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Abstract 

Background:  Quantum noise intrinsically limits the quality of fluoroscopic images. 
The lower is the X-ray dose the higher is the noise. Fluoroscopy video processing can 
enhance image quality and allows further patient’s dose lowering. This study aims to 
assess the performances achieved by a Noise Variance Conditioned Average (NVCA) 
spatio-temporal filter for real-time denoising of fluoroscopic sequences. The filter is 
specifically designed for quantum noise suppression and edge preservation. It is an 
average filter that excludes neighborhood pixel values exceeding noise statistic limits, 
by means of a threshold which depends on the local noise standard deviation, to pre-
serve the image spatial resolution. The performances were evaluated in terms of con-
trast-to-noise-ratio (CNR) increment, image blurring (full width of the half maximum of 
the line spread function) and computational time. The NVCA filter performances were 
compared to those achieved by simple moving average filters and the state-of-the-art 
video denoising block matching-4D (VBM4D) algorithm. The influence of the NVCA 
filter size and threshold on the final image quality was evaluated too.

Results:  For NVCA filter mask size of 5 × 5 × 5 pixels (the third dimension represents 
the temporal extent of the filter) and a threshold level equal to 2 times the local noise 
standard deviation, the NVCA filter achieved a 10% increase of the CNR with respect 
to the unfiltered sequence, while the VBM4D achieved a 14% increase. In the case of 
NVCA, the edge blurring did not depend on the speed of the moving objects; on the 
other hand, the spatial resolution worsened of about 2.2 times by doubling the objects 
speed with VBM4D. The NVCA mask size and the local noise-threshold level are critical 
for final image quality. The computational time of the NVCA filter was found to be just 
few percentages of that required for the VBM4D filter.

Conclusions:  The NVCA filter obtained a better image quality compared to simple 
moving average filters, and a lower but comparable quality when compared with the 
VBM4D filter. The NVCA filter showed to preserve edge sharpness, in particular in the 
case of moving objects (performing even better than VBM4D). The simplicity of the 
NVCA filter and its low computational burden make this filter suitable for real-time 
video processing and its hardware implementation is ready to be included in future 
fluoroscopy devices, offering further lowering of patient’s X-ray dose.
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Background
Fluoroscopy is a medical imaging modality able to provide continuous real-time X-ray 
screening of patient’s body parts (also highlighted by contrast agents), as well as various 
radiopaque surgical instruments, catheters, wire-guides, and prosthetic implants. Thus, 
it is an invaluable tool for interventional radiology procedures, such as orthopedic sur-
gery, angioplasty, pacemaker and defibrillator implantation [1, 2], for diagnostic exams, 
such as investigations of gastrointestinal tract or blood vessels, for the assessments of 
joints and implanted prosthesis [3, 4] and image-guided radiotherapy [5]. Since these 
applications require extended and unpredictable exposure times, patient radiation dose 
must be kept acceptably low, resulting in a degradation of image quality. In fact, the lim-
ited number of X-ray photons per pixel produces a signal-dependent, Poisson-distrib-
uted noise, also known as “quantum noise” [6], which causes a significant decrease in 
the signal–noise ratio (SNR) and contrast–noise ratio (CNR). Quantum noise is by far 
the most dominant noise source in low-dose X-ray images [7–10] and cannot be avoided 
by improving sensors/detectors technology, since it is inherent to the image formation 
process.

The statistical characteristics of the Poisson distribution imply that the SNR is equal 
to the square root of the mean photon count � ( SNR =

√
� ). This means that the lower 

the dose, the worse the image quality. A better image quality could be only achieved by 
increasing the number of photons per pixel. Unfortunately, this cannot be actually pur-
sued in fluoroscopy, since it would require an unacceptable increase of patient’s dose, 
as exposure time cannot be reduced or even limited. Thus, there is the need to improve 
fluoroscopic image quality by means of image processing techniques.

Nowadays, commercial fluoroscopic devices implement low-dose protocols by reduc-
ing the frame rate or performing simple temporal or spatial averages to allow real-time 
denoising (essential to support clinical interventional procedures). However, both tem-
poral and spatial averaging tend to produce undesirable blurring effects, which under-
mine edges preservation and produce motion blur. Moreover, the averaging operation is 
fully effective only if the averaged samples are uncorrelated. Although this is practically 
always verified in the time domain, since the lag times of scintillators are about 1  ms 
[11] while the minimum frame interval is about 33 ms (i.e., 30 fps), it is not verified in 
the spatial domain, as it depends on the specific point spread function of the fluoros-
copy device. Thus, temporal averaging is practically always implemented in commercial 
devices, while spatial averaging is not very common.

Spatio-temporal averaging acts as a simple low-pass filter; therefore, it reduces not 
only the noise spectral power, but also the high-frequency content of the useful signal 
(i.e., static and moving edges). This results in poor denoising performances and makes 
these approaches unsuitable for several applications, such as derivative-based tech-
niques (e.g., image segmentation, object recognition, image registration), as they are 
particularly sensitive to noise and edge blurring [6, 10]. It is clear that more efficient 
denoising methods, which can achieve higher SNRs while reducing or avoiding these 
side effects, would be of help.

The literature offers many denoising algorithms, but their effectiveness strongly 
depends on the validity of the noise model [6, 12, 13]. Most of these methods assume 
the noise to be space-invariant, additive, white and Gaussian (AWGN), which is not 
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the case in fluoroscopic images as noise is rather space-variant and Poisson distrib-
uted. However, some techniques aim to stabilize the Poisson’s noise variance, e.g., 
via the Anscombe transformation, to apply AWGN denoising techniques [14–16]. 
Unfortunately, the Anscombe transform suffers from different limitations. First of 
all, it cannot be exactly inverted, as the inverse transform introduces bias errors [14, 
15]. Also, it can be directly applied only to Poisson distributions, resulting unsuita-
ble for real fluoroscopic data, as their original Poisson statistics are usually modified 
by sensor non-linearities (e.g., clipping effects) and white compression operations 
commonly implemented in commercial fluoroscopic devices (e.g., log-mapping, 
gamma-correction) [17]. Inverting these non-linearities would require additional 
operations, resulting in a further increase of the computational burden. Moreover, 
these techniques do not allow an easy real-time implementation, rather being suit-
able for accurate post-processing. Other recent approaches mainly concentrate on 
edge enhancement [18, 19] and on recognition of curvilinear guide-wires [20] in 
fluoroscopy but they do not provide a global approach to noise reduction.

The Noise Variance Conditioned Average (NVCA) algorithm [17], which considers 
the specific signal-dependent, Poisson-distributed nature of the quantum noise, has 
proven to be more efficient than several algorithms in the denoising of X-ray images 
[21], while keeping the computational burden low enough to allow real-time hard-
ware implementations [22, 23].

This study aims to evaluate the performance of the NVCA algorithm in terms of 
noise reduction and edge preservation for static and moving objects. In particu-
lar, it was tested using different phantoms and real fluoroscopy sequences where 
a small radiopaque needle is present. The NVCA algorithm was compared to the 
simple moving average filter and to the Video Block-Matching and 4D joint filtering 
(VBM4D) algorithm [24, 25] (after noise variance stabilization via generalized Ans-
combe transform [15]), which was assumed as the reference state-of-the-art video 
denoiser. The VBM4D is an improved version of the VBM3D which, in turn, is an 
extension for video processing of the famous BM3D, and still considered as one of 
the best methods for image denoising [26–29]. The BM3D extensions for video pro-
cessing (such as VBM3D and VBM4D) are likewise widely regarded as the state-of-
the-art for video denoising, and, indeed, they have been used as a reference for the 
performance assessment of new algorithms in many recent studies [30–32].

The “Results” section shows the performances of the denoising algorithms in 
terms of spatial resolution (evaluated as the full width at half maximum (FWHM) of 
the line spread function evaluated either across static or moving object), object vis-
ibility and computational time, as well as the effect of motion blur in filtered images. 
Also a global image quality index, the feature similarity index (FSIM) was evalu-
ated. The “Discussion” and “Conclusion” sections summarize the issues addressed, 
the results obtained and the possible practical implications. The “Methods” section 
describes the noise model adopted for fluoroscopy images, the proposed denoising 
algorithm and the reference algorithms used for comparison, the phantoms and the 
images used to test the denoising performances and the parameters used to assess 
image quality.
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Results
Spatio‑temporal correlations and expected value–variance relationship

The Poissonian noise model considered by the NVCA algorithm supposes spatially 
and temporally adjacent pixels as uncorrelated. To test this hypothesis, the average 
spatial and temporal autocorrelation functions were evaluated from the fluoros-
copy sequence of the aluminum step phantom (see the “Noise characterization”) and 
reported in Fig. 1. As expected, the correlation computed over time resulted very lit-
tle (i.e. for a single inter-frame time interval scored 0.09 a.u.2). Also the correlation 
computed over space resulted limited (i.e. for a single pixel size scored 0.15 a.u.2).

Since the NVCA algorithm and the Anscombe transform both require the charac-
terization of the noise parameters (see “Noise characterization” section) they were 
estimated according to Ref. [33] (Fig.  2). They were evaluated for each of the 712 
images of the aluminum phantom. The median A and B values resulted 37.91 × 10−4 
a.u. (std dev = 2.25 × 10−4) and 0.05 × 10−4 a.u.2 (std dev = 0.75 × 10−4). The expected 
value–variance relationship evaluated using median values from Fig. 2 and that evalu-
ated from the temporal sequence of the aluminum phantom are reported in Fig. 3. In 
the latter, the A and B parameters resulted 43.90 × 10−4 a.u. and − 0.99 × 10−4 a.u.2, 
respectively, and the R2 fit coefficient of the linear regression scored a value of 0.9196. 
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Fig. 1  Average autocorrelation function evaluated in space (black crosses) and over time (white squares). The 
fluoroscopy sequence of the aluminum phantom was used
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Fig. 2  a A and b B coefficients estimated via the algorithm provided in ref [33]. Since A and B are estimated 
for each frame, the image frame number is reported on the x-axis
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Image quality evaluation (static scene)

Figure 4 shows a fluoroscopic frame of the aluminum phantom sequence without any 
filtering (Fig. 4a) and after the application of VBM4D algorithm (Fig. 4b), NVCA fil-
ter using a 3 × 3 × 3 pixels mask (Fig.  4c) and a 5 × 5 × 5 pixels mask (Fig.  4e) with 
a discrimination threshold of 2σ, moving average filter using a 3 × 3 × 3 pixels mask 
(Fig. 4d) and a 5 × 5 × 5 pixels mask (Fig. 4f ). Figure 5 reports the profile across the 
edge outlined in yellow in Fig. 4a for the raw data and for the data processed with the 
moving average filter and the NVCA filters both using a 7 × 7 × 7 pixels mask size. 
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Fig. 3  Expected value–variance relationship as estimated in space according to Ref. [33] and in time using 
the fluoroscopy sequence of the aluminum phantom

Fig. 4  a Raw image; b VBM4D with algebraic inversion; c NVCA, 3 × 3 × 3 mask T = 2σ; d moving average 
3 × 3 × 3 mask; e NVCA, 5 × 5 × 5 mask T = 2σ; f moving average 5 × 5 × 5 mask. The yellow vertical line in a 
indicates the profile selected for the spatial resolution evaluation
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The adopted fitting curves (see Eq. 3 in “Image quality parameters” section) achieved 
R2 fitting parameters higher than 0.9782.

For the NCVA filter, the spatial resolution deteriorated as the threshold level T 
increased (Fig. 6). Indeed, the evaluated FWHM for 7 × 7 × 7 pixels mask presented 
a value of 1.8 pixels for a threshold equal to 1σ, and it increased up to 3.1 pixels and 
4.4 pixels for threshold values of 2σ and 3σ, respectively. For a given threshold level, 
the larger the filter size the larger FWHM values. All the NVCA filters considered 
in Fig.  6 led to better spatial resolutions with respect to those obtained by conven-
tional moving average filters with the same mask size. For instance, this produced 
a line spread function FWHM of 5.5 pixel for a 7 × 7 × 7 pixels mask, 77% larger 
than NVCA with the same mask size and 2σ threshold level. The NVCA filter with 
the threshold equal to 1σ provided a FWHM comparable to that produced by the 
VBM4D. For larger threshold levels, NVCA produced worse spatial resolutions than 
that achieved by VBM4D (e.g., for a threshold equal to 2σ the FWHM resulted 24%, 
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67% and 89% larger than VBM4D for 3 × 3×3, 5 × 5 × 5 and 7 × 7 × 7 pixel masks, 
respectively).

Although an increase of the NVCA mask size from 3 × 3 × 3 pixels to 5 × 5 × 5 pix-
els produced a slight improvement in CNR values (see Fig. 7), a further increase in 
the NVCA mask dimension did not produce further CNR improvements. The image 
CNR strongly depended on the NVCA threshold level: considering a 5 × 5 × 5 pixels 
mask, the CNR resulted equal to 1.65 for a threshold equal to 1σ and 1.78 for 3σ. The 
NVCA algorithm (5 × 5 × 5 pixels mask size and a threshold of 2σ) increased the CNR 
of 10%, while the VBM4D and the moving average filter (5 × 5 × 5 pixels mask) led to 
14% and 13% CNR increase, respectively, when compared to the raw images.

Figure  8 reports the FSIM global quality index computed for the NVCA-filtered 
images considering different mask sizes and different thresholds. The figure also 
includes the result obtained for the moving average filter (labeled as W/O on the 
x-axis). For threshold levels of 2.5σ and 3σ, the NVCA led to FSIM values comparable 
or larger than those of the VBM4D.
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Fig. 7  CNR values for the NVCA filters, VBM4D and raw data. The W/O label corresponds to the moving 
average filters
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Image quality evaluation (moving object)

Figure  9 shows profile across the ideal edge of the moving object in the digital phan-
tom sequence (see “Sequences with moving objects” section) after the application of 
VBM4D, NVCA and moving average filter with 5 × 5 × 5 pixels mask size. It can be 
noted that the simple average filter introduced a conspicuous motion blur. On the con-
trary, both VBM4D and NVCA well preserved the edge sharpness (VBM4D provided a 
higher noise reduction). FWHM evaluated across this edge is reported in Fig. 10. For the 
moving object speed of 1 pixel/frame, differences in motion blur introduced by VBM4D 
and NVCA resulted negligible. However, the VBM4D spatial resolution degraded as the 
object speed increased, while the NVCA spatial resolution remained unaltered. In the 
first case, the FWHM increased of 2.2 times by increasing the insert speed from 1 to 2 
pixels/frame. The moving average filter led to FWHM values more than 20 times higher 
than those of the other filters; the FWHM increased as the object speed increased.

Non-isotropic NVCA mask sizes were also tested. Figure  11 shows a region of 
interest (ROI) of the surgical sequence without any filtering and after the applica-
tion of VBM4D and NVCA filter (threshold = 1.5σ) with mask size of 5 × 5 × 1 pixels 
(spatial filter), 5 × 5 × 3 pixels, 5 × 5 × 5 pixels and 5 × 5 × 7 pixels. No substantial 
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differences in the profile blurring are caused by passing from a pure spatial filter 
(5 × 5 × 1 pixels mask) to a mask size of 5 × 5 × 3 pixels (Fig. 12). However, increas-
ing the mask to 5 × 5 × 5 pixels led to a reduction in the signal peak level along with 
a profile spread (Fig. 12).

To better appreciate the differences in image quality obtained with the compared 
algorithms, we added in Additional files two demonstration videos showing raw 
and filtered sequences simultaneously. The videos were obtained from the surgical 
sequence (Additional file 1) and from the aluminum step phantom sequence (Addi-
tional file 2).

Fig. 11  The enlargement of the real fluoroscopic image including the radiopaque needle: a raw image, the 
yellow vertical line was manually placed across the needle to evaluate blur, b image filtered with VBM4D 
and algebraic inversion of the Anscombe transform; image filtered with NVCA (T = 1.5σ) with mask size of b 
5 × 5 × 1 pixels, d 5 × 5 × 3 pixels, e 5 × 5 × 5 pixels and f 5 × 5 × 7 pixels
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Relative computational time

In Table  1, the computational times of the moving average and the NVCA filters are 
reported as percentages of the corresponding computational time of the VBM4D. 
As expected, computational times for NVCA filters resulted just few percent of that 
required for the VBM4D. Hardware implementations (such as [22, 23]) can further 
reduce the computational time using a lookup table instead of calculating the noise-
threshold pixel by pixel.

Discussion
Nowadays, patient’s dose during fluoroscopic procedures remains high, with peak skin 
doses up to several hundreds of mGy [34, 35]. This relatively high X-ray dose is mainly 
due to the long and unpredictable duration of the medical procedures and to the need 
to achieve an acceptable image quality (the SNR increases using higher doses). Vendors 
promote new equipment to reduce patient’s dose, some of which showing promising 
preliminary results [36–38]. Although the technology of X-ray detectors is improving 
[38], the quantum noise remains a physical limit and it can be only reduced by means 
of image processing methods. Furthermore, such processing must be achieved in real 
time to support clinical procedures. In many commercial fluoroscopic devices, only sim-
ple temporal (as low frame rate protocols) or simple spatial average filters are adopted. 
However, simple averaging compromises image sharpness, smears edges and produces 
motion blur. Several authors propose methods which couple filtering processes with 
edge detection techniques [19, 39, 40]. Although these approaches permit relative good 
results in terms of noise reduction and edge preservation, the implementation algo-
rithms are still too complex and could compromise the real-time computation for on-
line implementation during fluoroscopic exams. The proposed NVCA filter overcomes 
these limits, operating both in time and space while keeping a low computational com-
plexity to allow real-time video processing and hardware implementation. The filter 
needs a preliminary estimation of the expected value–variance relationship of the noise 
(i.e., knowledge of the mixed Poissonian–Gaussian noise level). Only the surrounding 
pixels (in space and time) whose contrast is below the local noise intensity actually con-
tribute to denoising, thus preserving edges (also of moving objects). The influence of the 
NVCA mask dimension and the noise-threshold on the image spatial resolution (line 
spread function FWHM) and on the CNR was tested. The algorithm proved capable to 
reduce noise (CNR resulted increased) and, at the same time, not to smooth out image 
edges. As in recent studies on low-dose X-ray-based imaging denoising [32, 40, 41], 
the NVCA performances were tested against the current state-of-the-art block-match-
ing four-dimensional VBM4D video denoising. The noise variance of the fluoroscopic 
sequences considered for the comparison was stabilized via the Anscombe transforma-
tion to successfully apply the VBM4D.

Conclusions
We presented and evaluated the performance of NVCA algorithm in terms of details 
visibility and spatial resolution of the filtered fluoroscopic sequences. We compared the 
proposed algorithm to the spatio-temporal moving average filter and to the VBM4D, 
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assumed as gold standard. The NVCA algorithm demonstrated to preserve edge sharp-
ness better than simple moving average filter. For a mask size of 7 × 7 × 7 pixels, the 
moving average filter produced a line spread function with FWHM 77% larger than that 
produced via NVCA with same mask size (2σ threshold). For low-threshold levels, the 
spatial resolution obtained with NVCA filter resulted comparable to that for VBM4D. 
In addition, the edge sharpness preservation resulted not to depend on the speed of 
the objects in the case of NVCA; this feature was not present in the images processed 
via VBM4D algorithm and moving average filter. For a mask size of 5 × 5 × 5 pixels 
and a noise-threshold level equal to 2 times the estimated noise standard deviation, 
the proposed filter produced a 10% increase of the CNR, while the much more com-
plex VBM4D algorithm produced a 14% increase. The image global quality index FSIM 
showed that performance of NVCA for large threshold levels is comparable to that of 
VBM4D. The computational times required for NVCA filtering resulted just few per-
cent of that required by VBM4D, confirming the theoretical predictions on their com-
putational complexities, and verifying the possibility to perform real-time processing. 
In future, a hardware implementation of NVCA could be embedded in real fluoroscopic 
devices and the achieved SNR increase could be used to further reduce the patient’s dose 
during clinical procedures. However, since the mask size and noise-threshold influenced 
the final image quality, more extensive studies are required to assess the best settings. It 
is also important to specify that, obviously, NVCA denoising tends to make objects or 
details disappear if their contrast level is below the noise level.

Methods
Noise characterization

In a fluoroscopy system, the photons emerging from a patient and detected by the sen-
sor can be described as a temporally stochastic Poisson process [9–11, 17]. However, a 
Poisson random variable with a relatively large average (i.e., larger than 10) can be locally 
well approximated by a Gaussian distribution with variance equal to the average [42]. 
If more than 10 photons are detected in the pixel area (this hypothesis is largely satis-
fied in actual fluoroscopic applications), the Gaussian approximation leads to a relative 
error lower than 0.1%, which becomes even smaller as the number of detected photons 
increases [42]. Since noise variance depends on the average pixel gray level (related to 
average number of detected photons), it is not constant over the whole image (heter-
oscedasticity), and the noise results to be signal dependent. Therefore, the actual gray 
level of any pixel in the image can be now decomposed as the sum of a noise-free signal 
and an additive, zero-mean, signal-dependent Gaussian noise, as expressed in Eq. 1:

where (x,y) are the coordinates of the considered pixel on the detector plane, g
(

x, y
)
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the actual pixel value, h
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the detector noise modify this relationship. The actual value of the image pixel can be 
rather described as a random variable which is proportional to the photon count by the 
detector gain plus the detector noise background [10], resulting in a Poissonian–Gauss-
ian mixture [33]. In this case, the expected value–variance relationship is a straight line, 
with a slope depending on the detector gain plus a constant due to detector noise and 
can be described as:

where A and B are constant values, referred to as noise parameters [33]. The proportion-
ality coefficient (A) is determined by the detector gain, while the offset coefficient (B) is 
determined by the additive, signal-independent Gaussian noise deriving from the detec-
tor itself and electronics.

For noise characterization, a home-made phantom—whose scheme is depicted in 
Fig. 13—was used. It is composed of seven superimposed square aluminum sheets with 
edges of 30 cm, 26 cm, 22 cm, 18 cm, 14 cm, 10 cm and 6 cm. Each aluminum sheet was 
1-mm thick. They were piled up with the centers placed on the same axis to produce a 
step phantom whose projected images presented flat regions with different average val-
ues. The sheets were fixed together by two metallic screws and bolts (visible in the object 
image as two black round shapes).

Phantom images were acquired with a GE 9900 Elite C-arm [43] fluoroscopic device. 
The X-ray tube was manually set to 57 kVp and 1 mA to simulate a real cardiac interven-
tional procedure. The round field of view at the patient table had a diameter of 9 inch, 
the fame rate was set to 25 fps and the gray values were digitized in a 16-bit scale. The 
phantom image sequence was composed of 712 consecutive frames of 328 × 333 pixels.

The expected value–variance curve was estimated using the method presented in refs. 
[33, 44, 45] by means of the Matlab routine provided by the proposers [46]. The routine 
provides an automatic image segmentation of uniform regions and estimates the A and 
B coefficients by taking also into account the data clipping.

(2)σ
(

h
(

x, y
))2 = A · h

(

x, y
)

+ B,

Fig. 13  Schematic of the home-made test object used for the noise characterization
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The Poissonian noise model described in the previous section assumes that image 
pixel values are uncorrelated. However, the limited spatial resolution of the imag-
ing system determines correlation between adjacent pixels in the spatial domain. To 
quantify such a correlation, the 2D autocorrelation matrix of the ROI labeled as ROIA 
in Fig.  14 was computed. This ROI was selected on a flat, uniform region (i.e., not 
including edges) at the center of the field of view. The 2D autocorrelation matrix of 
ROIA was calculated for each frame of the image sequence and the average value was 
considered. Finally, the 1D autocorrelation curve was calculated as the radial profile 
of the 2D matrix.

However, actual fluoroscopic devices present time responses much shorter than the 
sampling times (few ms vs. more than 33 ms) and image pixels show weak correlation 
in the temporal domain. Therefore, considering a motionless test object and a given 
image pixel, the temporal sequence of the pixel values are independent samples of a 
Poisson random variable. For each image pixel, the local expected value and variance 
can be estimated considering the time sequence of the pixel values and the expected 
value–variance relationship can be obtained via linear regression. The obtained rela-
tionship was also compared to those obtained with the methods described in refs [33, 
44, 45]. The temporal correlation of consecutive pixel values was also studied by com-
puting the 1D autocorrelation of the time sequence of each image pixel and averaging 
over all pixels.

Noise reduction algorithms

The NVCA algorithm has been already presented in previous papers [17, 21]. It is a 
conditioned spatio-temporal average filter that excludes from the average computa-
tion all those pixels values presumably not belonging to the local noise statistics. The 
2D images sequence is seen as a 3D matrix. For a single pixel, the filter considers the 

Fig. 14  A frame of the aluminum step phantom fluoroscopic sequence. The manually selected regions of 
interest are shown in yellow: the ROI1 was chosen for the FWHM estimation and the ROIA and ROIB were 
chosen for CNR estimation. The two dark circles in the middle correspond to the two metallic screws and 
bolts that hold the aluminum sheets together
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nearby pixels which are comprised in N × N × K mask, where K is the temporal extent 
of the filter and N the spatial extent (usually N is an odd number to guarantee sym-
metry with respect to the central pixel). The value of the generic filtered pixel If(x,y,t) 
is computed according to the formula:

where x and y are the spatial coordinates and t the temporal coordinate; I(x, y, t) repre-
sents the unfiltered pixel value; h and j indices represent pixels spatial displacement with 
respect to the central pixel (corresponding to (h, j) = (0, 0)) and the i index represents the 
previous frame number with respect to current frame (corresponding to i = 0). The Cijh 
coefficient assumes the value 0 or 1 according to the following decision rule:

where the threshold value T is assumed equal to F times the local noise standard devia-
tion (i.e., T = F × σ(I(x, y, t))). In other words, an adjacent pixel is included in the average 
computation only if its value is supposed to belong to the noise distribution associated to 
the central pixel. This approach helps to preserve the object edges both in space and over 
time. In the hardware implementation of the NVCA filter [22, 23], the predetermined T 
thresholds corresponding to the entire range of the image gray levels were stored into a 
lookup table to guarantee a faster computation.

The NVCA Matlab source code is available as Additional file 3: NVCN.m. This Mat-
lab (MathWork Inc, version R2016b) function produces the NVCA-filtered sequence, 
requiring as inputs the raw fluoroscopy sequence, the spatial (N) and temporal (K) filter 
dimensions, the noise coefficients (A and B) and the F value. It is worth noting that, dif-
ferently from the hardware implementation, the Matlab routine does not use a lookup 
table, but rather calculates the T value from the F, A and B parameters for each pixel.

In this work, the NVCA algorithm was compared to spatial–temporal moving average 
filters and the VBM4D algorithm. The generalized Anscombe transformation [15] was 
used to stabilize the Poissonian–Gaussian variance before the VBM4D filtering; after, 
the inverse algebraic Anscombe transform was applied [15].

In VBM4D, spatio-temporal volumes are constructed by tracking blocks along trajec-
tories defined by the motion vectors and mutually similar volumes are stacked along an 
additional fourth dimension, thus producing a 4D structure, termed group [24, 25]. The 
VBM4D is an evolution of the block matching-3D (BM3D) [47] algorithm, originally 
designed for single image denoising, as it extends the paradigm of non-local grouping 
and collaborative filtering to exploit not only the spatial redundancy, but also the tem-
poral redundancy characterizing video sequences. VBM4D filter needs to process the 
entire image sequence and it is very time consuming, therefore it does not allow real-
time denoising. On the other hand, the block-matching processes permit to track and 
reallocate moving objects for a deep noise reduction and edge preservation. Because of 
these advantages VBM4D is a reference, state-of-the-art video denoiser [19, 23, 30–32, 
39, 48]. The average filters (as the common fluoroscopy time-average pre-processor) 
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allow fast and effective quantum noise suppression but they causes severe edge degrada-
tion and motion blur. NVCA is basically a simple advancement of the average filters, able 
to preserve edges even for moving objects and suitable for real-time denoising and hard-
ware implementation. However, it requires a pre-estimation of the fluoroscopy noise and 
it is not suitable for retrieving details whose contrast is below the noise level.

Image quality parameters

To evaluate the blurring introduced by the investigated filters, we estimated the FWHM 
of the line spread function. This last was evaluated as the derivative of the edge profile 
(edge spread function) across a manually selected sharp edge. To reduce the influence of 
the signal fluctuations on the FWHM estimates, we fitted the edge profile with the fol-
lowing function:

where erf(·) indicates the error functions, x is a spatial variable (pixel) and c and d are 
fitting coefficients. The FWHM was evaluated from the fitting parameter d in the Eq. 4 
as FWHM = 2.355 × d. It was estimated as the mean value over consecutive edge pro-
files and its uncertainty was estimated as the standard deviation over these estimates. 
For FWHM estimates in the case of fixed object, we considered 40 consecutive vertical 
profiles sampled in the ROI1 in Fig.  14, which shows an image of the aluminum step 
phantom.

To evaluate the increase in detail visibility, the CNR was computed as:

where ROIAmean and ROIAσ correspond to the average value and the standard deviation 
computed within the ROIA shown in Fig.  14 and ROIBmean and ROIBσ correspond to 
the average value and the standard deviation computed within the ROIB also shown in 
Fig. 14.

The FSIM [49] was used as a global index for image quality assessment. This index also 
considers the perception of the human eye, taking into account both the phase congru-
ency and the gradient magnitude of an image. It was evaluated for a selected frame of the 
filtered versions of the sequence showed in Fig. 14, considering the time average of the 
whole sequence as the reference image.

Sequences with moving objects

To evaluate the blurring introduced in the case of moving objects, an ad hoc, fully digi-
tal image sequence was created (Fig. 15). It included some motionless circular objects 
of different dimensions and contrasts, as well as a rectangular, high-contrast object 
moving horizontally from left to right (see red arrows in Fig. 15). The contrast between 
the moving object and the image background was 46% (evaluated as the percent ratio 
between the mean pixel value within the rectangle and the mean pixel value of the image 
background). The added Poissonian noise reflected that estimated in the experimental 
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images. All the objects presented ideal edges. Three sequences were created with the 
mobile object moving at a speed of 1, 2 and 3 pixels per frame, respectively. The yel-
low ROI in Fig. 15 shows the edge portion selected for the FWHM evaluation (the ROI 
includes as much vertical edge as possible excluding the upper and lower corners). 
FWHM was estimated as the average value over 10 consecutive profiles. Its dimension 
was chosen to include as many lines as possible for reducing the noise influence on the 
FWHM estimates.

In addition, the filters performances were evaluated using a real fluoroscopic 
sequence (Fig.  16) acquired during a surgical procedure. It shows a moving 

Fig. 15  Digital phantom with a moving rectangular insert. The red arrows indicate the moving direction of 
the insert over the consecutive frames. The yellow ROI outlines the region for the evaluation of the FWHM on 
the insert edge

Fig. 16  A fame of the surgical fluoroscopy sequence (left) and an enlargement of its central region (right). 
The radiopaque needle appears at the top of the image enlargement
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radiopaque needle. This sequence was acquired with the same device and settings 
used for the aluminum step phantom (GE 9900 Elite C-arm; tube voltage = 57 kVp, 
anode current = 1  mA; detector frame rate = 25 fps, frames dimension = 328 × 333 
pixels and gray levels digitalized in a 16-bit scale).

Computational complexity

The computational burden of the NVCA and VBM4D algorithms can be compared 
in terms of the number of required multiplications/divisions for an input of size N, 
which is generally expressed by the big-O notation [50, 51].

Let us consider a single frame of N-by-N pixels to be processed. The BM3D algo-
rithm can be mainly decomposed in two phases: the block matching (grouping) and 
the 3D collaborative filtering. The block matching phase has a computational com-
plexity order of O(N4K2), where K is the mask size [52, 53]. The 3D collaborative 
filtering phase provides for the processing of the 3D arrays identified by the block 
matching operation, and consists of 3D transformation, spectrum shrinkage, and 3D 
inverse transformation. Considering the case of a 3D-FFT transform [54] (which has a 
computational complexity of O(N·log N), with N being the total number of data to be 
processed) applied to a single 3D array composed by S similar blocks of K-by-K pix-
els, the computational complexity order can be expressed as O((K2S) log (K2S)).

Indicating with R and G, respectively, the total number of K-by-K blocks in the 
image, and the number of 3D arrays identified by the block matching operation, and 
assuming every single 3D array to be composed by S similar blocks, it is possible to 
express the computational complexity order of the whole 3D filtering operation as 
O(G·((K2S) log(K2S))). Since G = R/S and R = N2/K2, the computational complexity 
can be expressed as O(N2 log(K2S)).

If the block matching does not find any similar blocks (i.e., S = 1), the computational 
complexity order is O(N2 log K2). Alternatively, if the block matching provides a sin-
gle 3D array composed by all the R blocks (i.e., S = R), the computational complexity 
order is O(N2 log N2). The computational complexity of the block matching is of some 
orders of magnitude higher than that of the 3D filtering, and so it dominates the com-
putational complexity of the whole BM3D algorithm. Since VBM4D algorithm works 
along an additional dimension (i.e., time), thus processing a larger amount of data, its 
computational complexity is certainly higher than that of the BM3D.

The NVCA provides for a single division operation per pixel [17, 21–23], so for the 
same frame of N-by-N pixels, it has a computational complexity order of O(N2), which 
results several orders of magnitude lower than VBM4D’s one.

Actual computational times were estimated for moving average filter, NVCA and 
VBM4D filters to provide quantitative evidence. These three filters were applied to 
the 712 frames of the image sequence shown in Fig. 2 via MEX files (i.e., C/C++ sub-
routines created in Matlab—http://www.mathw​orks.com). They were run in Matlab 
R2016b on a PC equipped with an Intel Core i7-3770 CPU at 3.40 GHz (Windows 7 
operating system). Relative computational times were evaluated as the ratio between 
the NVCA or moving average filtering time and that corresponding to the VBM4D.

http://www.mathworks.com
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Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1293​8-019-0713-7.

Additional file 1. Demonstration videos showing raw and filtered sequences simultaneously of the surgical 
sequence. The frame rate was reduced 2.5 to 1. 

Additional file 2. Demonstration videos showing raw and filtered sequences simultaneously of the aluminum step 
phantom sequence at 25 fps. 

Additional file 3. The NVCA Matlab routine function. It produces the NVCA-filtered sequence, requiring as inputs 
the raw fluoroscopy sequence, the spatial (N) and temporal (K) filter dimensions, the noise coefficients (A and B) and 
the F value.
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