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Background
Mammals display different patterns of sleep–wake stages, which comprise cyclic pat-
terns of wakefulness (wake), non-rapid eye movement (NREM) sleep and rapid eye 
movement (REM) sleep. These stages have been defined based on electrophysiologi-
cal measurements that include electroencephalogram (EEG), electromyogram (EMG), 
and electrooculogram (EOG). Many diseases and cognitive behaviors have a relation-
ship with sleep quality and quantity. For instance, patients with chronic widespread pain 
syndromes often exhibit sleep disturbance [1]. These patients usually complain unre-
freshing sleep, i.e., too much light sleep or irregular sleep pattern [2]. To understand the 
pathogenesis of pain or comorbidity of sleep disturbance, an ideal animal model may be 
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required. In the field of sleep research, various rat models are often used because they 
are readily available and display electrical activity during sleep that has similarities with 
human sleep [3–8].

Clinically, a patient claims a long suffering muscle pain but found no damage in body 
tissue after checking, this patient will be diagnosed as fibromyalgia syndrome according 
to American College of Rheumatology diagnostic criteria: if the pain site throughout the 
body, especially in the vicinity of the joint hyperalgesia phenomena. Fibromyalgia and 
sleep disorders also go hand in hand. In fact, it is thought that up to 80% of patients with 
fibromyalgia experience certain type of disordered sleep. Often, these sleep disorders 
leave people feeling tired, drained, and physically incapable of dealing with the stresses 
associated with fibromyalgia [9]. Sluka et  al. [10] have proposed an animal model of 
widespread mechanical hyperalgesia lasting for about 4 weeks by repeated intramuscu-
lar injections of pH 4.0 saline. However, sleep recording is not assessed in this model.

One of the major inconveniences encountered in sleep studies is the time-consuming 
labor involved in equating the visual analysis of physiological recordings (EEG, EMG, 
and EOG) to an appropriate stage of vigilance. Most previous automatic sleep staging 
methods for rats have distinguished three main stages (i.e., wake, NREM and REM) 
[11–17]. However, to obtain a more detailed analysis in different sleep stages, numerous 
previous studies have proposed to utilize a four or five-stage analysis for wake–sleep pat-
tern in rats [18–21]. Therefore, developing an automated system that can distinguish five 
wake–sleep stages will be beneficial to investigate subtle change of wake–sleep pattern 
in response to different behavioral changes.

Since the standard sleep staging rules for rats are not available currently, we referred 
the visual scoring criteria from two previous studies [20, 22]. Five stages, including wake, 
NREM sleep stage 1 (NREM1), NREM sleep stage 2 (NREM2), transition sleep (TS), and 
REM sleep, were adopted in this study. Figure  1 shows typical polygraphic recordings 
representing the five stages. In the wake stage, EEG exhibits low-amplitude predominant 
theta activity (6–9  Hz) and superimposed high-frequency activity accompanied by a 
large amplitude EMG. In the NREM1 stage, sleep spindles (10.5–15 Hz) and/or median 
delta wave activity (0.5–5 Hz) less than 50% of an epoch are present, and EMG exhibits 
a diminished amplitude compared with the wake stage. In the NREM2 stage, high delta 
wave (0.5–5 Hz) activity occupied more than 50% of an EEG epoch, and EMG amplitude 
diminishes compared with the NREM1 sleep. In the TS stage, EEG of parietal or occipi-
tal lead exhibits a prominent theta rhythm intermixed with short-lasting (1–3 s) high-
amplitude spindles, and EMG amplitude was low [16]. In the REM sleep, EEG exhibits a 
regular theta rhythm, and EMG is absent (often presentation of electrocardiography) or 
with the exception of occasional short-lasting bursts of activity typically associated with 
rapid eye movements.

The classification procedures rely on highly refined methods, such as cluster analy-
sis [23], linear discriminant analysis [19], artificial neural networks [24], pattern match-
ing algorithm [25, 26] and support vector machine (SVM) [14]. Previous studies [24, 
27] indicate that artificial intelligence is a best approach to accurately score sleep stages 
allowing to adapt to the various scoring requirements of different researchers. Thus, a 
customizable rule-based auto-scoring program is well suited for a researcher who would 
prefer more control over the decision-making process for scoring stages rather than 
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exclusive reliance on the program. Here, we proposed a rule-based automatic five-sleep-
stage scoring method that was constructed using a hierarchical decision tree. According 
to characteristics of biosignals and staging rules, several modifications were used. The 
present study introduced a two-stage process in the hierarchical decision tree to increase 
staging accuracy. Ten features, including temporal and spectrum analyses of the EEG 
and EMG signals, were utilized [16, 27]. Normalization of the EEG index was applied to 
eliminate individual differences and make the distribution of the features to be central-
ized. Because the EMG signal only indicated the movement situation and only used as 
an references for the discrimination of the wake stage. The classification accuracy was 
tested with a large dataset (20 sets of 24-h recordings) comparing with visual scoring 
from two experts. In addition, the performances, including overall agreement and kappa 
coefficient of five and three stages, were compared to the existing methods. The present 
study further aimed to validate effectiveness of the 5-stage or 3-stage analyses on sleep 
disturbance of the acid-induced hyperalgesia model.

Fig. 1  Typical polygraphic recordings during the different five sleep stages. Frontal, electroencephalogram 
(EEG) of frontal; Occipital, electroencephalogram (EEG) of occipital; NREM, non-rapid eye movement; REM, 
rapid eye movement
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Results
The performance of 5‑stage scoring

The confusion matrix of the 5-stage scoring between the expert consensus and automatic 
scoring from 168,656 epochs of 20 rats is shown in Table 1. The sensitivities of the wake, 
NREM1, NREM2, TS, and REM stages were 94.4%, 91.27%, 91.26%, 78.98%, and 90.48%, 
respectively. The specificities of the wake, NREM1, NREM2, TS, and REM stages were 
99.96%, 94.57%, 98.8%, and 99.2%, respectively. Almost all indexes between the auto-
matic scoring method and expert consensus attained 90%. The overall agreement was 
92.32%. The kappa coefficient was 0.88, which indicated an excellent agreement.

The performance of 3‑stage scoring

The confusion matrix of the 3-stage scoring between the expert consensus and auto-
matic scoring from 168,656 epochs of 20 rats is reported in Table 2. The sensitivities of 

Table 1  Confusion matrix of the 5-stage analysis between the automatic staging method 
and expert consensus

Automatic staging

Wake NREM1 NREM2 TS REM Total

Expert consensus

 Wake 77,822 1747 231 154 486 80,440

 NREM1 3807 41,452 1576 718 591 48,144

 NREM2 499 1207 19,663 5 60 21,434

 TS 152 907 51 4013 206 5329

 REM 156 175 24 191 12,763 13,309

 Total 82,436 45,488 21,545 5081 14,106 168,656

 SE (%) 94.4 91.13 91.26 78.98 90.48

 SP (%) 96.96 94.57 98.8 99.2 99.65

 PPV (%) 96.75 86.1 91.74 75.3 95.9

 NPV (%) 94.77 96.65 98.72 99.35 99.14

Overall agr. (%) 92.32

Kappa 0.88

Table 2  Confusion matrix of the 3-stage analysis between the automatic staging method 
and expert consensus

Automatic staging

Wake NREM REM Total

Expert consensus

 Wake 77,822 2132 486 80,440

 NREM 4458 69,592 857 74,907

 REM 156 395 12,763 13,309

 Total 82,436 72,114 14,106 168,656

 SE (%) 94.4 96.5 90.48

 SP (%) 96.96 94.49 99.64

 PPV (%) 96.75 92.9 95.86

 NPV (%) 94.77 97.3 99.14

Overall agr. (%) 94.97

Kappa 0.91
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wake, NREM, and REM were 94.4%, 96.5%, and 90.48%, respectively. The specificities 
of wake, NREM, and REM were 96.96%, 94.49%, and 99.64%, respectively. All indexes 
between the automatic scoring method and expert consensus were greater than 90%. 
The overall agreement was 94.97%. The kappa coefficient was 0.91, which indicated an 
excellent agreement.

Individual performance

Table  3 shows the agreements and kappa coefficients between the expert consensus 
scoring and automatic scoring in all subjects using the 5-stage and 3-stage analyses. We 
firstly considered performance of the 5-stage analysis. Agreement fell in the range of 
87.42–97.18%. Fourteen subjects (70% of 20 rats) exhibited agreement of > 90%. Aver-
aged agreement was 91.94%. The kappa coefficient was in the range of 0.78–0.96. Nine-
teen subjects (95% of 20 rats) exhibited an excellent agreement (i.e., κ > 0.80). Averaged 
kappa coefficient was 0.87 for the 5-stage analysis.

In the 3-stage scoring, agreement between the expert consensus scoring and auto-
matic scoring fell in the range of 90.22–98.87%. All subjects (100%) exhibited agreement 
of > 9 = 0%. Averaged agreement was 94.39%. The kappa coefficient was in the range of 
0.8–0.98. All subjects (100%) exhibited an excellent agreement. Averaged kappa coef-
ficient was 0.90. These results demonstrated that the proposed rule-based method in 
either the 5-stage or 3-stage analysis achieved stable high performance.

Table 3  Agreement and  Cohen’s kappa coefficient between  the  expert consensus 
and automatic scoring in all individuals under the 3-stage and 5-stage analyses

Subject Agr. of 5-stage (%) κ of 5-stage Agr. of 3-stage (%) κ of 3-stage

No. 1 92.17 0.87 93.64 0.88

No. 2 91.79 0.88 94.5 0.91

No. 3 91.07 0.87 95 0.91

No. 4 89.92 0.83 92.3 0.86

No. 5 91.67 0.87 95.09 0.91

No. 6 93.61 0.90 96.6 0.94

No. 7 94 0.91 96.66 0.94

No. 8 90.16 0.85 92.75 0.87

No. 9 92.08 0.88 94.38 0.90

No. 10 90.31 0.85 91.65 0.85

No. 11 97.18 0.96 98.64 0.96

No. 12 96.84 0.95 98.87 0.98

No. 13 96.97 0.95 97.9 0.96

No. 14 94.85 0.92 95.73 0.92

No. 15 89.89 0.84 92.31 0.86

No. 16 87.42 0.81 90.22 0.82

No. 17 88.6 0.84 92 0.86

No. 18 87.95 0.82 91.77 0.85

No. 19 93.09 0.9 97.33 0.95

No. 20 89.32 0.78 90.44 0.8

Mean 91.94 0.87 94.39 0.90



Page 6 of 22Wei et al. BioMed Eng OnLine           (2019) 18:92 

Sleep disturbance on acid‑induced hyperalgesic model

Figure  2 shows paw withdrawal thresholds of bilateral hindlimbs at days 2 and 23 in 
both vehicle group and acid group. Paw withdrawal thresholds of ipsilateral hindlimb 
exhibited significant difference in the factors of treatment (F1,18 = 22.355, p < 0.001), time 
(F1,18 = 11.631, p = 0.003), and time × treatment (F1,18 = 14.979, p = 0.001). Paw with-
drawal threshold of the acid group at day 23 revealed significantly lower than that of 
the vehicle group or that before the injection of pH 4.0 saline. Paw withdrawal thresh-
olds of contralateral hindlimb exhibited significant difference in the factors of treat-
ment (F1,18 = 23.869, p < 0.001), time (F1,18 = 5.339, p = 0.033), and time × treatment 
(F1,18 = 11.678, p = 0.003). Paw withdrawal threshold of the acid group at day 23 revealed 
significantly lower than that of the vehicle group or that before the injection of pH 4.0 
saline. The results indicated that repetitive injections of pH 4.0 saline into unilateral 
hindlimb caused bilateral hindlimb hyperalgesia.

Figure  3 shows 5-stage wake–sleep changes of the two groups at day 2 and day 23. 
High portion of the wake stage occurred at dark period, and sleep stage often exhibited 
at light period. In particular, NREM2 sleep primarily occurred at the early phase of the 
light period followed by abundant NREM1 sleep at the late phase of the light period. 
Table 4 summarizes all statistical results of 5-stage wake–sleep changes between the two 
groups at 2 timepoints. There was significant difference in the factor of time exclusively 
at day 2. In a sharp contrast to day 2, there was significant difference in the factors of 
time in all parameters, treatment in wake and NREM1, and time × treatment in NREM2 
at day 23. At day 23, the two groups exhibited significant difference in the wake and TS at 
a particular timepoint of the dark period. The acid group exhibited longer NREM1 and 
shorter NREM2 in the light period compared with those of the vehicle group. Table 5 

Fig. 2  Changes of paw withdrawal thresholds in bilateral hindlimbs in the groups receiving pH 7.2 saline or 
pH 4.0 saline at day 2 (D2, baseline) and day 23 (2 weeks after the 2nd injection). *p < 0.05 compared with D2; 
#p < 0.05 compared with the group of pH 7.2
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shows durations of the NREM1 and NREM2 in the light period of days 2 and 23 in the 
two groups. There was no significant difference in durations of the NREM1 and NREM2 
between the two groups at day 2. In contrast, NREM1 duration of the acid group was 
significantly longer than that of the vehicle group at day 23. NREM2 duration of the acid 
group was significantly shorter than that of the vehicle group.  

When we used 3-stage wake–sleep analysis in the two groups at 2 days, there was 
significant difference in the time factor exclusively (Table 4). There was no significant 
difference in the factors of treatment or time × treatment at days 2 and 23. At day 23, 
there was a significant difference in NREM sleep of the dark period between the two 
groups (Fig. 4).

Fig. 3  Changes of 5 wake–sleep stages per hour in the light and dark periods at days 2 and 23. Statistical 
significance between the vehicle group (filled circle) and acid group (open square) is indicated by gray bar. 
Light and dark periods are indicated with open horizontal bar and filled horizontal bar at the top of each 
subplot, respectively. Time is modified as zeitgeber time
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Discussion
The present study introduced 10 features with a simple threshold combined with a two-
step hierarchical decision tree to characterize wake–sleep stages in rats. In both 5-stage 
and 3-stage wake–sleep classification, our method presented a high agreement with two 
experts. In an acid-induced widespread hyperalgesia model, 5-stage wake–sleep classifi-
cation exhibited subtle sleep disturbance when hyperalgesia developed exclusively. The 
current study validated our automatic rule-based algorithm on a good performance for 
wake–sleep classification and effectiveness in the acid-induced hyperalgesia model.

Table  6 summarizes all parameters and performance of this study and previous 
studies [11, 13, 14, 16, 22] in terms of signals, subject number, epoch length, total 
epoch number, and proposed methods under the 3-stage analysis. Overall agree-
ments of these methods ranged from 88 to 96%, including 92–99% for wake, 85–97% 
for NREM, and 79–94% for REM. Among these data, our results demonstrated a 
high overall agreement (> 94%), and all stages’ agreements exceeded 90% (94.9% 
for wake, 96.5% for NREM, and 90.48% for REM). Our 3-stage analytic method had 
optimal performance in terms of high agreement and κ value. The present study uti-
lized a minimum number of signals and largest number of subjects (N = 20). Amount 
of epochs used in this study was several to ten folds of previous studies. Thus, the 

Table 4  Summary of statistical results of wake–sleep stages throughout the recording

* p < 0.05

Stage Factor

Treatment Time Time × treatment

D2

 Wake F = 0.20 (p = 0.657) F = 10.28 (p < 0.001)* F = 0.68 (p = 0.864)

 NREM1 F = 0.13 (p = 0.720) F = 24.23 (p < 0.001)* F = 0.73 (p = 0.816)

 NREM2 F = 0.26 (p = 0.618) F = 12.67 (p < 0.001)* F = 0.70 (p = 0.844)

 TS F = 0.49 (p = 0.492) F = 5.80 (p < 0.001)* F = 0.92 (p = 0.574)

 REM F = 0.02 (p = 0.889) F = 5.78 (p < 0.001)* F = 0.70 (p = 0.846)

 NREM (NREM1 + NREM2 + TS) F = 0.27 (p = 0.612) F = 18.25 (p < 0.001)* F = 0.91 (p = 0.584)

D23

 Wake F = 4.95 (p = 0.039)* F = 10.14 (p < 0.001)* F = 0.78 (p = 0.764)

 NREM1 F = 6.51 (p = 0.020)* F = 22.51 (p < 0.001)* F = 0.64 (p = 0.903)

 NREM2 F = 2.26 (p = 0.150) F = 19.41 (p < 0.001)* F = 1.82 (p = 0.012)*

 TS F = 2.82 (p = 0.111) F = 2.52 (p < 0.001)* F = 1.10 (p = 0.339)

 REM F = 0.20 (p = 0.658) F = 4.19 (p < 0.001)* F = 0.27 (p = 1.00)

 NREM (NREM1 + NREM2 + TS) F = 0.27 (p = 0.612) F = 18.25 (p < 0.001)* F = 0.91 (p = 0.584)

Table 5  Durations of NREM1 and NREM2 sleep in the light period

* p < 0.05, vs. vehicle group

Stage Factor

Day 2 Day 23

Vehicle Acid Vehicle Acid

NREM1 (h) 7.01 ± 0.46 6.80 ± 0.33 6.15 ± 0.50 7.97 ± 0.51*

NREM2 (h) 3.73 ± 0.30 3.87 ± 0.50 2.90 ± 0.26 2.32 ± 0.29*
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current study strengthens the reliability to validate our automatic scoring method in a 
simple preparation for sleep recording.

In the scoring method using 1 EEG and 1 EMG, most agreements between experts 
and automatic scoring from this study and previous studies [11, 16] were higher than 

Fig. 4  Changes of 3 wake–sleep stages per hour in the light and dark periods at days 2 and 23. Statistical 
significance between the vehicle group (filled circle) and acid group (open square) is indicated by gray bar. 
Light and dark periods are indicated with open horizontal bar and filled horizontal bar at the top of each 
subplot, respectively. Time is modified as zeitgeber time

Table 6  Comparisons of all available methods for wake–sleep classification

References Signal Subjects Method Epoch Agreement (%)

Length (s) Number Wake NREM REM All

[11] 1 EEG, 1 EMG 5 Logic algo‑
rithm

20 19,499 98.7 90.7 93.9 94.3

[13] 1 EEG, 1 EMG 14 Logic algo‑
rithm

5 6138 91.8 92.5 79.4 87.9

[14] 2 EEG, 1 EMG 6 Custom SVM 20 10,870 96.5 96.9 95.4 96.8

[16] 1 EEG, 1 EMG 9 Logic algo‑
rithm

5 5594 99.3 97.4 90.9 95.9

[17] 2 EEG, 2 EMG, 
2 EKG

7 Support SVM 10 20,174 83.45 91.74 61.5 84.39

[22] 1 EEG, 1 EMG, 
1 Locomo‑
tion

10 Logic algo‑
rithm

10 75,801 93.4 85.0 82.5 90.9

Our method 1 EEG, 1 EMG 20 Logic algo‑
rithm

10 168,656 94.4 96.5 90.48 94.97
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90%. These studies extracted crucial features from EEG and EMG (including alpha band 
power-related spindle activity and delta power of slow-wave activity) according to raters’ 
experience. The present study selected features of a previous study [16] to calculate 3 val-
uable indexes for stages W, N, and R at the first part of the decision tree; afterwards, we 
further calculated relative power from powers of selected bands as indexes to finely tune 
threshold at the second part of the decision tree. Agreement of our method (94.97%) was 
slightly lower than 95.9% of the previous study [16], particularly for the wake stage. This 
study preserved a comparable agreement using tenfold epochs compared with the pre-
vious study. Discrepancies may arise from different recording periods (24-h recording 
with 12-h light-off period in this study vs. 4-h light-on recording) and epoch amounts 
(168,656 of this study vs. 5594). Because rats are a nocturnal animal, they usually present 
quite wake state in the light-on period. The quite wake state is relatively easy to be cor-
rectly identified rather than active wake stage in the light-off period. On the other hand, 
the previous study presents 88.8% agreement from 9327 epochs and 95.9% agreement 
for 5594 epochs with high confidence between two raters [16]. Highly selected epochs of 
the previous study may be a reason to explain its high agreement.

Human sleep staging uses epoch of 30 s. However, rats are nocturnal animals with a 
relative short sleep cycle [16, 20]. Thus, previous studies have selected epoch with a rela-
tive short duration for sleep staging in rats, such as 5 [13, 16], 10 [17, 22], or 20 s [11, 
14]. In general, a long segment contains valuable wideband information with less sen-
sitivity for transient response. By contrast, a short segment emphasizes on a transient 
variability exclusively. This study selected an epoch of 10 s as a compromise between val-
uable information and transient variance [17, 22]. To further extract valuable transient 
response, the present study designed fine analysis of 5.2-s epochs for each 10-s epoch 
combined with a rule-based decision tree to determine the behavioral stage [28]. Our 
results (94.97% agreement) exhibited relatively higher than previous studies (84.39% [17] 
or 90.9% [22]) in Table 6. Our proposed epoch length and alternative analytic method 
seem to be beneficial for staging analysis in rats.

Valuable features play an important role in classification of different behavioral stages. 
Numerous studies have suggested useful features for staging in EEG, such as band power 
[29–32], spectral power [29–31], higher-order spectra [33], entropy [30, 34, 35], wavelets 
coefficient [29, 31, 36, 37], etc. The present study selected certain classic band powers 
of a rat EEG as features [16, 38], which are common and useful in automatic staging 
previously [14–16, 18]. We derived several valuable indexes from 10 features through 
statistical assessment (Figs. 5, 6). Most importantly, normalization of all selected indexes 
exhibited the advantage of eliminating individual differences [28]. The normalization 
of all indexes is also helpful for high consistency of the automatic scoring among sub-
jects. The present study exhibited κ value of > 0.8 occurring in 95% of rats for the 3-stage 
scoring and 100% of rats for the 5-stage scoring. These results demonstrated subject-
independent robustness of our strategies using band power-related features combined 
with normalization. In addition to band power of EEG, the wavelet analysis is recently 
emphasized for non-stationary signal [31, 36]. The contribution of wavelet coefficients 
on our proposed automated scoring method remains to be determined.

Previous studies have introduced various classification algorithms, including artificial 
neural network [29–31, 35–37], decision trees [29, 31], liner discriminant analysis [29, 
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31, 34], extreme learning machine [32], Gaussian mixture models [33], etc. Accuracies of 
those classifiers for sleep scoring have a large variance (75–95%). Ideally, a simple clas-
sifier is used in the case with excellent representative features. According to statistical 
evaluation of valuable indexes (Fig.  6), a simple threshold was used in several testing 
points of the decision tree (Fig. 7) and had a great advantage on reduction of computa-
tion power. The present study also modified the decision tree into two principal parts 
according to valuable features of previous studies [16] and prior experience of experts. 
Thus, our algorithm was easy to determine two kinds of sleep scorings. Agreements for 
the 3-stage scoring and 5-stage scoring were 94.97% and 92.32%, respectively. In the pre-
sent study, κ values of almost all subjects were > 0.8 (i.e., excellent agreement) for the 
two-stage scorings. Based on these results, the present study proposes a new decision 
tree combined with valuable features for sleep scoring.

The 5-stage wake–sleep classification in rats has been proposed in a previous study 
with a semiautomatic scoring method [20]. Table  7 shows agreements of the previ-
ous study [20] and our method. The present study achieved a better performance in 
wake (94.4% vs 85.14%), NREM1 (91.13% vs 71.51%), NREM2 (91.26% vs 89.94%), and 

Fig. 5  The values of IndexW, IndexN, and IndexR in the wake, NREM, and REM stages (1st to 200th epochs are 
wake, 201st to 400th epochs are NREM, and 401st to 600th epochs are REM). Blue line: the value of IndexW; 
red line: the value of IndexN; green line: the value of IndexR

Fig. 6  a Values of the IndexW, IndexN and IndexR in the wake, NREM, and REM stages from the training 
dataset. b Values of the Index1 and Index2 in the wake and NREM1 stages from the training dataset. c Values 
of Index3 and Index4 from the training dataset
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TS (78.98% vs 72.55%). The performance of REM in this study (90.48%) was slightly 
less than the previous study (94.52%). Overall agreement (92.32%) of this study was 
higher than that of the previous method (82.63%). The κ value of this study indicated 
an excellent agreement, and the previous study only exhibited substantial agree-
ment. Taken together, the present study advances automatic scoring technique of the 
5-stage analysis.

The 3-stage staging method provided little information of slow-wave activity in 
NREM sleep. Thus, it is difficult to explore interactive change of delta activity and 
alpha activity during NREM sleep. In a sharp contrast, the 5-stage scoring is able 
to observe possible alteration between slow-wave activity (delta power) and spindle 
(alpha power) [20]. At the baseline (day 2), both groups did not differ from each other 

Fig. 7  Flow chart of the proposed decision tree. BPR: band power ratio; ∑NRA: IndexN + IndexR + IndexA
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in terms of PWT and sleep pattern. Rats exhibited decrease NREM2 sleep (slow-wave 
sleep) followed by increased NREM1 sleep (light sleep) during light period (Fig.  3), 
which is similar to nocturnal sleep pattern in humans [1]. This cyclic change of 
NREM1 and NREM2 during light-on period cannot be seen in the 3-stage analysis 
(Fig. 4). Repetitive acid injection into an unilateral muscle caused widespread hyper-
algesia at day 23 [39]. The present study also characterized acid-induced hyperalge-
sia comorbid with sleep disturbance, i.e., longer NREM1 sleep and shorter NREM2 
sleep (Table  4). This phenomenon exists in most humans with chronic widespread 
pain syndromes, such as fibromyalgia [2]. Taken together, the present study provides 
additional face validity of acid-induced hyperalgesia model as human’s fibromyalgia 
and further support on the 5-stage wake–sleep analysis.

Conclusions
We performed and validated a rule-based automated sleep scoring system in rats. The 
proposed method exhibits 92.32% agreement in the five-stage scoring and 94.97% agree-
ment in the three-stage scoring with a manually reference from two scorers. Ten fea-
tures of the EEG and EMG signals were utilized. Normalization of these feature-derived 
indexes was employed to reduce individual variability. A simple threshold was set to 
separate different stages. Compared with other classifiers, such as neural networks [12, 
24] or linear discriminator analysis [40], the thresholding in this approach is less com-
putationally complex. Our method classified the vast majority of epochs with excellent 
agreement through high κ value. The performance of our proposed five-stage method is 
superior to existing methods. Because the classification is less computation power and 

Table 7  Confusion matrix of  the  agreement by  method of  Neckelmann et  al. (a) and  our 
method (b)

(a) Automatic staging [20]

Wake NREM1 NREM2 TS REM

Expert consensus

 Wake 85.14 11.80 1.72 0.02 1.32

 NREM1 2.74 71.51 22.90 1.10 1.76

 NREM2 0.32 9.12 89.94 0.03 0.59

 TS 0.00 17.66 5.49 72.55 4.30

 REM 2.94 1.73 0.00 0.81 94.52

Overall agr. (%) 82.63

Kappa 0.78

(b) Automatic staging

Wake NREM1 NREM2 TS REM

Expert consensus

 Wake 94.4 4.62 0.61 0.18 0.19

 NREM1 3.84 91.13 2.65 1.99 0.38

 NREM2 1.07 7.31 91.26 0.24 0.11

 TS 3.03 14.13 0.10 78.98 3.76

 REM 3.45 4.19 0.43 1.46 90.48

Overall agr. (%) 92.32

Kappa 0.88
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more robustness and consistency, this algorithm can be implanted into a versatile wire-
less portable monitoring system for real-time analysis in the near future.

Methods
Animal preparation and experimental procedure

Adult male Sprague–Dawley rats (n = 20, 300–400 g) were used. Rats were raised in a 
sound-attenuated room with a 12–12 light–dark cycle (06:00–18:00 lights on) and com-
fortable temperature (25 ± 2 °C). Rats were randomly assigned into a group receiving the 
vehicle (pH 7.2, n = 11) or acid saline (pH 4.0, n = 11). The Institutional Animal Care and 
Use Committee of National Cheng Kung University reviewed and approved the experi-
mental procedures.

The recording electrodes were implanted under pentobarbital anesthesia (60 mg/kg, 
i.p.). Following anesthesia induction, the rat was placed in a standard stereotaxic appara-
tus. The dorsal surface of the skull was exposed and cleaned. Seven stainless steel screws 
were driven bilaterally into the skull overlaying the frontal (2.0  mm anterior to and 
2.0 mm lateral to the bregma), parietal (2.0 mm posterior to and 2.0 mm lateral to the 
bregma), and occipital (6.0 mm posterior to and 2.0 mm lateral to the bregma) regions of 
the cortex [5]. A reference electrode was implanted 2.0 mm caudal to the lambda. Seven-
strand stainless steel microwires (#7935, A-M Systems) were bilaterally inserted into 
the dorsal neck muscles to record EMG. Monopolar EEG recording and bipolar EMG 
recording were used. There were two groups: the first group (No. 1–10) had EEG record-
ings from bilateral frontal lobe and right occipital lobe; the second group (No. 11–20) 
had EEG recordings from bilateral parietal lobe and right occipital lobe. The occipital 
EEG is good to pick up hippocampal theta activity for characterizing REM sleep [5]. Fol-
lowing the surgery, the rats were administered antibiotics (chlortetracycline) and housed 
individually in cages for 1 week of recovery. To allow the rats to become habituated to 
the experimental apparatus, each animal was placed in the recording environment 1 day 
prior to the experiment.

Induction of chronic hyperalgesia was described in our previous study [39]. In brief, 
normal saline (pH 7.2) was adjusted with an 2-(N-morpholino)ethanesulfonic acid to 
pH 4.0 ± 0.1 as acid saline. All rats were briefly anesthetized with vaporized isoflurane 
(3–5%). The left gastrocnemius muscle was injected with 100-μl neutral saline (vehicle 
group) or acid saline (acid group) on days 3 and 8.

Hyperalgesia test in terms of paw withdrawal threshold (PWT) has been described in 
our previous study [39]. Briefly, rats were placed in a Lucite cubicle on an elevated metal 
grid allowing to stimulate the plantar surface of a paw. Von Frey filaments were applied 
to the plantar surface of a paw. A “response” to the stimuli was defined as an abrupt lift-
ing of the foot upon application of the von Frey filaments. A trial contained 5 von Frey 
stimuli. PWT was defined as the lowest force that elicited ≥ 3 withdrawals in 5 consecu-
tive stimuli. PWT of the ipsilateral left hindpaw was measured followed by the contralat-
eral right hindpaw. In the present study, PWTs before the 1st injection (D1) and 14 days 
after the 2nd injection (D22) were selected to demonstrate effect of repetitive unilateral 
injection of acid saline eliciting bilateral chronic hyperalgesia. Sleep recording of 26 h 
(from 5:00 a.m. to 7:00 a.m. of the next day) was performed at day 2 (baseline) and day 
23 (severe hyperalgesia) with regard to measures of PWTs [39].
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Sleep recording and stage scoring

Rats were briefly anesthetized with vaporized isoflurane (3–5%). Dental cement was used to 
fix a recording wire, which contained an amplifier headset, with the connector over the rat’s 
head. The rat was placed in a transparent acrylic box, and the recording wire was connected 
into a multichannel commutator (Model#SL-36, Dragonfly Inc., West Virginia, USA) for 
free movement in the recording box.

A head set contained several N-channel field-effect transistors (MMBF5484, Motorola 
Semiconductor, USA) to act as a transconductance voltage buffer to reduce possible inter-
ference of external electromagnetic field coupling from the recording wire [41]. EEGs of 
frontal, parietal and occipital cortices were amplified (5000×) and filtered (0.1–70  Hz). 
EMG was amplified (1000×) in the range of 100–500 Hz. The EEG and EMG were syn-
chronously digitized at different sampling rates (200 and 500 Hz, respectively) through a 
12-bit analog–digital converter (PCL-818L, Advantech, Taiwan) connected to an IBM PC-
compatible computer. The entire software, including data acquisition and analysis, was 
developed in MATLAB. The acquired data were stored on a hard disk for subsequent off-
line verification.

All sleep recordings from 20 rats were scored visually by two sleep specialists with a 10-s 
segment (termed the epoch). The training data were randomly selected from two rats (one 
from the first group and the other one from the second group) and the remaining rats in the 
two groups were used for testing.

Feature extraction

The present study used Fast Fourier Transform (FFT) to characterize powers of specific 
bandwidths. A variety of frequency- and time-domain features were extracted from 2-s 
non-overlapping segments of the sleep data. Table 8 lists the 10 features used in this study 
[16, 27].

Spectral power (SP): Following FFT, we calculated the mean spectral power (dB) among 
each frequency band for the EEG (EEGlo; 0–0.5 Hz, δ; 0.5–5 Hz, θ; 6–9 Hz, α; 10.5–15 Hz, 
β; 22–30 Hz, γ; 35–45 Hz).

Power ratio (PR): Following FFT, we calculated the total spectral power (dB) of 0–30 Hz 
and the mean power of each frequency band in the EEG. Then, we calculated the ratio of 

(1)SPi = norm
[

SP
(

fi
)]

, where i = 1− 6

Table 8  Summary of features

Type Feature Formula

Spectral power 0–0.5 Hz (EEG) Mean (power (dB))

0.5–5 Hz (EEG)

6–9 Hz (EEG)

10.5–15 Hz (EEG)

22–30 Hz (EEG)

35–45 HZ (EEG)

Power ratio 0–0.5 Hz (EEG) Power (0–0.5)/power (0–30)

0.5–5 Hz (EEG) Power (0.5–5)/power (0–30)

10.5–15 Hz (EEG) Power (10.5–15)/power (0–30)

EMG energy Amp M (EMG) Mean (abs (amp.))
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each band power divided by the total power [power (0–30 Hz)] as a feature. Table 8 shows 
three power ratios as our features (EEGlo; 0–0.5 Hz, δ; 0.5–5 Hz, α; 10.5–15 Hz).

EMG energy: EMG signal was filtered in the range of 10–100 Hz. The mean value of the 
absolute amplitude of the filtered EMG in an epoch was calculated from as a feature.

Following feature extraction, normalization of the features was employed to prevent 
extreme values influencing analysis then to reduce possible individual variability [28]. For 
each feature, the mean of the maximal 10% data was calculated as the maximum value of 
the feature, and the mean of the minimal 10% data was calculated as the minimum value of 
the feature. The procedure for normalization was summarized in the following steps:

Step 1 The means of the 10% minimal and maximal values for each feature as the min 
and max values, respectively, were calculated.
Step 2 The min and max values were set as 0 and 1; the other values were then normal-
ized from 0 to 1.
Step 3 If the value was higher than 1, the value was specified as 1. If the value was lower 
than 0, the value was specified as 0.

Two steps are required after the elementary construction of a decision tree: (1) select-
ing appropriate features for each decision node and (2) setting appropriate threshold of the 
selected features as the splitting predicates. For the first step, the means and the standard 
deviations of the analyzed feature corresponding to stages A and B were ( Ā , B̄ ) and ( σA , σB ), 
respectively. The distribution distance (DD) of the feature with respect to A and B was cal-
culated through the following equation:

A feature with a large DD value indicates a large difference between stages A and B. After-
wards, a large DD value between features was used to select proper features for each node.

For the second step, the present study set an appropriate value for each feature to clarify 
stage at each node. The threshold for the feature was obtained by following equation:

Structure of the decision tree

Figure 7 shows flow chart of the proposed decision tree. The decision tree contained two 
parts and seven testing points. The first part of the decision tree characterized all 10-s 
epochs into three conditions, i.e., stages W, N, and R. Afterwards, the second part fur-
ther classified these epochs into the wake, NREM1, NREM2, TS, and REM stages.

(2)PR =
norm

[

SP
(

fi
)]

norm
[

SP
(

fj
)] , where i = 1− 3

0 ≤ f1 < 0.5, 0.5 ≤ f2 < 5, 10.5 ≤ f3 < 15, 0 ≤ fj ≤ 30.

(3)DD(A,B) =

{

1− σA+σB
2
∣

∣Ā−B̄
∣

∣

0

if σA + σB ≤ 2
∣

∣A− B
∣

∣

else
.

Threshold =
1

2

[(

mean (10%max)−
1

2
Std (10%max)

)

+

(

mean (10%min)+
1

2
Std(10%min)

)]

.
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In the first part of the decision tree, we used indexes defined in a previous study to 
classify an epoch into a condition [16]. The present study determined different ratios of 
the variables to discriminate each condition as follows:

where ∑EEG = δ + θ + α + β + γ.
A previous study has proposed a short 2-s segment to increase the sensitivity for sleep 

staging in humans [28]. The current study divided each 10-s epoch into five 2-s segments 
and then calculated four indexes by the average of five 2-s feature values. The IndexA 
was used to detect the artifact stage. The artifacts were characterized by high fluctua-
tion from the signal occasionally accompanied by broadband increases in EEG power 
[16]. For instance, the artifact was caused by biting or grasping something within a short 
period in rats. In the first testing point of Fig. 7, the epoch was considered an artifact if 
the value of the IndexA/∑NRA > 0.9 (where ∑NRA = IndexN + IndexR + IndexA). In gen-
eral, these artifact epochs were considered as wake epochs [22].

Ideally, a good feature set should present great difference in a distinct condition. The 
IndexW values would exceed values of the IndexN and IndexR in the stage W. The IndexN 
values were greater than the values of IndexW and IndexR in the stage N, and the IndexR 
values should be larger than the values of IndexW and IndexN in the stage R. The present 
study randomly selected 600 10-s epochs from two rats (48-h recording) with staging 
by two experts as the 3-stage analysis (1st to 200th epochs were wake, 201st to 400th 
epochs were NREM, and 401st to 600th epochs were REM). A rat contributed 100 
epochs for each condition. Three indexes were calculated from normalized values. Fig-
ure 5 illustrates the values of IndexW, IndexN, and IndexR in the wake, NREM, and REM 
stages, respectively. The index belonging to a particular stage was obviously higher than 
the other two stages, such as higher IndexW occurred at the wake stage.

Figure  6a shows values of the IndexW, IndexN and IndexR in the wake, NREM, and 
REM stages from the training dataset. A one-way analysis of variance (ANOVA) [42] 
was utilized to assess the Index difference under a particular stage, if appropriate, a 
Bonferroni t test [43] was used as a post hoc test. In the wake stage, the Index exhib-
ited significant difference (F2,25875 = 47807.06, p < 0.001). The IndexW (0.771 ± 0.002) 
was significantly higher than IndexN (0.194 ± 0.002) and IndexR (0.036 ± 0.001). In the 
NREM stage, the Index exhibited significant difference (F2,26664 = 78,406.13, p < 0.001). 
The IndexN (0.744 ± 0.001) was significantly higher than IndexW (0.122 ± 0.001) and 
IndexR (0.134 ± 0.001). In the REM stage, the Index exhibited significant difference 
(F2,3600 = 3229.41, p < 0.001). The IndexR (0.689 ± 0.007) was significantly higher than 
IndexW (0.134 ± 0.004) and IndexN (0.178 ± 0.005).

In the second part of the decision tree, epochs were further divided into the wake, 
NREM1, NREM2, TS, and REM stages. When a rat exhibited active behavior, extreme 

(4)IndexW = (EMG × γ )/δ,

(5)IndexN = (δ × α)/γ 2,

(6)IndexR = θ3/(δ × α × EMG),

(7)IndexA = [(2× EEGlo)+ β]× γ

/

∑

EEG,
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movement-induced noise occurred in the EEG signals. In the stage W of the first part, 
the epoch that low band power ratio (0–0.5 Hz) > 0.5 occurred at ≥ 1.2-s segment was 
rescored as the wake stage for the 2nd testing point. According to the manual scoring 
rule, the EEG comprised high frequency, which consisted of predominant theta activ-
ity (6–9 Hz) concomitant with a large amplitude EMG in the wake stage; the NREM1 
stage presented sleep spindles (α; 10.5–15  Hz) and/or median delta wave activity 
(0.5–5 Hz) less than 50% of the segment accompanied by diminished EMG compared 
with the wake stage. Therefore, the present study constructed Index1 and Index2 as 
follows:

Figure  6b shows values of the Index1 and Index2 in the wake and NREM1 stages 
from the training dataset. In the wake stage, the Index1 (0.496 ± 0.001) was signifi-
cantly higher than the Index2 (0.194 ± 0.001; t70458 = 179.557, p < 0.001). In the NREM1 
stage, the Index2 (0.292 ± 0.011) was significantly higher than the Index1 (0.216 ± 0.011; 
t698 = -4.969, p < 0.001). As shown in the 3rd testing point of the second part decision 
tree, an epoch that the Index1 values of all 2-s segments exceed the Index2 was consid-
ered as the wake stage. Otherwise, the epoch was considered as the NREM1 stage.

In the stage N of the first part, the epoch that low band power ratio (0–0.5 Hz) > 0.5 
occurred at ≥ 2.2-s segments was rescored as the wake stage for the 4th testing point 
because an epoch in the stage N probably presented mild delta wave and movement-
induced noise simultaneously. Our prior experience expressed ≥ 2 segments with 
higher low band power ratio as a reasonable index for the wake stage. Subsequently, 
frontal and parietal EEGs were characterized by a prominent theta rhythm intermit-
tent with short-lasting high-amplitude spindles in the TS. The current study defined 
Index3 and Index4 as follows:

Figure 6c shows values of Index3 and Index4 from the training dataset. In the TS, 
the Index3 (0.615 ± 0.007) was significantly higher than the Index4 (0.145 ± 0.000; 
t3348 = − 59.757, p < 0.001). An epoch that the Index3 values of ≥ 3.2-s seg-
ments exceed the Index4 was considered as the TS for the 5th testing point. In the 
NREM1 + NREM2 of the stage N, the Index4 (0.488 ± 0.001) was significantly higher 
than the Index3 (0.206 ± 0.001; t75258= 171.850, p < 0.001). According to prior expe-
rience, delta band power of the NREM2 stage was higher than that of the NREM1 
stage. The present study considered an epoch as the NREM2 stage if delta band power 
ratio > 0.5 occurred at ≥ 3.2-s segments for the 6th testing point of the second part 
decision tree. Otherwise, the epoch was considered as the NREM1 stage.

The TS and REM stages often exhibited theta activity. The TS also embedded 
higher alpha amplitude of high-amplitude spindle exclusively. In the stage R of the 
first part decision tree, an epoch that alpha band (10.5–15  Hz) power ratio > 0.3 

(8)Index1 = EMG × γ /δ

(9)Index2 = α × δ/θ

(10)Index3 = θ × γ /δ

(11)Index4=δ/θ
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occurred ≥ 1.2-s segment was considered as the TS. Otherwise, it was considered as 
the REM stage.

According to the two-part decision tree, the 5-stage scoring was finished. Furthermore, 
the present study took the NREM1, NREM2 and TS together as the NREM stage for the 
3-stage analysis.

Statistics

Two experts used the established rules for visual scoring and did not discuss the data each 
other. The five-stage (wake, NREM1, NREM2, TS, REM) and three-stage (wake, NREM, 
REM) scorings were compared here. For the 3-stage analysis, experts considered NREM1, 
NREM2 and TS as NREM. The automatic staging hypnogram and manual staging were 
performed. Figure 8 displays three hypnograms scored by expert 1, expert 2 and automatic 
staging, respectively. The present study compared the automatic scoring with expert 1 
and expert 2. For a given epoch, four scoring situations existed: (1) both the two manual 
scores and the automatic score were identical; (2) the two manual scores were the same 
but differed from the automatic score; (3) difference in the two manual scorers and the 
automatic score consenting with a manual scorer; (4) difference among all scorings. The 
expert consensus scoring defined as epochs in the same sleep stage by the two experts. To 
reduce possible confusion epochs, epochs with consensus scoring by two experts were used 
throughout the entire validation procedure.

The performance between the expert consensus and staging method was assessed 
by numerous indexes, including sensitivity (SE), specificity (SP), number of true positive 
(PPV), number of true negative (NPV) of each stage, overall agreement, and kappa coef-
ficient (κ). Definitions of all indexes were shown below.

(12)SE =
Number of true positives

(

Number of true positives+Number of false negatives
)

Fig. 8  Light phase (8:00 A.M. to 5:00 P.M.) hypnogram of No. 9. Top two panels are manual staging 
hypnograms from two experts, and bottom panel is a hypnogram from the automatic staging
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Pr(a) is the relative observed agreement among scorings, and Pr(e) is the hypothetical 
probability of chance agreement. The Cohen’s kappa coefficient is a statistical measure 
of the inter-rater agreement [44]. Cohen’s kappa measures the agreement between two 
scorings who classify N items into C mutually exclusive categories. The observed data 
had been used to calculate the probabilities of each scoring. The interpretation of kappa 
coefficients by Landis and Koch [45] is as follows: poor agreement with κ < 0.00, slight 
agreement with 0.00 ≤ κ ≤ 0.20, fair agreement with 0.21 ≤ κ ≤ 0.40, moderate agreement 
with 0.41 ≤ κ ≤ 0.60, substantial agreement with 0.61 ≤ κ ≤ 0.80, and excellent agreement 
with κ > 0.80.

In the acid-induced widespread hyperalgesia, paw withdrawal thresholds of bilateral 
hindlimbs were analyzed by Friedman repeated measures ANOVA on rank, if appropri-
ate, followed by Dunnett’s test. Changes of 5 wake–sleep stages per hour or 3 wake–
sleep stages per hour between the two groups were analyzed using two-way repeated 
measures ANOVA with one factor repetition, if appropriate, followed by post hoc Bon-
ferroni t test. All data of this study were expressed as the means and standard error of 
the mean (SEM). Level of statistical significance was considered to be p < 0.05.
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