheme which used 50 
epochs and 2500 steps per epoch, costing 7 h per model.

Performance evaluation

The first metric of the RLS is precision. The precision can be defined as how many 
images the network can find the PCoA region from test data. Generally, detection task 
cares about the intersection over union (IOU). Slight movement or size variation of 
the bounding box is less influential for practical detection. Thus, a regularized offset to 
the centroid of manual annotation was proposed to evaluate the performance of RLS, 
defined as follows:

(3)FL(pt) = −α(1− pt)
γ log(pt),

(4)pt =

{

p if y = 1
1− p otherwise

(5)SL(t, v) =
∑

i∈{x,y,w,h}

SmoothL1(ti − vi),

(6)SmoothL1(x) =

{

0.5(σx)2 if |x| < 1
(|x|−0.5)

σ 2 otherwise,
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where of fx means regularized offset of x-axis. xannotation is the x coordinate of centroid 
of manual annotation, and xprediction is the x coordinate of centroid of predication of the 
RLS. The same as the y-axis. The W and H denote width and height of manual bounding 
box, respectively.

Besides, a fivefold cross-validation scheme was applied in ADS. To compare the 
performance, five models of dual-input and single-input model were trained out using 
the same data set. The mean average precision (mAP) was employed to evaluate the 
classification precision of the aneurysm and overlap. For bounding-box regression 
task, we paid attention to the Smooth L1 Loss.

Moreover, the clinical purpose of our detection system is to give physicians an 
accurate hint that whether the patient has an aneurysm or not. To avoid missing diag-
nosis, a strict evaluation indicator was defined as follows:

where Diagi means whether the ith patient has an aneurysm, DiagijV  equals to true when 
the jth image from the ith patient on V perspective (F or L) was predicted with an aneu-
rysm. In other words, this formula denotes that a patient will be defined with an aneu-
rysm just if one frontal or lateral frame is detected with aneurysm among entire DSA 
sequence. Besides, the confusion matrix and receiver-operating characteristic (ROC) 
curve were employed in evaluation. And we counted the true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN) to calculate sensitivity, specificity, and 
accuracy, which is defined as follows:

In addition, 95% confidence interval (CI) was evaluated, and computing time was calcu-
lated to estimate the efficiency of the CAD system.

Abbreviations
DSA: digital subtraction angiography; CAD: computer-aided diagnosis; DIP: digital image processing; CNN: convolu-
tional neural network; RLS: region localization stage; ADS: aneurysm detection stage; PCoA: posterior communicating 
artery; ICA: internal carotid artery; DICOM: Digital Imaging and Communications in Medicine; AUC​: area under curve; CI: 
confidence interval; PNG: Portable Network Graphics; ADPKD: adult-dominant polycystic kidney disease; MRA: magnetic 
resonance angiography; CTA​: computed tomography angiography; FOV: field of view; FPN: feature pyramid networks; 

(7)of fx =
|xannotation − xprediction|

W

(8)of fy =
|yannotation − yprediction|

H
,

(9)
Diagi = Diagi0F∨Diag

i
1F∨. . .∨Diag

i
(n−2)F∨Diag

i
(n−1)F

∨Diagi0L∨Diag
i
1L∨. . .∨Diag

i
(n−2)L∨Diag

i
(n−1)L,

(10)Sensitivity = True Positive Rate (TPR) =
TP

TP+ FN

(11)Specificity = True Negative Rate (TNR) =
TN

FP+ TN

(12)Accuracy =
TP+ TN

TP+ FP+ TN+ FN
.
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RAGS: region average grayscale suppression; BN: batch normalization; ACoA: anterior communicating artery; ROI: region 
of interest; IOU: intersection over union; mAP: mean average precision; ROC: receiver-operating characteristic; TP: true 
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